导航:首页 > 纯水知识 > 纳滤膜的纯水通量

纳滤膜的纯水通量

发布时间:2023-10-18 15:28:28

纳滤净水器有什么特点

作为一种新型分离技术,纳滤膜在其分离应用中表现出下列显著特征:一专是 其截留分子量介于反属渗透膜和超滤膜之间;二是纳滤膜对无机盐有一定的截留 率,因为它的表面分离层是由聚电解质所构成,对离子有静电相互作用;三是超 低压大通量,即在超低压下(O.IMPa)仍能工作,并有较大的通量。纳滤膜分 离过程无任何化学反应,无需加热,无相转变,不会破坏生物活性。纳滤家用净水器通过几种组合制成适合家庭使用的净水器,采用纳滤膜过滤 技术,能有效去除自来水中余氯、重金属、农药、有机物、细菌、微生物等。达 到饮用净水标准要求,充分保留了水中对人体有益的矿物质和微量元素,使之成 为健康直饮水。

② 净水器的纳滤膜和RO膜,超滤膜有什么区别

纳滤膜和RO膜的区别:

1. NF膜分离需要的跨膜压差一般为0.5~2.0MPa,比用反渗透膜达版到同样的渗透能量所权必须施加的压差低0.5~3MPa。在同等的外加压力下,纳滤的通量要比反渗透大得多,而在通量一定时,纳滤所需的压力则比反渗透的低很多。所以用纳滤代替反渗透时,“浓缩”过程可更有效、快速地进行,并达到较大的“浓缩”倍数。

2.纳滤膜与其他膜分离过程比较,纳滤的一个优点是能透析反渗透膜所截留的部分无机盐——也就是能使“浓缩”与脱盐同步进行。

3.纳滤膜介于反渗透和超滤膜之间,其膜表面分离皮层可能具有纳米级微孔结构。

4.相对于反渗透膜NaCI的脱除率均在95%以上,一般将NaCI脱除率为90%以下的膜均可称之为纳滤膜。

5.反渗透膜几乎对所有溶质都有很高的脱除率,而纳滤膜只对特定的溶质具有脱除率。

6.反渗透膜几乎均为聚酰胺材质,而纳滤膜材料可采用多种材质,如醋酸纤维素、醋酸-三醋酸纤维素、磺化聚砜、磺化聚醚砜、芳香聚酰胺复合材料和无机材料等。

其实这几种滤膜区别不大,主要的区别就是精度大小不一样,还有就是应用领域也有些不一样。如果对这几种滤膜的区别还是不是很清楚详细的可以看网页链接

③ 8040的纳滤膜每一只膜每小时产多少水

8040中空纤维超来滤膜 如果是源放在 反渗透8040膜壳内的膜组件 产水量:900L/H-1440L/H 8040这结构的膜元件 膜面积大概在12-18㎡ 设计通量一般在,50-85L/h㎡ 还有一种膜 也有人称为8040,这种结构的就是自身带有膜壳,有4个活接借口的 这个结构的膜元件产水量在:1250L/H-2010L/H 这结构的膜元件 膜面积大概在25-30㎡,每个厂家膜面积都有差异 中空纤维超滤膜组件的设计通量都差不多 范围 希望能够帮助到您,如果您有疑问,可以联系我

④ 纳滤膜分离技术如何应用在废水处理

纳滤膜分离技术经常被应用到工业重金属废水处理中,应用纳滤膜分离技术专对重工业生产属过程中产生的废水进行处理:一方面可以实现对90%以上的废水进行回收,使其钝化;另一方面可以使肺水肿的金属离子含量浓缩约10倍。将纳滤膜应用在造纸废水处理中,不仅可以实现对废水中COD(约90%)的处理,而且其膜通量与传统的聚砜超滤膜相比更高。

⑤ 影响纳滤膜,超滤膜,RO膜的性能因素有哪些

压力的影响
进水压力影响RO和NF膜的产水通量和脱盐率,我们知道渗透是指水分子从稀溶液侧透过膜进入浓溶液侧的流动,反渗透和纳滤技术即在进水水流侧施加操作压力以克服自然渗透压。当高于渗透压的操作压力施加在浓溶液侧时,水分子自然渗透的流动方向就会被逆转,部分进水(浓溶液)通过膜成为稀溶液侧的净化产水。透过膜的水通量增加与进水压力的增加存在直线关系,增加进水压力也增加了脱盐率,但是两者间的变化关系没有线性关系,而且达到一定程度后脱盐率将不再增加。
由于RO和NF膜对进水中的溶解性盐类不可能绝对完美地截留,总有一定量的透过量,随着压力的增加,因为膜透过水的速率比传递盐分的速率快,这种透盐率的增加得到迅速地克服。但是,通过增加进水压力提高盐分的排除率有上限限制,正如图1脱盐率曲线的平坦部分所示那样,超过一定的压力值,脱盐率不再增加,某些盐分还会与水分子耦合一同透过膜。
温度的影响
膜系统产水电导对进水温度的变化非常敏感,随着水温的增加,水通量几乎线性地增大,这主要归功于透过膜的水分子的粘度下降、扩散能力增加。增加水温会导致脱盐率降低或透盐率增加,这主要是因为盐分透过膜的扩散速率会因温度的提高而加快所致。膜元件能够承受高温的能力增加了其操作范围,这对清洗操作也很重要,因为可以采用更强烈和更快的清洗程序。
盐浓度的影响
渗透压是水中所含盐分或有机物浓度和种类的函数,盐浓度增加,渗透压也增加,因此需要逆转自然渗透流动方向的进水驱动压力大小主要取决于进水中的含盐量。如果压力保持恒定,含盐量越高,通量就越低,渗透压的增加抵消了进水推动力,水通量降低,增加了透过膜的盐通量(降低了脱盐率)。
回收率的影响
通过对进水施加压力当浓溶液和稀溶液间的自然渗透流动方向被逆转时,实现反渗透过程。如果回收率增加(进水压力恒定),残留在原水中的含盐量更高,自然渗透压将不断增加直至与施加的压力相同,这将抵销进水压力的推动作用,减慢或停止反渗透过程,使渗透通量降低或甚至停止。RO
系统最大可能回收率并不一定取决于渗透压的限制,往往取决于原水中的含盐量和它们在膜面上要发生沉淀的倾向,最常见的微溶盐类是碳酸钙、硫酸钙和硅,应该采用原水化学处理方法阻止盐类因膜的浓缩过程引发的结垢。
pH 值的影响
各种反渗透和纳滤膜元件适用的pH值范围相差很大,像这样的超薄复合反渗透和纳滤膜与醋酸纤维素反渗透和纳滤膜相比,在更宽广的 pH
值范围内更稳定,因而,具有更宽的操作范围。膜脱盐率特性取决于pH值,水通量也会受到影响。

⑥ 膜通量的计算公式

膜通量(J)的计算公式为:J= V/(T×A)。其中:J是膜通量(L/m2·h);回答V是取样体积(L);T是取样时间(h);A是膜有效面积(m2)。

测量方法:

1、在一定的操作条件下,采用出水抽吸泵工作在一个级数上使膜工作一个时间段Δt(不小于30 min),观测透膜压力在Δt内的变化。

2、若透膜压力保持恒定,调节出水抽吸泵的级数,使膜通量增加一个阶量,重新观测TMP在另一个Δt内的变化,如此继续,直到TMP在Δt内随时间不断增长为止,记此时的膜通量为FN+1。

(6)纳滤膜的纯水通量扩展阅读

膜通量的应用领域:

1、过滤水:中大超纯水系统的前置过滤处理,饮料业用水前置过滤处理。

2、食品行业过滤:食用油、蔬菜油的过滤,糖浆、巧克力等各式浆液的过滤。

3、化学工业过滤:电镀液药液的过滤,油漆,涂料的过滤,机械用油,切削油,重油,高黏度树脂的过滤,制药的过滤等。

参考资料来源:网络-膜通量

⑦ 纳滤技术的纳滤膜

  1. 纳滤膜是以压力差为推动力,介于反渗透和超滤之间的截留水中粒径为纳米级颗粒物的一版种膜分离技术。权

  2. 孔径在1nm以上,一般1-2nm(1纳米(nm)=0.001微米(um))。是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。

  3. 纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。

⑧ 影响高压纳滤膜性能的因素有哪些

纳滤膜性能受哪些因素影响?
1、操作压力
纳滤过程中存在阻力,当NF膜在相同的操作条件下,过滤不同料液时效果也不同。当施加在膜上的驱动力压力增大时,膜会被压实,且膜自身阻力将增加。随着膜两侧压力的增大,膜两侧溶液浓度会构成浓差极化现象,形成反向渗透压。因此当操作压力增大时,透过膜的通量不一定单调递增。许多研究人员指出,在一定操作压力范围内,增加操作压力可以提高纳滤膜的产水通量,当升至一定压力时便趋于稳定。
2、进水盐浓度
当进水盐浓度较低时,浓差极化作用和膜污染程度很小,溶剂易于透过纳滤膜,而溶质则被截留,浓水浓度明显高于进水盐浓度,由此计算得到高截留率。而当进水盐浓度提高,会加大膜两侧的浓差极化并会加快膜污染,导致膜分离性能明显降低,膜孔被堵塞,溶剂透过膜阻力增大,产水量减少,浓水盐浓度相对降低,截留率下降。同时,进水离子浓度增加,会影响膜表面荷电,影响膜对离子的排斥作用,也可导致截留率下降。
3、PH值
大部分的纳滤膜表面都具有电荷,pH值会影响纳滤膜表面的电荷,进而影响膜表面电荷与溶液离子间的静电排斥作用,从而影响溶质是否可以通过膜孔,即改变膜对溶质的分离性能。
4、温度
当温度升高,会增大溶液中部分组分的溶解度,形成大颗粒,膜污染增加,导致膜通透量下降。若温度过高,会使蛋白质变性并被破坏,从而加重膜污染,使得溶液通透量降低。

⑨ 纳滤膜的水渗透系数和溶质渗透系数是多少

利用孔模型分析膜孔结构

本文基于孔模型,从膜对NaCl溶液的透过实验中,得到8种膜的结构参数,实验结果表明,从溶质透过膜的参数与从溶剂透过膜的参数得到的膜结构参数并不一致。根据孔模型由溶质的Stokes半径γs得到的膜孔半径γp与根据透过溶剂而计算出的膜孔半径γω之间存在线性关系,对于CA膜,它们的关系式是:γω=10.50(γp-1.739),γp与γω之间的相关关系是0.9986,对于γp的标准偏差是0.14。
关键词:孔模型;膜结构参数;CA膜
ANALYSIS OF MEMBRANE STRUCTURE PARAMETERS BY PORE MODEL

LUO Ju-fen, MO Jian-xiong
(The Development Centr of Water Treatment Technology, SOA Hangzhou 310012)

Abstract:Based on the pore model, structural parameters of the eight kinds of membranes were determined with permeation experiments of aqueous solution of sodium chloride. The parameters determined from P differ from that obtained from Lp. There is a good linear correlation between rp which obtained from the solute radius rs and rω which obtained from the pure water flux. For cellulose acetate membranes, the relation of rp and rω can be written as rω =10.50(rp-1.739). The linear correlation coefficient between rp and rω is 0.9986 and for rp its standard deviation is 0.14.
Key words:pore model; structure parameters; CA membrane

测定膜结构参数对于预测溶质透过膜的传递性能是很重要的。为了能测定膜的结构参数,出现了摩擦模型,孔模型,改进的孔模型,SHP模型等。Nakao和Kimura等针对单组分水溶液,将这些模型应用到超滤膜分离体系和纳滤膜分离体系,以不同溶质的渗透实验计算了超滤膜和纳滤膜的γp和Ak/△x值〔1-3〕。
本文通过膜对NaCl水溶液的透过实验,在确定不可逆过程热力学迁移方程中的三个参数后,基于改进的孔模型〔6〕,得到8种分离膜的结构参数,并比较了从溶质和从溶剂透过性能所得到膜孔结构参数的区别。这些膜对NaCl的脱除率在15%~99%之间,其中有部分膜是超滤膜。

1 理 论
压力驱动过程中膜的迁移过程可以用不可逆过程热力学来描述。Kedem和Katchalsky〔4〕基于线性非平衡热力学唯象理论提出如下的传递方程:

Jv=Lp(△P-σ△π) (1)

Js=ω△π+(1-σ)Jv. (2)

利用Van't Hoff等式△π=RT△Cs,则式(2)可以写成

Js=P△Cs+(1-σ)Jv. (3)

为解决膜二边平均浓度的问题,Spiegler等〔5〕将等式(3)改写成另一种形式:

Js/△C=P+(1-σ)(JvCln/△C) (4)

等式(3)、(4)是作为反渗透膜(具有高溶质分离率)的传递方程提出的,Nakao在他的实验中〔2〕说明等式(3)、(4)也适用于作为超滤膜的传递方程。
在这些等式中,膜的表征以三个传递系数表示:纯水透过系数Lp,溶质渗透系数ω或P和反射系数σ。但上述唯象方程属于黑箱模型,不能得到有关膜内部透过机理的情况,因此,出现一些利用膜结构来说明σ和P的传递模型。
Pappenheimer等提出了传递“孔理论”来计算通过毛细管的迁移过程,在这个理论中,溶质通量包括过滤流和扩散流,这二种流动都受到进入膜孔时位阻障碍和孔内摩擦阻力的影响。Verniory等人〔6〕利用Haberman和Sayre的计算和摩擦模型改进了这种“孔理论”,根据这种改进的孔理论,膜结构可以用参数σ和P来预测。假设圆柱形膜孔的孔径与孔长分别为常数rp和△x,并且球状溶质半径为rs,则溶质通量可表示成

(5)

这里Ak是总的贯通孔面积与膜有效面积之比,SD和SF分别是扩散流和过滤流的位阻因数,并且是rs与rp比值q的函数,其中:

SD=(1-q)2 (6)

SF=(1-q)2(1+2q-q2) (7)

f(q)和g(q)是圆形壁面效应的修正因数,由Haberman和Sayre计算如下:

f(q)=(1-2.1q+2.1q3-1.7q5+0.73q6)/(1-0.76q5) (8)

g(q)=〔1-(2/3)q2-0.2q5〕/(1-0.76q5) (9)

将式(5)与式(3)相比较,则膜的参数σ和P可用下式表示

σ=1-g(q)SF (10)

P=Df(q)SD(Ak/△X) (11)

在孔模型中,纯水通量用Hagen-Poiseuille式表示,因此,纯水透过速率Lp可以写成:

Lp=(r2p/8μ).(AK/△X) (12)

2 实 验
2.1 实验装置

实验装置如图1所示。

图1 实验装置示意图
1.原液池,2.微滤器,3.恒流泵,4.测试池,
5.微型电导检测器,6.磁搅拌子,6.硅压力传感器

2.2 实验条件和过程
首先,将膜充分润湿后置于测试池,用纯水预压1h,预压压力为膜最高实验压力的1.2倍左右。然后原液换成0.01mol/L NaCl溶液,测定不同压力时透过液流速JV和浓度C3,利用式(4),根据Js/△C和JVCln/△C的关系,采用最佳拟合,得到膜性能参数σ和P,将σ和P代入(10)和(11)式,就能根据溶质的Stokes半径rs而算出膜孔半径rp和膜的Ak/△X值。在25℃条件下,NaCl-H2O体系的Stokes半径rs=1.616×10-10m。
利用式(1)计算膜的Lp值。
将Lp值和由式(11)得到的Ak/△X值代入Hegen-Poiseuille式(12)中,则可得到根据透过溶剂而计算出的膜孔孔径rω。

3 结果和讨论
在测试压力范围内,透过液流速与压力成直线关系,并且实验中透过液通量与纯水通量几乎一致,因此,实验渗透压可以忽略不计。并且这也表明,实验过程中没有出现污染或严重浓差极化现象。
3.1 压力的影响
压力对脱除率的影响是很大的,随压力增加,R值也增加,R值增加到某个数值后,变化趋缓。因此,对于表示膜的特征来说,R不是一个很合适的参数。
3.2 膜性能参数的确定
用以下方法确定膜的三个迁移参数Lp、σ和P。
纯水透过参数Lp利用实验的透过速率从式(1)可以得到,渗透压△π忽略不计,参数σ和P则利用对数平均浓度Cln从式(4)中可以确定。从实验数值看,Js/△C和Jυ.Cln/△C是一相当好的直线关系,这样参数σ和P也可从这条直线的斜率和截距中求得。
8种膜的三个性能参数列于表1。

表1 膜的性能参数Lp、σ、P

膜 1# 2# 3# 4# 5# 6# 7# 8#
σ 0.943 0.903 0.899 0.857 0.457 0.131 0.313 0.2998
P×107(m/s) 3.33 12.65 7.17 5.03 24.5 10.2 24.0 5.95
Lp×1012(m/Pa.s) 4.84 10.32 4.48 4.40 9.12 11.05 14.80 12.67

从表1可知,实验所用膜对NaCl的σ值在0.131~0.943之间。
3.3 膜结构参数的计算
根据改进的“孔模型”,式(10)的关系式可如图2所示,因此,在膜的σ值已知时,可从式(10)求出q值,再代入溶质的Stokes半径即可得到膜的rp值(=rs/q)

图2 σ与q之间关系

列于表2的膜的另一个结构参数Ak/△X也是基于孔模型,采用式(11)从q值和实验数值溶质的渗透系数P计算得到。

表2 从孔模型中得到的膜结构参数rP和△X值

膜 1# 2# 3# 4# 5# 6# 7# 8#
rp×1010(m) 2.02 2.18 2.21 2.31 3.85 8.78 5.19 5.39
Ak/△x(m-1) 2.72×105 3.67×105 1.78×105 7.98×104 1.9×104 1.63×103 8.20×103 1.91×103

若将膜的Ak/△X值和表1中的Lp值代入式(12),则可得到由水的透过速率Lp得到的膜孔半径,以rω表示,结果见表3。
表3 由水的透过速率得到的膜孔半径rω

膜 1# 2# 3# 4# 5# 6# 7# 8#
rω×1010(m) 3.77 4.74 4.49 6.64 19.6 73.6 38.0 72.9

比较表2和表3,可看到,rω与rp并不一致,并且rω大于rp。
不同文献〔1.3〕在利用“孔模型”时,提到由P得到的Ak/△X值与由Lp得到的Ak/△X值之间存在偏差,即从溶质透过膜参数与从溶剂透过膜参数得到的膜结构参数并不一致。
以rp对rω作图,可看到除了8#膜,其余膜的rp与rω几乎落在一条直线上,见图3。因8#膜为SPS膜,其余的均为CA膜。8#膜的rp与rω的关系不在直线上。也许,因材料不同,它的斜率和截距不同。

图3 rp与rω关系

除去8#膜的rp和rω值,对其余7种膜的rp和rω进行线性回归的结果是:

rp=0.09527rω+1.739 (13)

或者改写成

rω=10.50(rp-1.739) (14)

rp与rω之间的线性相关系数是0.9986,对rp的标准偏差是0.14。因此,可以认为对于CA膜,在NaCl水溶液体系中,根据孔模型由膜性能参数σ和P得到的膜孔半径rp与根据透过溶剂而计算出的膜孔半径rω之间存在线性关系。
由式(14)和图3可知,当rp小于1.74×10-10m时,rω已为零,也即此时,膜的纯水透过速率为零。这与祝振鑫等〔7〕推导的当网络孔半径小到2.0×10-10m时,膜产率为零的推论非常相近。水分子半径为0.87×10-10m,也即当孔道小于两个水分子时,水分子即被卡住,使水不能流动。

4 结 论
本文利用孔模型,对8种膜的性能参数和结构参数进行了测定。实验表明,由溶质的Stokes半径基于孔模型得到的膜孔半径rp与从溶剂水的透过速率得到的膜孔半径rω并不一致,但存在线性关系。对于CA膜,在NaCl水溶液体系中,它们的关系是: rω=10.50(rp-1.739)。相关关系是0.9986,对于rp的标准偏差是0.14。这也表明当rp小到1.74×10-10m时,膜的纯水透过速率为零。
对其它材料制成的膜的rp与rω之间关系有待进一步实验。

⑩ 纳滤膜与RO膜有何区别

1、净化的水分子不同

纳滤膜:截留有机物的分子量大约为150-500左右,截留溶解性盐的回能力为2-98%之间,对单价阴离子盐答溶液的脱盐低于高价阴离子盐溶液。

RO膜:可阻挡所有溶解的无机分子以及任何相对分子质量大于100的有机物,水分子可通过薄膜成为纯水,对水中二价离子的脱除率可达99.5%,对一价离子的脱除率也在95%以上。



2、应用范围不同

纳滤膜:可应用于水质的软化、降低TDS浓度、去除色度和有机物,它的大部分应用领域是饮用水的软化和有机物的脱除。

RO膜:广泛应用于太空水、纯净水、超纯水的制备;化工工艺中水的浓缩、分离、提纯及纯水制备;海水、苦咸水淡化;造纸、电镀、印染等行业用水、中水及工业废水的回用

3、工作原理不同

纳滤膜:纳滤是在压力差推动力作用下,盐及小分子物质透过纳滤膜而截留大分子物质,介于超滤和反渗透之间。

RO膜:采用反渗透方式,以压力差为推动力,从溶液中分离出溶剂。

阅读全文

与纳滤膜的纯水通量相关的资料

热点内容
饮水机怎么用防漏水 浏览:270
小米净化器密码是多少 浏览:560
沈阳小型纯净水设备多少钱 浏览:904
wc在污水管道代表什么 浏览:581
污水处理管道都是什么钢 浏览:862
2020年空气净化器的税率是多少 浏览:980
污水处理进水氨氮不大于多少 浏览:629
净水器废水比是由什么控制 浏览:680
h13滤芯是什么意思 浏览:737
长春印染污水处理设备多少钱 浏览:536
厨房按超滤净水器全屋都管用吗 浏览:228
西安蓝田污水处理厂 浏览:410
净水机换ro膜后水质还高 浏览:162
合肥朱砖井污水处理 浏览:107
净水引到客厅用什么管 浏览:390
金鱼缸滤芯怎么过滤 浏览:766
江淮瑞风m5怎么换滤芯 浏览:713
反渗透压力通怎么清洗 浏览:351
净水机400加仑是多少升 浏览:376
污水泵5根信号线怎么接 浏览:876