导航:首页 > 净水问答 > 改用弱酸型阳离子交换树脂

改用弱酸型阳离子交换树脂

发布时间:2025-04-05 14:05:38

㈠ 弱酸性阳离子交换树脂有何特性

(1)H型的弱酸性阳离子交换树脂,在水中的特性类似弱酸。因此它分解中性盐类的能力较弱(即与SO42-、Cl-等强酸阴离子的盐类难以反应)。它仅能与弱酸性盐类(具有碱度的盐类)反应,交换后产生的是弱酸,不会产生强酸。用弱酸H型交换树脂可处理碱度大的水,将水中的碱度所对应的阳离子全除去后,再用强酸H型交换树脂除去水中强酸根对应的那部分阳离子。
(2)由于弱酸性阳离子交换树脂对H+的亲合力较大,很容易再生,因此它可用强酸H型阳离子交换树脂的再生废液来进行再生。
(3)弱酸性阳离子交换树脂的交换容量大(约相当于强酸阳树脂的2倍)。
(4)弱酸性阳离子交换树脂的交联度低,孔隙大所以其机械强度比强酸性阳树脂的要低。

㈡ 常用的离子交换树脂类型有哪些

离子交换树脂的基本性能
1、强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

2、弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。

3、强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。

4、弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。

5、离子树脂的转型
以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。

㈢ 常用的离子交换树脂类型有哪些

离子交换树脂有哪些类型
(1)强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-so3h,容易在溶液中离解出h+,故呈强酸性。树脂离解后,本体所含的负电基团,如so3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的h+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用
化学
药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与h+结合而恢复原来的组成。
(2)弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-cooh,能在水中离解出h+而呈酸性。树脂离解后余下的负电基团,如r-coo-(r为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低ph下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如ph5~14)...

㈣ 弱酸阳离子安换树脂软化为什么要转成Na型

第一个阶段是20世纪60年代的开创时期。这个时期电渗析是我国最早得到推广应用的膜分离过程,其应用领域涉及苦咸水淡化;电厂锅炉补给水预除盐等。第二个阶段是20世纪70年代。这一时期,电渗析、反渗透超滤和微滤等各种膜和相应组件、装置都在研究中,或已开发出来,除电渗析外,其它膜组件仍未得到应用。第三个阶段是20世纪80年代以后。这一时期我国膜分离技术跨入应用阶段,一些技术上较为成熟的膜过程开始得到应用。在自己研制成功的醋酸纤维素(CA)膜于复合膜生产装置的基础上,又相继引进了外国有关公司的反渗透膜生产线。反渗透技术已在我国电厂锅炉补给水预除盐、超纯水制造、海水和苦咸水淡化等方面大规模推广应用,并取得很好的技术效益和经济效益。因此,提高膜预处理的综合利用研究意义重大且大有前途。

自超滤膜预处理后,多年来国内外研究人员都一直在探索预处理的新途径。到1995年12月,全世界RO淡化工厂产水量达7293079m3/d,占总淡化生产量的35%,占当年世界淡化市场88%。RO技术将成为21世纪淡化技术的主要方法。

技术实现要素:

本发明正是基于以上技术问题,提供一种以弱酸阳离子树脂交换酸化软化方法。该方法主要针对河水而言,由于河水中含有较多的生活污水,而本发明通过设计合理的工艺流程,提高纯水的回收率,并简化原水的处理过程,降低水耗,使以河水制纯水具有优越的经济效益。

本发明的技术方案为:

一种以弱酸阳离子树脂交换酸化软化方法,其包括如下步骤:

(1)将待处理的水放入已放置了絮凝剂的澄清池中,除去大部分胶质物质;再将水经过过滤器,进一步除去胶质物质;

(2)将经过步骤(1)处理后的水通过弱酸阳离子树脂交换床,使水中的阳离子(如Ca2+、Mg2+、Na+等)被树脂吸附,树脂中的H+进入水中,与水中的阴离子组成相应的无机酸,反应式如下:

弱酸阳离子树脂交换床失效后,向其添加无机酸使其再生,且将弱酸阳离子树脂上部的晶型变为H+型,将弱酸阳离子树脂的下部的晶型变为Na+型,无机酸的加入量与水的质量比为1.01-1.015。作为优选,所述的无机酸为硝酸、盐酸或硫酸。弱酸阳离子树脂交换床再生的时间不超过1h,再生的水温为30- 45℃,压力为常压,无机酸的流量不超60m3/h。

待水在弱酸阳离子树脂交换床交换完成后,用脱盐水对弱酸阳离子树脂进行置换,置换的温度为30-45℃,压力为常压,交换时间不超过1h,脱盐水流量不超60m3/h。

待脱盐水置换后,用清水对弱酸阳离子树脂进行清洗;清洗的温度小于 45℃,压力为常压,清洗时间不超过1h,清水流量不超80m3/h,弱酸阳离子树脂交换床中的清洗出水电导小于1200μs/cm。

(3)将经过弱酸阳离子树脂,除去大部分阳离子后并携带H+的水进入保安过滤器和反渗透RO膜除去绝大部分离子;再将经过RO膜除去大部分离子后的水进入强酸阳离子交换床,进一步除去阳离子;经过RO膜除去大部分离子后,因进入RO膜的水带酸性,CO32-大部分以游离CO2存在,产生的游离二氧化碳经脱碳风机除去。

(4)将经步骤(3)中除去阳离子的水进入阴离子交换床,除去大部分阴离子,特别是硅酸根离子,除去大部分阴离子,得到除盐水;

(5)将步骤(4)中得到的除盐水再经过混床进一步除盐,混床相当于 1000-2000个复合床对除盐水进一步除盐,得到精制水。

㈤ 阳离子交换树脂的简介

离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的一种可逆性化学反应,当液相中的某些回离子较答为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.5~1.0mm,其离子交换能力依其交换能力特征可分 :
1. 强酸型阳离子交换树脂:主要含有强酸性的反应基如磺酸基(-SO3H),此离子交换树脂可以交换所有的阳离子。
2.弱酸型阳离子交换树脂:具有较弱的反应基如羧基(-COOH基),此离子交换树脂仅可交换弱碱中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Na+、K+等无法进行交换。
阳离子树脂是以苯乙烯和二乙烯苯聚合, 经硫酸磺化而制得的聚合物。 生产过程中不含有明 胶及其它任何动物提取物。阳离子交换树脂遇水可将其本身的某一种具有活性的离子和水中某电离子相互交换,即发生置换反应,去除水中可溶解的离子。阳离子交换树脂有粉状和球状,都是人工合成的。

㈥ 弱酸性阳离子交换树脂滴定曲线

与酸碱滴定曲线的来原理相同,但由于源树脂存在一个平衡的问题,所以实际上不是直接滴定,而是加入一定量的酸碱浸泡平衡。通常,强酸性树脂加碱、强碱性树脂加酸浸泡两小时,弱酸性树脂加碱、弱碱性树脂加酸浸泡7小时后测定pH,制作出如图的曲线。

㈦ 弱酸性阳离子交换树脂再生一般是顺流还是逆流两者的区别是

再生使用的话逆流洗脱效果好,离子交换的过程是从树脂上层逐步向下吸附饱和的,也就是说上层的吸附杂质最多,而最底下的交换柱角落的树脂可能还没有完全吸附,如果顺流洗脱的话,那些杂质会逐步的向下转移,先污染底层树脂,在解析活化,影响洗脱效果和树脂寿命;逆流的话就解决这个问题,底下的轻度交换的树脂先被活化,然后在逐步的向上,上层的杂物被洗出直接流走。

阅读全文

与改用弱酸型阳离子交换树脂相关的资料

热点内容
手机电磁波过滤器贴哪 浏览:701
污水处理行业的初心和使命 浏览:769
气泵空气滤芯烧化怎么回事 浏览:235
在蒸馏酒时水会跑出来 浏览:197
游戏提升画质器 浏览:818
中央净水器和超滤净水器 浏览:716
净水器自动冲洗用多少水 浏览:139
南充哪里有污水处理厂 浏览:384
穿孔机滤芯用什么样的好 浏览:973
饮水机插头没有地线怎么办 浏览:676
电容去离子集流体 浏览:163
除水垢小苏打放多少 浏览:390
山东涂料树脂 浏览:225
厨下式反渗透净水机管子怎么弄 浏览:791
郑州抗污染蝶式反渗透膜 浏览:530
道尔顿净水器滤芯打不开怎么办 浏览:398
污水处理设施建设指导意见 浏览:662
陶氏超滤膜反渗透原理视频 浏览:211
济南的直饮水机怎么用 浏览:629
高压反渗透膜法淡化 浏览:925