导航:首页 > 纯水知识 > 纳滤膜纯水通量

纳滤膜纯水通量

发布时间:2023-05-20 16:39:56

㈠ 影响纳滤膜,超滤膜,RO膜的性能因素有哪些

压力的影响
进水压力影响RO和NF膜的产水通量和脱盐率,我们知道渗透是指水分子从稀溶液侧透过膜进入浓溶液侧的流动,反渗透和纳滤技术即在进水水流侧施加操作压力以克服自然渗透压。当高于渗透压的操作压力施加在浓溶液侧时,水分子自然渗透的流动方向就会被逆转,部分进水(浓溶液)通过膜成为稀溶液侧的净化产水。透过膜的水通量增加与进水压力的增加存在直线关系,增加进水压力也增加了脱盐率,但是两者间的变化关系没有线性关系,而且达到一定程度后脱盐率将不再增加。
由于RO和NF膜对进水中的溶解性盐类不可能绝对完美地截留,总有一定量的透过量,随着压力的增加,因为膜透过水的速率比传递盐分的速率快,这种透盐率的增加得到迅速地克服。但是,通过增加进水压力提高盐分的排除率有上限限制,正如图1脱盐率曲线的平坦部分所示那样,超过一定的压力值,脱盐率不再增加,某些盐分还会与水分子耦合一同透过膜。
温度的影响
膜系统产水电导对进水温度的变化非常敏感,随着水温的增加,水通量几乎线性地增大,这主要归功于透过膜的水分子的粘度下降、扩散能力增加。增加水温会导致脱盐率降低或透盐率增加,这主要是因为盐分透过膜的扩散速率会因温度的提高而加快所致。膜元件能够承受高温的能力增加了其操作范围,这对清洗操作也很重要,因为可以采用更强烈和更快的清洗程序。
盐浓度的影响
渗透压是水中所含盐分或有机物浓度和种类的函数,盐浓度增加,渗透压也增加,因此需要逆转自然渗透流动方向的进水驱动压力大小主要取决于进水中的含盐量。如果压力保持恒定,含盐量越高,通量就越低,渗透压的增加抵消了进水推动力,水通量降低,增加了透过膜的盐通量(降低了脱盐率)。
回收率的影响
通过对进水施加压力当浓溶液和稀溶液间的自然渗透流动方向被逆转时,实现反渗透过程。如果回收率增加(进水压力恒定),残留在原水中的含盐量更高,自然渗透压将不断增加直至与施加的压力相同,这将抵销进水压力的推动作用,减慢或停止反渗透过程,使渗透通量降低或甚至停止。RO
系统最大可能回收率并不一定取决于渗透压的限制,往往取决于原水中的含盐量和它们在膜面上要发生沉淀的倾向,最常见的微溶盐类是碳酸钙、硫酸钙和硅,应该采用原水化学处理方法阻止盐类因膜的浓缩过程引发的结垢。
pH 值的影响
各种反渗透和纳滤膜元件适用的pH值范围相差很大,像这样的超薄复合反渗透和纳滤膜与醋酸纤维素反渗透和纳滤膜相比,在更宽广的 pH
值范围内更稳定,因而,具有更宽的操作范围。膜脱盐率特性取决于pH值,水通量也会受到影响。

㈡ 纳滤膜的基本信息

纳滤膜基本原理
在一张半透膜隔开水溶液时,加在溶液上并使其能刚好阻止纯溶内剂进入溶液容的额外压力称为渗透压,在一般情况下水溶液中的溶质浓度越高渗透压就越大。当溶液一端没有加压时,纯溶剂会通过半透膜向溶液中扩散,这种现象叫做渗透。相反在加溶液端所外加的压力超过了渗透压,则反而使得溶液中的溶剂向纯溶剂一侧流动,这个过程称为反渗透。纳滤膜分离技术正是运用了反渗透原理。
纳滤膜元件在以前称作疏松反渗透,其截留特性介于中空纤维超滤膜和反渗透膜之间,孔径大约在100-1000道尔顿。所以,纳滤膜元件对于水溶液中溶解的小分子有机物具有很高的脱除率。同时也对水溶液中的各种离子有一定的脱除率。纳滤水处理膜的性能主要由水通量和脱盐率来决定的。纳滤膜的水通量和脱盐率受压力、温度、浓度、流量、PH值、回收率等等因素说影响。

㈢ 影响高压纳滤膜性能的因素有哪些

纳滤膜性能受哪些因素影响?
1、操作压力
纳滤过程中存在阻力,当NF膜在相同的操作条件下,过滤不同料液时效果也不同。当施加在膜上的驱动力压力增大时,膜会被压实,且膜自身阻力将增加。随着膜两侧压力的增大,膜两侧溶液浓度会构成浓差极化现象,形成反向渗透压。因此当操作压力增大时,透过膜的通量不一定单调递增。许多研究人员指出,在一定操作压力范围内,增加操作压力可以提高纳滤膜的产水通量,当升至一定压力时便趋于稳定。
2、进水盐浓度
当进水盐浓度较低时,浓差极化作用和膜污染程度很小,溶剂易于透过纳滤膜,而溶质则被截留,浓水浓度明显高于进水盐浓度,由此计算得到高截留率。而当进水盐浓度提高,会加大膜两侧的浓差极化并会加快膜污染,导致膜分离性能明显降低,膜孔被堵塞,溶剂透过膜阻力增大,产水量减少,浓水盐浓度相对降低,截留率下降。同时,进水离子浓度增加,会影响膜表面荷电,影响膜对离子的排斥作用,也可导致截留率下降。
3、PH值
大部分的纳滤膜表面都具有电荷,pH值会影响纳滤膜表面的电荷,进而影响膜表面电荷与溶液离子间的静电排斥作用,从而影响溶质是否可以通过膜孔,即改变膜对溶质的分离性能。
4、温度
当温度升高,会增大溶液中部分组分的溶解度,形成大颗粒,膜污染增加,导致膜通透量下降。若温度过高,会使蛋白质变性并被破坏,从而加重膜污染,使得溶液通透量降低。

㈣ 纳滤膜的水渗透系数和溶质渗透系数是多少

利用孔模型分析膜孔结构

本文基于孔模型,从膜对NaCl溶液的透过实验中,得到8种膜的结构参数,实验结果表明,从溶质透过膜的参数与从溶剂透过膜的参数得到的膜结构参数并不一致。根据孔模型由溶质的Stokes半径γs得到的膜孔半径γp与根据透过溶剂而计算出的膜孔半径γω之间存在线性关系,对于CA膜,它们的关系式是:γω=10.50(γp-1.739),γp与γω之间的相关关系是0.9986,对于γp的标准偏差是0.14。
关键词:孔模型;膜结构参数;CA膜
ANALYSIS OF MEMBRANE STRUCTURE PARAMETERS BY PORE MODEL

LUO Ju-fen, MO Jian-xiong
(The Development Centr of Water Treatment Technology, SOA Hangzhou 310012)

Abstract:Based on the pore model, structural parameters of the eight kinds of membranes were determined with permeation experiments of aqueous solution of sodium chloride. The parameters determined from P differ from that obtained from Lp. There is a good linear correlation between rp which obtained from the solute radius rs and rω which obtained from the pure water flux. For cellulose acetate membranes, the relation of rp and rω can be written as rω =10.50(rp-1.739). The linear correlation coefficient between rp and rω is 0.9986 and for rp its standard deviation is 0.14.
Key words:pore model; structure parameters; CA membrane

测定膜结构参数对于预测溶质透过膜的传递性能是很重要的。为了能测定膜的结构参数,出现了摩擦模型,孔模型,改进的孔模型,SHP模型等。Nakao和Kimura等针对单组分水溶液,将这些模型应用到超滤膜分离体系和纳滤膜分离体系,以不同溶质的渗透实验计算了超滤膜和纳滤膜的γp和Ak/△x值〔1-3〕。
本文通过膜对NaCl水溶液的透过实验,在确定不可逆过程热力学迁移方程中的三个参数后,基于改进的孔模型〔6〕,得到8种分离膜的结构参数,并比较了从溶质和从溶剂透过性能所得到膜孔结构参数的区别。这些膜对NaCl的脱除率在15%~99%之间,其中有部分膜是超滤膜。

1 理 论
压力驱动过程中膜的迁移过程可以用不可逆过程热力学来描述。Kedem和Katchalsky〔4〕基于线性非平衡热力学唯象理论提出如下的传递方程:

Jv=Lp(△P-σ△π) (1)

Js=ω△π+(1-σ)Jv. (2)

利用Van't Hoff等式△π=RT△Cs,则式(2)可以写成

Js=P△Cs+(1-σ)Jv. (3)

为解决膜二边平均浓度的问题,Spiegler等〔5〕将等式(3)改写成另一种形式:

Js/△C=P+(1-σ)(JvCln/△C) (4)

等式(3)、(4)是作为反渗透膜(具有高溶质分离率)的传递方程提出的,Nakao在他的实验中〔2〕说明等式(3)、(4)也适用于作为超滤膜的传递方程。
在这些等式中,膜的表征以三个传递系数表示:纯水透过系数Lp,溶质渗透系数ω或P和反射系数σ。但上述唯象方程属于黑箱模型,不能得到有关膜内部透过机理的情况,因此,出现一些利用膜结构来说明σ和P的传递模型。
Pappenheimer等提出了传递“孔理论”来计算通过毛细管的迁移过程,在这个理论中,溶质通量包括过滤流和扩散流,这二种流动都受到进入膜孔时位阻障碍和孔内摩擦阻力的影响。Verniory等人〔6〕利用Haberman和Sayre的计算和摩擦模型改进了这种“孔理论”,根据这种改进的孔理论,膜结构可以用参数σ和P来预测。假设圆柱形膜孔的孔径与孔长分别为常数rp和△x,并且球状溶质半径为rs,则溶质通量可表示成

(5)

这里Ak是总的贯通孔面积与膜有效面积之比,SD和SF分别是扩散流和过滤流的位阻因数,并且是rs与rp比值q的函数,其中:

SD=(1-q)2 (6)

SF=(1-q)2(1+2q-q2) (7)

f(q)和g(q)是圆形壁面效应的修正因数,由Haberman和Sayre计算如下:

f(q)=(1-2.1q+2.1q3-1.7q5+0.73q6)/(1-0.76q5) (8)

g(q)=〔1-(2/3)q2-0.2q5〕/(1-0.76q5) (9)

将式(5)与式(3)相比较,则膜的参数σ和P可用下式表示

σ=1-g(q)SF (10)

P=Df(q)SD(Ak/△X) (11)

在孔模型中,纯水通量用Hagen-Poiseuille式表示,因此,纯水透过速率Lp可以写成:

Lp=(r2p/8μ).(AK/△X) (12)

2 实 验
2.1 实验装置

实验装置如图1所示。

图1 实验装置示意图
1.原液池,2.微滤器,3.恒流泵,4.测试池,
5.微型电导检测器,6.磁搅拌子,6.硅压力传感器

2.2 实验条件和过程
首先,将膜充分润湿后置于测试池,用纯水预压1h,预压压力为膜最高实验压力的1.2倍左右。然后原液换成0.01mol/L NaCl溶液,测定不同压力时透过液流速JV和浓度C3,利用式(4),根据Js/△C和JVCln/△C的关系,采用最佳拟合,得到膜性能参数σ和P,将σ和P代入(10)和(11)式,就能根据溶质的Stokes半径rs而算出膜孔半径rp和膜的Ak/△X值。在25℃条件下,NaCl-H2O体系的Stokes半径rs=1.616×10-10m。
利用式(1)计算膜的Lp值。
将Lp值和由式(11)得到的Ak/△X值代入Hegen-Poiseuille式(12)中,则可得到根据透过溶剂而计算出的膜孔孔径rω。

3 结果和讨论
在测试压力范围内,透过液流速与压力成直线关系,并且实验中透过液通量与纯水通量几乎一致,因此,实验渗透压可以忽略不计。并且这也表明,实验过程中没有出现污染或严重浓差极化现象。
3.1 压力的影响
压力对脱除率的影响是很大的,随压力增加,R值也增加,R值增加到某个数值后,变化趋缓。因此,对于表示膜的特征来说,R不是一个很合适的参数。
3.2 膜性能参数的确定
用以下方法确定膜的三个迁移参数Lp、σ和P。
纯水透过参数Lp利用实验的透过速率从式(1)可以得到,渗透压△π忽略不计,参数σ和P则利用对数平均浓度Cln从式(4)中可以确定。从实验数值看,Js/△C和Jυ.Cln/△C是一相当好的直线关系,这样参数σ和P也可从这条直线的斜率和截距中求得。
8种膜的三个性能参数列于表1。

表1 膜的性能参数Lp、σ、P

膜 1# 2# 3# 4# 5# 6# 7# 8#
σ 0.943 0.903 0.899 0.857 0.457 0.131 0.313 0.2998
P×107(m/s) 3.33 12.65 7.17 5.03 24.5 10.2 24.0 5.95
Lp×1012(m/Pa.s) 4.84 10.32 4.48 4.40 9.12 11.05 14.80 12.67

从表1可知,实验所用膜对NaCl的σ值在0.131~0.943之间。
3.3 膜结构参数的计算
根据改进的“孔模型”,式(10)的关系式可如图2所示,因此,在膜的σ值已知时,可从式(10)求出q值,再代入溶质的Stokes半径即可得到膜的rp值(=rs/q)

图2 σ与q之间关系

列于表2的膜的另一个结构参数Ak/△X也是基于孔模型,采用式(11)从q值和实验数值溶质的渗透系数P计算得到。

表2 从孔模型中得到的膜结构参数rP和△X值

膜 1# 2# 3# 4# 5# 6# 7# 8#
rp×1010(m) 2.02 2.18 2.21 2.31 3.85 8.78 5.19 5.39
Ak/△x(m-1) 2.72×105 3.67×105 1.78×105 7.98×104 1.9×104 1.63×103 8.20×103 1.91×103

若将膜的Ak/△X值和表1中的Lp值代入式(12),则可得到由水的透过速率Lp得到的膜孔半径,以rω表示,结果见表3。
表3 由水的透过速率得到的膜孔半径rω

膜 1# 2# 3# 4# 5# 6# 7# 8#
rω×1010(m) 3.77 4.74 4.49 6.64 19.6 73.6 38.0 72.9

比较表2和表3,可看到,rω与rp并不一致,并且rω大于rp。
不同文献〔1.3〕在利用“孔模型”时,提到由P得到的Ak/△X值与由Lp得到的Ak/△X值之间存在偏差,即从溶质透过膜参数与从溶剂透过膜参数得到的膜结构参数并不一致。
以rp对rω作图,可看到除了8#膜,其余膜的rp与rω几乎落在一条直线上,见图3。因8#膜为SPS膜,其余的均为CA膜。8#膜的rp与rω的关系不在直线上。也许,因材料不同,它的斜率和截距不同。

图3 rp与rω关系

除去8#膜的rp和rω值,对其余7种膜的rp和rω进行线性回归的结果是:

rp=0.09527rω+1.739 (13)

或者改写成

rω=10.50(rp-1.739) (14)

rp与rω之间的线性相关系数是0.9986,对rp的标准偏差是0.14。因此,可以认为对于CA膜,在NaCl水溶液体系中,根据孔模型由膜性能参数σ和P得到的膜孔半径rp与根据透过溶剂而计算出的膜孔半径rω之间存在线性关系。
由式(14)和图3可知,当rp小于1.74×10-10m时,rω已为零,也即此时,膜的纯水透过速率为零。这与祝振鑫等〔7〕推导的当网络孔半径小到2.0×10-10m时,膜产率为零的推论非常相近。水分子半径为0.87×10-10m,也即当孔道小于两个水分子时,水分子即被卡住,使水不能流动。

4 结 论
本文利用孔模型,对8种膜的性能参数和结构参数进行了测定。实验表明,由溶质的Stokes半径基于孔模型得到的膜孔半径rp与从溶剂水的透过速率得到的膜孔半径rω并不一致,但存在线性关系。对于CA膜,在NaCl水溶液体系中,它们的关系是: rω=10.50(rp-1.739)。相关关系是0.9986,对于rp的标准偏差是0.14。这也表明当rp小到1.74×10-10m时,膜的纯水透过速率为零。
对其它材料制成的膜的rp与rω之间关系有待进一步实验。

㈤ 相同压力差下,纳滤膜对纯水和盐水的透过能力是否相同

相同压力差下,纳滤膜对纯水和盐水的透过能力不同。根据查询相关公开信息显示,在相同压力差下,对于纯水和盐水,纳滤大灶膜的透过能力是不同的,由于盐水中含有大量的离子和溶解性固体,这些物质会在纳滤膜表面形成一层模糊闷亏、杂质等,与此同时,纳滤蚂仿神膜的孔径越小,对溶液中的成分分离效果越好,但也容易导致膜堵塞,使得透过能力降低。

阅读全文

与纳滤膜纯水通量相关的资料

热点内容
金科沃特滤芯多少公里换 浏览:911
新轩逸空调滤芯用什么品牌的 浏览:508
反渗透膜穿孔 浏览:367
屠宰场处理污水是什么行业 浏览:685
老房油污水管如何处理 浏览:194
昂克赛拉空调滤芯用什么牌子的 浏览:37
挖掘机柴油滤芯怎么拆装 浏览:562
脲醛树脂水解 浏览:523
反渗透清洗ro膜 浏览:872
用吸奶器回堵奶么 浏览:944
树脂熔接方法 浏览:982
树脂字和亚克力字发光字 浏览:386
水垢菏泽 浏览:504
澳士顿净水器怎么安装 浏览:860
净水器中盟多少钱 浏览:655
贴墙砖为什么要用纯水泥 浏览:563
厨房净化器电源怎么接线 浏览:30
管式超滤膜循环压力低 浏览:732
做离子术去痘坑 浏览:194
反渗透膜怎么密封保存 浏览:908