A. 水处理的排污标准
GB18918-2002是《城镇污水处理厂污染物排放标准》,而GB8978-1996是《污水综合排放标准》,两者是不同的概念,两者都有各自的针对对象,两者是不可以混用的。
《污水综合排放标准》最新的标准国家还没有出台,国家污水综合排放标准用的还是GB8978-1996。
纳米晶技术是派斯软水机独有的水软化技术,根据中立的实验室检测,除垢率达99.6%,达到完美的软化水的效果,比以前所知的任何一种类型的软水机效果都要优异。同时也是在无化学添加成分的情况下,被证明非常有效的软水机。 纳米晶的技术原理是TAC(Template Assisted Crys-tallization)技术,即离子晶体化,利用纳米晶聚合球体表面晶核产生的高能量把水中的钙、镁、碳酸氢根等离子打包成纳米级的晶体,当这种晶体长到2纳米左右时自动脱落到水中,水中没有了钙、镁、碳酸氢根离子也就不会在有水垢产生。 沉淀物过滤法的目的是将水源内之悬浮颗粒物质或胶体物质清除乾净。这些颗粒物质如果没有清除,会对透析用水其它精密的过滤膜造成破坏或甚至水路的阻塞。这是最古老且最简单的净水法,所以这个步骤常用在水纯化的初步处理,或有必要时,在管路中也会多加入几个滤器(filter)以清除体积较大的杂质。滤过悬浮的颗粒物质所使用的滤器种类很多,例如网状滤器,沙状滤器(如石英沙等)或膜状滤器等。只要颗粒大小大於这些孔洞之大小,就会被阻挡下来。对於溶解于水中的离子,就无法阻拦下来。如果滤器太久没有更换或清洗,堆积在滤器上的颗粒物质会愈来愈多,则水流量及水压会逐渐减少。人们就是利用入水压与出水压差来判断滤器被阻塞的程度。因此滤器要定时逆冲以排除堆积其上的杂质,同时也要在固定时间内更换滤器。
沉淀物过滤法还有一个问题值得注意,因为颗粒物质不断被阻拦而堆积下来,这些物质 面或许有细菌在此繁殖,并释放毒性物质通过滤器,造成热原反应,所以要经常更换滤器,原则上进水与出水的压力落差升高达到原先的五倍时,就需要换掉滤器。 硬水的软化需使用离子交换法,它的目的是利用阳离子交换树脂以钠离子来交换硬水中的钙与镁离子,以此来降低水源内之钙镁离子的浓度。其软化的反应式如下:
Ca2++2Na-EX→Ca-EX2+2Na+1
Mg2++2Na-EX→Mg-EX2+2Na+1
式中的EX表示离子交换树脂,这些离子交换树脂结合了Ca2+及Mg2+之後,将原本含在其内的Na+离子释放出来。
树脂基质(resin matrix)内藏氯化钠,在硬水软化的过程中,钠离子会逐渐被使用耗尽,则交换树脂的软化效果也会逐渐降低,这时需要作还原(regeneration)的工作,也就是每隔固定时间加入特定浓度的盐水,一般是10%,其反应方式如下:
Ca-EX2+2Na+(浓盐水)→2Na-EX+Ca2+
Mg-EX2+2Na+(浓盐水)→2Na-EX+Mg2+
如果水处理的过程中没有阳离子的软化,不只是逆渗透膜上会有钙镁体的沉积以致降低功效甚至破坏逆渗透膜,同时病人也容易得到硬水症候群。硬水软化器也会引起细菌繁殖的问题,所以设备上需要有逆冲的功能,一段时间後就要逆冲一次以防止太多杂质吸附其上。另一个值得注意问题的是高血钠症,因为透析用水的软化与再还原过程是*计时器来控制,正常情况还原作用大多发生在半夜,这是*阀门在控制,如果发生故障,大量盐水就会涌进水源,进而造成病人的高血钠症。全自动钠离子交换器采用离子交换原理,去除水中的钙、镁等结垢离子。当含有硬度离子的原水通过交换器内树脂层时,水中的钙、镁离子便与树脂吸附的 钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入水中,这样从交换器内流出的水就是去掉了硬度的软化水。
活性炭是由木头,残木屑,水果核,椰子壳,煤炭或石油底渣等物质在高温下乾馏炭化而成,制成後还需以热空气或水蒸气加以活化。它的主要作用是清除氯与氯氨以及其它分子量在60到300道尔顿的溶解性有机物质。活性炭的表面呈颗粒状,内部是多孔的,孔内有许多约1Onm~lA大小的毛细管,1g的活性炭内部表面积高达700-1400m2,而这些毛细管内表面及颗粒表面就是吸附作用之所在。影响活性炭清除有机物能力的因素有活性炭本身的面积,孔洞大小以及被清除有机物的分子量及其极性(Polarity),它主要*物理的吸附能力来排除杂物,当吸附能力达饱合之後,吸附过多的杂质就会掉落下来污染下游的水质,所以必须定时利用逆冲的方式来清除吸附其上的杂质。
这种活性炭滤器如果吸附能力明显下降,必须更新。测定进水及出水的TOC浓度差(或细菌数量差)是考量更换活性炭的依据之一。有些逆渗透膜对氯的耐受性不佳,所以在逆渗透之前要有活性碳的处理,使氯能够有效的被活性炭吸附,但是活性碳上的孔洞吸附的细菌容易繁殖滋长,同时对於分子较大有机物的清除,活性炭的功效有限,所以必须*逆渗透膜在後面补强。 去离子法的目的是将溶解於水中的无机离子排除,与硬水软化器一样,也是利用离子交换树脂的原理。在这 使用两种树脂-阳离子交换树脂与阴离子交换树脂。阳离子交换树脂利用氢离子(H+)来交换阳离子;而阴离子交换树脂则利用氢氧根离子(OH-)来交换阴离子,氢离子与氢氧根离子互相结合成中性水,其反应方程式如下:
M+x+xH-Re→M-M-Rex+xH+1
A-z+zOH-Re→A-Rez+zOH-1
上式中的的M+x表阳离子,x表电价数,M+x阳离子与阳离子树脂上H-Re的氢离子交换,A-z则表阴离子,z表电价数,A-z与阴离子交换树脂结合後,释放出OH-离子。H+离子与OH-离子结合後即成中性的水。
这些树脂之吸附能力耗尽之後也需要再还原,阳离子交换树脂需要强酸来还原;相反的,阴离子则需要强碱来还原。阳离子交换树脂对各种阳离子的吸附力有所差异,它们的强弱程度及相对关系如下:
Ba2+>Pb2+>Sr2+>Ca2+>Ni2+>Cd2+>CU2+>Co2+>Zn2+>Mg2+>Ag1+>Cs1+>K1+>NH41+>Na1+>H1+
阴离子交换树脂与各阴离子的亲合力强度如下:
S02-4+>I->NO3->NO2->Cl->HCO3->OH->F-
如果阴离子交换树脂消耗殆尽而没有还原,则吸附力最弱的氟就会逐渐出现在透析用水中,造成软骨病,骨质疏松症及其它骨病变;如果阳离子交换树脂消耗尽了,氢离子也会出现在透析用水之中,造成水质酸性的增加,所以去离子功能是否有效,需要时常监视。一般是*水质的电阻系数(resistivity)或传导度(conctivity)来判断。去离子法所使用的离子交换树脂同样也会造成细菌的繁殖引起菌血症,这是值得注意的一点。 反渗透法可以有效的清除溶解於水中的无机物,有机物,细菌,热原及其它颗粒等,是透析用水之处理中最重要的一环。要了解反渗透原理之前,要先解释渗透(osmosis)的观念。所谓渗透是指以半透膜隔开两种不同浓度的溶液,其中溶质不能透过半透膜,则浓度较低的一方水分子会通过半透膜到达浓度较高的另一方,直到两侧的浓度相等为止。在还没达到平衡之前,可以在浓度较高的一方逐渐施加压力,则前述之水分子移动状态会暂时停止,此时所需的压力叫作 渗透压 (osmotic pressure),如果施加的力量大於渗透压时,则水份的移动会反方向而行,也就是从高浓度的一侧流向低浓度的一侧,这种现象就叫作反渗透。反渗透的纯化效果可以达到离子的层面,对於单价离子(monovalentions)的排除率(rejectionrate)可达90%-98%,而双价离子(divalent ions)可达95%-99%左右(可以防止分子量大於200道尔敦的物质通过)。
反渗透水处理常用的半透膜材质有纤维质膜(cellulosic),芳香族聚酝胺类(aromatic polyamides),polyimide或polyfuranes等,至於它的结构形状有螺旋型(spiral wound),空心纤维型(hollow fiber)及管状型(tubular)等。至於这些材质中纤维素膜的优点是耐氯性高,但在碱性的条件下(pH ≥8.0)或细菌存在的状况下,使用寿命会缩短。polyamide的缺点是对氯及氯氨之耐受性差。
如果反渗透前没有作好前置处理则渗透膜上容易有污物堆积,例如钙,镁,铁等离子,造成反渗透功能的下降;有些膜(如polyamide)容易被氯与氯氨所破坏,因此在反渗透膜之前要有活性碳及软化器等前置处理。反渗透虽然价钱较高,因为一般反渗透膜的孔径约在l0A以下,它可以排除细菌,病毒及热原甚至各种溶解性离子等,所以在准备血液透析析释用水最好准备这一道步骤。
反渗透系统的调试工作显得尤为重要。我们可以从以下几个方面来掌握: 运行条件 运行前准备 试车运行 分离流程
反渗透膜分离工艺设计中常见的流程有如下几种:
①一级一段法这种方式是料液进入膜组件后,浓缩液和产水被连续引出,这种方式水的回收率不高,工业应用较少。另一种形式是一级一段循环式工艺,它是将浓水一部分返回料液槽,这样浓溶液的浓度不断提高,因此产水量大,但产水水质下降。
②一级多段法当用反渗透作为浓缩过程时,一次浓缩达不到要求时,可以采用这种多步式方式,这种方式浓缩液体体积可减少而浓度提高,产水量相应加大。
③两级一段法当海水除盐率要求把NaCl从35000 mg/L降至500mg/L时,则要求除盐率高达98.6%如一级达不到时,可分为两步进行。即第一步先除去NaCl 90%,而第二步再从第一步出水中去除NaCl 89%,即可达到要求。如果膜的除盐率低,而水的渗透性又高时,采用两步法比较经济,同时在低压低浓度下运行时,可提高膜的使用寿命。
④多级反渗透流程在此流程中,将第一级浓缩液作为第二级的供料液,而第二级浓缩液再作为下一级的供料液,此时由于各级透过水都向体外直接排出,所以随着级数增加水的回收率上升,浓缩液体体积减少浓度上升。为了保证液体的一定流速,同时控制浓差极化,膜组件数目应逐渐减少。 它的杀菌机理是破坏细菌核酸的生命遗传物质,使其无法繁殖,其中最重大的反应是核酸分子内的pyrimidine盐基变成双合体(dimer)。一般是使用低压水银放电灯(杀菌灯)的人工253.7nm波长的紫外线能量。紫外线杀菌灯的原理与日光灯相同,只是灯管内部不涂萤光物质,灯管的材质是采用紫外线穿透率高的石英玻璃。一般紫外线装置依用途分照射型,浸泡型及流水型。
在血液透析稀释用水所使用的紫外线是安放在储水槽到透析机器之间的管路上,也就是所有的透析用水在使用之前都要接受一次紫外线的照射,以达到彻底杀菌的效果。对紫外线的感受性最大的是绿脓菌、大肠菌;相反的,耐受性较大的则是枯草菌芽胞体。因为紫外线消毒法安全,经济,对菌种的选择性少,水质也不会改变,所以已广泛使用这种方法,例如船上的饮用水就常使用这种消毒法。水中的依哥拉菌、巴斯拉菌、沙门氏菌等等全杀光,能潜入水中心360度杀菌,功效等于水面杀菌灯的三倍。能消除水中禄藻,效果显著,使用方便,紫外线杀菌灯适用于:各种大小渔场过滤,水处理,大小型水池,游泳场、温泉。杀菌效率可达99%-99.99%。
紫外线水处理技术--杀菌
紫外线杀菌主要是利用254纳米波长的紫外线光。此波长的紫外线光,即使是在微量的紫外线投射剂量下,也可以破坏一个细胞的生命核心——DNA,因此阻止细胞再生,丧失再生能力使细菌变得无害,从而达到灭菌的效果。象所有其它紫外线应用技术一样,这种系统的规模取决于紫外线的强度(照射器的强度和功率)和接触时间(水、液体、或空气暴露在紫外线下的时间长短)。
紫外线水处理技术--消除臭氧
在工业生产中,臭氧常被用于消毒和净化水体。但是,由于臭氧有极强的氧化能力,水中剩余的臭氧如果不被去除会有可能对下一流程有所影响,因此,通常臭氧处理过的水在进入主要的工艺流程之前必须将水中剩余臭氧去除掉。254纳米波长的紫外线对于破坏剩余臭氧非常有效,它可以把臭氧分解成氧气。尽管不同的系统所需要的规模不同,但通常来讲,一个典型的臭氧消除系统所需的紫外线放射量是一个传统的灭菌消毒系统的三倍左右。
紫外线水处理技术--降低总有机碳量
在很多高技术和实验室装置中,有机物会妨碍高纯度水的生产。有很多方法可以把有机物从水中清除掉,较常用的方法包括使用活性炭和反渗透。波长较短的紫外线(185纳米)也可以有效地降低总有机碳量。波长较短的紫外线具有更多的能量,因此能够分解有机物。紫外线氧化有机的反应过程虽然非常复杂,紫外线水处理技术其主要原理是通过产生氧化能力很强的自由氢氧,将有机物氧化成水和二氧化碳。和臭氧清除系统一样,这种降解有机碳的紫外线系统的紫外线放射量是传统消毒系统的三到四倍。
紫外线水处理技术--降解余氯在市政水处理和供水系统, 加氯消毒是非常必要的。但在工业生产过程中,为了避免对产品产生不良影响,去除水中的余氯却经常是必要的前处理。消除余氯的基该方法有活性炭床和化学处理。活性碳水处理的缺点在于它需要不断再生,而且经常遇到细菌滋生的问题。185纳米和254纳米波长的紫外线都被证实可以有效地破坏余氯和氯氨的化学键。虽然需要巨大的紫外线能量才能发挥作用,但紫外线水处理技术的优点在于此方法不需向水中添加任何药物,不需要储存化学物质,容易维修,而且同时还有杀菌和去除有机物的作用。
特点:
1、脉冲紫外杀菌方式,宽光谱能量强,杜绝微生物的光复活现象
2、采用全不锈钢外壳,使用寿命长
3、灯管可采用手动清洗或自动机械清洗方式
4、全自动控制系统,智能化操作 波长从 200 到 300nm 的紫外线有杀菌作用。 UVC 辐射有很强的杀菌力。它被 DNA 吸收并对其结构进行破坏,从而去除活细胞的活性。微生物如病毒,细菌,酵母菌,真菌被紫外灯在几秒钟之内变得无害。只要辐射强度足够高,紫外线杀菌是一种可靠和环保的方法,因为无需任何化学添加剂。此外,微生物无法对紫外线产生抗体。
在用紫外线杀菌时,可以使用发射波长为 254 nm 的单色谱低压汞灯 ,或是发射宽带光谱覆盖从 200 到 300 nm 的整个范围的中压汞灯,也可以使用只发射波长为 222 nm 的准分子灯。
世纪源紫外灯进行水处理的优点:
对味道和气味没有影响;
无需添加化学物质;
无环境污染;
辐射时间短;
对耐氯的病原体有效;
操作简便;
工艺的维护需求小;
运行成本极低。 生物化学水处理方法利用自然界存生的各种细菌微生物,将废水中有机物分解转化成无害物质,使废水得以净化。生物化学水处理方法可以分活性污泥法、生物膜法、生物氧化塔、土地处理系统、厌氧生物水处理方法。
生物化学水处理法的流程:
原水→格栅→调节池→接触氧化池→沉淀地→过滤→消毒→出水。
1、活性污泥水处理方法
(1)纯氧曝气法。最早是在1968 年由美国建成第一个纯氧曝气的污水处理厂。由于制造氧气的成本不断下降, 纯氧曝气法得到广泛应用。
(2)深水曝气法。增加曝气池的深度可以增加池水的压力, 从而使水中氧的溶解度提高, 氧的溶解速度也相 应增快, 因此, 深水曝气池水中的溶解氧要比普通曝气 池的高, 一般是将池深由原来的4 m 增加到10 m 左右。
(3)射流曝气法。污水和污泥组成的混合液通过射流器, 由于高速射流而产生负压, 从而有大量的空气吸入,空气与混合液进行充分接触, 提高了污水的吸氧率, 从而使处理的污水效率得到提高。
(4)投加化学混凝剂及活性炭法。在活性污泥法的曝气池中投加化学混凝剂及活性炭, 这样相当于在进行生化处理的同时进行物化处理。活性炭又可作为微生物的载体并有协助固体沉降的作用, BOD 及COD 的去除率提高, 使水质净化。(5)生物接触氧化法。这是兼有活性污泥法和生物过滤法特点的一种新型污水处理方法, 以接触氧化池代替一般的曝气池, 以接触沉淀池代替常用的沉淀池。
(6)管道化曝气。此法是使污水在压力管道内进行活性污泥曝气, 同时进行较长距离的输送。由于设备少,投资费用和操作费用均可降低。
曝气:即排流式曝气,使用曝气风机将压缩空气不断地鼓入废水中,保证水中有一定的溶解氧,以维持微生物的生命活动,分解水中有机物,以达到水处理的净化效果。
2、生物膜水处理方法
(1)生物滤池:使废水流过生长在滤料表面的生物膜,通过两面间的物质交换及生化作用,使废水中有机物降解,达到水处理的净化目的。
(2)生物转盘:由固定在一横轴上的若干间距很近的圆盘组成,不断旋转的圆盘面上生长一层生物膜,以达到水处理净化效果。 生物接触氧化:供微生物栖附的填料全部浸于废水中,并采用机械设备向废水中充入空气,使废水中有机物降解,以净化废水。 3、土地处理系统 (1)土地渗滤:利用土壤膜中的微生物和植物根系对污染物的净化能力来进行生活污水处理,同时利用污水中的水、肥来促进农作物、牧草、树木生长。
(2)污水灌溉:这种水处理方法主要目的为灌溉,以充分利用净化后的污水。
4、厌氧生物水处理方法:利用厌氧微生物分解污水中有机物,达到水处理净化目的,同时产生甲烷气、CO2等气体。 如果所取水样内混有较多的微粒杂质,则在四氯化碳萃取后,水和有机溶剂分层处不会出现明显的分液层,但仍可用干的滤纸过滤,因为干滤纸会很快吸干混杂层中的水珠,而使四氯化碳通过滤纸时并不影响测试结果。四氯化碳蒸汽对人体有毒害,在操作时应尽量避免吸入,蒸发烘干时必须在通风橱内进行。
B. 水处理设备有哪些
1. 气浮机:利用小气泡或微小气泡使介质表面产生杂质的机器,主要用于分离比重接近水的小水体中的悬浮固体、藻类和其他微小聚集体,回收工业废水中的有用物质,如造纸废水中的纸浆,以及代替二沉池分离浓缩水中的污泥等悬浮物。
2. 曝气机:通过曝气叶轮直接向未经处理的污水中注入“微气泡”,在混凝剂和絮凝剂的共同作用下,悬浮物发生物理絮凝和化学絮凝,形成悬浮物的大絮体,并在气泡的漂浮作用下,“絮状悬浮物”漂浮到液面形成浮渣,通过刮渣器从水中分离出来。曝气器由潜水泵、喷射器、扩散器、吸水管和软管组成,不需要清洗喷嘴,也不会出现堵塞。
3. 鼓式过滤机:转鼓式筛网过滤器,固定80~200目/平方英寸的微孔筛网在转鼓过滤设备上,通过拦截养殖水体中的固体颗粒实现固液分离。微滤占地面积小,生产能力大(250-36000m3/d),操作管理方便,已成功应用于供水和废水处理。
4. 离心机:利用离心机转子高速旋转产生的强大离心力,加速液体中颗粒的沉降速度,分离样品中沉降系数和浮力密度不同的物质。离心机主要用于分离悬浮液中的固体颗粒和液体,或乳状液中两种密度不同的不相溶的液体。
5. 污泥脱水机:处理污水处理厂和废水处理厂的必然产物污泥,包括物化污泥、生化污泥和混合污泥。国内常用的污泥脱水机型号有离心式、过滤带式、螺旋环式、板框式,具有自动控制运行、连续生产、无级调速的特点,适用于各种污泥。
6. 污水处理厂设备:主要包括螺旋脱水机、气浮机、曝气器、微滤机、正纯粗离心机、格栅除污机、油水分离器、压滤机、刮泥机、滗水器、污泥脱水机、潜水搅拌机、螺旋输送机等。
7. 污水处理设施:随着污水处理技术的发展,污水处理厂的机械化和自动化程度不断提高,使用的设备越来越多,也越来越复杂。可以分为特殊设备、通用设备和电气设备等几类。
8. 生活污水处理设备:利用各种设施、设备和技术,将污水中所含的污染物从水中分离去除,使有害物质转化为无害物质和有用物质,使水得到净化,资源得到充分利用。广泛应用于农村生活污水处理、城乡结合部污水处理、企业和矿山生活污水处理等。
9. 生活污水处理技术:根据工艺和处理程序,生活污水处理装置技术可分为预处理技术、一级处理技术、二级处理技术、深度处理技术和污泥处理技术等。选择处理效果稳定、污泥产量少、节能的处理方法,以达到生活污水处理标准。
C. 污水处理厂产生的污泥量如何计算 最好详细一些。
污水处理中产生的污泥数量,依污水水质与处理工艺而异。城市生活污水按每人每天产生的污泥量计算。例如,当沉淀时间为1.5h,含水率为95%,每人每天产生初沉池污泥量为0.4~0.5L/d·人。
也可通过物料平衡来推算,但实际上一般是通过经验积累实测数据。城市污水处理厂的污泥量按照南方的多个城市统计;1万吨污水处理厂年平均值1吨/日绝干污泥,折合含含水率80%,产污泥5吨。10万吨污水处理厂含水率80%,产污泥50吨/日。一般夏季多一点,冬季略少一点。
(3)反渗透水处理设备废水产污系数扩展阅读
分类
根据污泥从污水中分离的过程,可将其分为如下几类:悬浮物浓度一般在1%~10%,低于此浓度常常称为泥浆。由于污泥的来源及水处理方法不同,产生的污泥性质不一,污泥的种类很多,分类比较复杂。
1、按来源分
污泥主要有生活污水污泥,工业废水污泥和给水污泥。
2、按处理方法和分离过程分
污泥可分为以下几类:初沉污泥():指污水一级处理过程中产生的沉淀物。
活性污泥(activitedsludge):指活性污泥法处理工艺二沉池产生的沉淀物;
腐殖污泥:指生物膜法(如生物滤池、生物转盘、部分生物接触氧化池等)污水处理工艺中二次沉淀池产生的沉淀物。
化学污泥:指化学强化一级处理(或三级处理)后产生的污泥。
3、按污泥的不同产生阶段分
沉淀污泥(primarysettlingsludge):初次沉淀池中截留的污泥,包括物理沉淀污泥,混凝沉淀污泥,化学沉淀污泥。
生物处理污泥(biologicalsludge):在生物处理过程中,由污水中悬浮状、胶体状或溶解状的有机污染物组成的某种活性物质,称为生物处理污泥。生污泥(freshsludge):指从沉淀池(初沉池和二沉池)分离出来的沉淀物或悬浮物的总称。
参考资料来源:网络—污泥产生量
D. 反渗透纯净水设备的简介
反渗透设备是将原水经过精细过滤器、颗粒活性碳过滤器、压缩活性碳过滤器等,再通过泵加压,利用孔径为1/10000μm(相当于大肠杆菌大小的1/6000,病毒的1/300)的反渗透膜(RO膜),使较高浓度的水分开成极低浓度的水(也就是纯净水)和更高浓度的水,低浓度的水使用,高浓度的水排放或资源再利用,同时将工业污染物、重金属、细菌、病毒等大量混入水中的杂质全部隔离,从而达到饮用规定的理化指标及卫生标准,产出至清至纯的水,是人体及时补充优质水份的最佳选择.由于RO反渗透技术生产的水纯净度是目前人类掌握的在饮用水制造方面的一切制水技术中最高的,洁净度几乎达到100%,所以人们称这种产水机器为反渗透纯净水机。当然还有一些更高纯度的纯水制造技术(如EDI,抛光混床等)不适用于饮用水生产。
纯净水设备,简单来说就是生产纯净水的设备。而纯净水又被我们广泛用于:生活饮用、化工、医疗、养殖、种植、食品、饮料等。
反渗透设备应用膜分离技术,能有效地去除水中的带电离子、无机物、胶体微粒、细菌及有机物质等。是高纯水制备、苦咸水脱盐和废水处理工艺中的最佳设备。广泛用于电子、医药、食品、轻纺、化工、发电等领域。
反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。
反渗透时,溶剂的渗透速率即液流能量N为:
N=Kh(Δp-Δπ)
式中Kh为水力渗透系数,它随温度升高稍有增大;Δp为膜两侧的静压差;Δπ为膜两侧溶液的渗透压差。稀溶液的渗透压π为:
π=iCRT
式中i为溶质分子电离生成的离子数;C为溶质的摩尔浓度;R为摩尔气体常数;T为绝对温度。
反渗透通常使用非对称膜和复合膜。反渗透所用的设备,主要是中空纤维式或卷式的膜分离设备。
反渗透膜能截留水中的各种无机离子、胶体物质和大分子溶质,从而取得净制的水。也可用于大分子有机物溶液的预浓缩。由于反渗透过程简单,能耗低,近20年来得到迅速发展。现已大规模应用于海水和苦咸水(见卤水)淡化、锅炉用水软化和废水处理,并与离子交换结合制取高纯水,其应用范围正在扩大,已开始用于乳品、果汁的浓缩以及生化和生物制剂的分离和浓缩方面。
E. RO反渗透的原理是什么
反渗透的原理:
首先要了解“渗透”的概念,渗透是一种物理现象。当两种含有不同盐类的水,如用一张半渗透性的薄膜分开就会发现,含盐量少的一边的水分会透过膜渗到含盐量高的水中,而所含的盐分并不渗透,这样,逐渐把两边的含盐浓度融合到均等为止。然而,要完成这一过程需要很长时间,这一过程也称为渗透压力,但如果在含盐量高的水侧试加一个压力,其结果也可以使上述渗透停止,这时的压力称为渗透压力.。如果压力再加大,可以使方向相反方向渗透,而盐分剩下,因此反渗透除盐原理就是在有盐分的水中(如原水),施以比自然渗透压力更大的压力,使渗透向相反方向进行,把原水中的水分子压力到膜的另一边,变成洁净的水,从而达到除去水中杂质、盐分的目的。
F. 鍙嶆笚閫忚啘鐨勮勬牸鏄澶氬皯锛
鍙嶆笚閫忚啘鐨4040銆8040浠h〃鐨勬槸鑶滅殑瑙勬牸澶у皬銆傚墠闈40浠h〃闀垮害锛1绫冲乏鍙炽傚悗闈㈢殑80鍜40浠h〃鑶滅殑鐩村緞锛20鍏鍒/10鍏鍒嗐
鍙嶆笚閫忚啘鏄涓绉嶆ā鎷熺敓鐗╁崐閫忚啘鍒舵垚鐨勫叿鏈変竴瀹氱壒鎬х殑浜哄伐鍗婇忚啘锛屾槸鍙嶆笚閫忔妧鏈鐨勬牳蹇冩瀯浠躲傚弽娓楅忔妧鏈鍘熺悊鏄鍦ㄩ珮浜庢憾娑叉笚閫忓帇鐨勪綔鐢ㄤ笅锛屼緷鎹鍏朵粬鐗╄川涓嶈兘閫忚繃鍗婇忚啘 鑰屽皢杩欎簺鐗╄川鍜屾按鍒嗙诲紑鏉ャ傚弽娓楅忚啘鐨勮啘瀛斿緞闈炲父灏忥紝鍥犳よ兘澶熸湁鏁堝湴鍘婚櫎姘翠腑鐨勬憾瑙g洂绫汇佽兌浣撱佸井鐢熺墿銆佹湁鏈虹墿绛夈傜郴缁熷叿鏈夋按璐ㄥソ銆佽楄兘浣庛佹棤姹℃煋銆佸伐鑹虹畝鍗曘佹搷浣滅畝渚跨瓑浼樼偣銆
鍙嶆笚閫忚啘鏄瀹炵幇鍙嶆笚閫忕殑鏍稿績鍏冧欢锛屾槸涓绉嶆ā鎷熺敓鐗╁崐閫忚啘鍒舵垚鐨勫叿鏈変竴瀹氱壒鎬х殑浜哄伐鍗婇忚啘銆備竴鑸鐢ㄩ珮鍒嗗瓙鏉愭枡鍒舵垚銆傚傞唻閰哥氦缁寸礌鑶溿佽姵棣欐棌鑱氶叞鑲艰啘銆佽姵棣欐棌鑱氶叞鑳鸿啘銆傝〃闈㈠井瀛旂殑鐩村緞涓鑸鍦0.5锝10nm涔嬮棿锛岄忚繃鎬х殑澶у皬涓庤啘鏈韬鐨勫寲瀛︾粨鏋勬湁鍏炽傛湁鐨勯珮鍒嗗瓙鏉愭枡瀵圭洂鐨勬帓鏂ユуソ锛岃屾按鐨勯忚繃閫熷害骞朵笉濂姐傛湁鐨勯珮鍒嗗瓙鏉愭枡鍖栧︾粨鏋勫叿鏈夎緝澶氫翰姘村熀鍥锛屽洜鑰屾按鐨勯忚繃閫熷害鐩稿硅緝蹇銆傚洜姝や竴绉嶆弧鎰忕殑鍙嶆笚閫忚啘搴斿叿鏈夐傚綋鐨勬笚閫忛噺鎴栬劚鐩愮巼銆
鍙嶆笚閫忚啘搴斿叿鏈変互涓嬬壒寰侊細锛1锛夊湪楂樻祦閫熶笅搴斿叿鏈夐珮鏁堣劚鐩愮巼锛涳紙2锛夊叿鏈夎緝楂樻満姊板己搴﹀拰浣跨敤瀵垮懡锛涳紙3锛夎兘鍦ㄨ緝浣庢搷浣滃帇鍔涗笅鍙戞尌鍔熻兘锛涳紙4锛夎兘鑰愬彈鍖栧︽垨鐢熷寲浣滅敤鐨勫奖鍝嶏細锛5锛夊彈pH鍊笺佹俯搴︾瓑鍥犵礌褰卞搷杈冨皬锛涳紙6锛夊埗鑶滃師鏂欐潵婧愬规槗锛屽姞宸ョ畝渚匡紝鎴愭湰浣庡粔銆
鍙嶆笚閫忚啘鐨勭粨鏋勶紝鏈夐潪瀵圭О鑶滃拰鍧囩浉鑶滀袱绫汇傚綋鍓嶄娇鐢ㄧ殑鑶滄潗鏂欎富瑕佷负閱嬮吀绾ょ淮绱犲拰鑺抽欒仛閰拌兒绫汇傚叾缁勪欢鏈変腑绌虹氦缁村紡銆佸嵎寮忋佹澘妗嗗紡鍜岀″紡銆傚彲鐢ㄤ簬鍒嗙汇佹祿缂┿佺函鍖栫瓑鍖栧伐鍗曞厓鎿嶄綔锛屼富瑕佺敤浜庣函姘村埗澶囧拰姘村勭悊琛屼笟涓銆
鍘熺悊锛氬弽娓楅忓張绉伴嗘笚閫忥紝涓绉嶄互鍘嬪姏宸涓烘帹鍔ㄥ姏锛屼粠婧舵恫涓鍒嗙诲嚭婧跺墏鐨勮啘鍒嗙绘搷浣溿傚硅啘涓渚х殑鏂欐恫鏂藉姞鍘嬪姏锛屽綋鍘嬪姏瓒呰繃瀹冪殑娓楅忓帇鏃讹紝婧跺墏浼氶嗙潃鑷鐒舵笚閫忕殑鏂瑰悜浣滃弽鍚戞笚閫忋備粠鑰屽湪鑶滅殑浣庡帇渚у緱鍒伴忚繃鐨勬憾鍓傦紝鍗虫笚閫忔恫锛涢珮鍘嬩晶寰楀埌娴撶缉鐨勬憾娑诧紝鍗虫祿缂╂恫銆
鑻ョ敤鍙嶆笚閫忓勭悊娴锋按锛屽湪鑶滅殑浣庡帇渚у緱鍒版贰姘达紝鍦ㄩ珮鍘嬩晶寰楀埌鍗ゆ按銆傚弽娓楅忔椂锛屾憾鍓傜殑娓楅忛熺巼鍗虫恫娴佽兘閲廚涓猴細銆N=Kh锛埼攑锛嵨斚) 銆寮忎腑Kh涓烘按鍔涙笚閫忕郴鏁帮紝瀹冮殢娓╁害鍗囬珮绋嶆湁澧炲ぇ锛浳攑涓鸿啘涓や晶鐨勯潤鍘嬪樊锛浳斚涓鸿啘涓や晶婧舵恫鐨勬笚閫忓帇宸銆
绋婧舵恫鐨勬笚閫忓帇蟺涓猴細蟺=iCRT銆寮忎腑i涓烘憾璐ㄥ垎瀛愮數绂荤敓鎴愮殑绂诲瓙鏁帮紱C涓烘憾璐ㄧ殑鎽╁皵娴撳害锛汻涓烘懇灏旀皵浣撳父鏁帮紱T涓虹粷瀵规俯搴︺傚弽娓楅忛氬父浣跨敤闈炲圭О鑶滃拰澶嶅悎鑶溿傚弽娓楅忔墍鐢ㄧ殑璁惧囷紝涓昏佹槸涓绌虹氦缁村紡鎴栧嵎寮忕殑鑶滃垎绂昏惧囥傚弽娓楅忚啘鑳芥埅鐣欐按涓鐨勫悇绉嶆棤鏈虹诲瓙銆佽兌浣撶墿璐ㄥ拰澶у垎瀛愭憾璐锛屼粠鑰屽彇寰楀噣鍒剁殑姘淬備篃鍙鐢ㄤ簬澶у垎瀛愭湁鏈虹墿婧舵恫鐨勯勬祿缂┿
鐢变簬鍙嶆笚閫忚繃绋嬬畝鍗曪紝鑳借椾綆锛岃繎20骞存潵寰楀埌杩呴熷彂灞曘傜幇宸插ぇ瑙勬ā搴旂敤浜庢捣姘村拰鑻﹀捀姘达紙瑙佸崵姘达級娣″寲銆侀攨鐐夌敤姘磋蒋鍖栧拰搴熸按澶勭悊锛屽苟涓庣诲瓙浜ゆ崲缁撳悎鍒跺彇楂樼函姘达紝鍏跺簲鐢ㄨ寖鍥存e湪鎵╁ぇ锛屽凡寮濮嬬敤浜庝钩鍝併佹灉姹佺殑娴撶缉浠ュ強鐢熷寲鍜岀敓鐗╁埗鍓傜殑鍒嗙诲拰娴撶缉鏂归潰銆
G. 污水处理中sdl定义
污水处理中SDL的定义是垂直的系数和纯度的含量。
H. 影响反渗透设备工艺的因素有哪些
影响反渗透设备工艺的因素有哪些
1、进水水质的影响
a、色度、浊度和胶体有机物:悬浮物和胶体物质非常容易堵塞RO膜,使透水率很快下降,脱盐率降低。
b、氧化剂:氧化剂会使复合膜性能恶化,水中含游离氯时,通常用活性炭吸附或加注还原剂,使游离氯还原到指标值以下。
c、PH值:控制PH值的目的主要是防止(CaCO3)析出后形成水垢。
d、铁、锰、铝等重金属氧化物:其含量高时,在膜表面易形成氢氧化物胶体,产生沉积现象。
e、细菌、微生物:细菌繁殖会污染膜并恶化水质。
f、硫酸根(SO42-),二氧化硅(SiO2):水中含有多量硫酸根时,易产生硫酸钙沉淀,含有多量SiO2时,也易产生沉淀,为防止沉淀,当浓水CaSO4溶度积>19×10-5时,可加注六偏磷酸钠,尽量避免浓水中SiO2含量超过100mg/l。
2、运行因素的影响
a、压力
渗透液通量随作用压力成线型增加,而渗透液的含盐量随作用压力而减少。
b、温度
若其他参数保持固定只增加温度,渗透液通量及盐通过量都随之增加,但渗透液通量变化更为明显,一般来说,温度每提高1℃,透水量增加1-3%,而一般膜的额定通量是在25℃时给出的,下表标示了不同温度下产水量修正系数。
c、回收率
回收率为渗透液流量对进水流量的比例。渗透液流通量随着回收率的增加而减少,当浓缩液的渗透压高至与施加于供水的压力相同时则停止,脱盐率随着回收率之增加而减少。