水处理树脂分为阳离子树脂和阴离子树脂,阳离子树脂又细分为钠型和氢型,钠型树脂将水中的钙镁离子交换成钠离子,使水变软.氢型树脂是将水中的钙镁离子交换成氢离子使水软化.阴离子树脂中含被可置换的氢氧根离子,能置换出水中的酸根离子。罗门哈斯离子交换树脂同时使用阴离子树脂和氢型阳离子树脂可以将水变为纯净水。
一、离子交换树脂基础介绍
离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。
离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类
(或再分出中强酸和中强碱性类)。
二、离子交换树脂的基本类型
(1) 强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2) 弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+
而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3) 强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。
(4) 弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。
(5) 离子树脂的转型
以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。
三、离子交换树脂基体的组成
离子交换树脂(ionresin)的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。苯乙烯系树脂是先使用的,丙烯酸系树脂则用得较后。
这两类树脂的吸附性能都很好,但有不同特点。丙烯酸系树脂能交换吸附大多数离子型色素,脱色容量大,而且吸附物较易洗脱,便于再生,在糖厂中可用作主要的脱色树脂。苯乙烯系树脂擅长吸附芳香族物质,善于吸附糖汁中的多酚类色素(包括带负电的或不带电的);但在再生时较难洗脱。因此,糖液先用丙烯酸树脂进行粗脱色,再用苯乙烯树脂进行精脱色,可充分发挥两者的长处。
树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。通常,交联度高的树脂聚合得比较紧密,坚牢而耐用,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不高于8%;单纯用于吸附无机离子的树脂,其交联度可较高。
有任何问题可以追问~~~
B. 离子交换树脂的再生意义是什么原理是什么
离子交换树脂使用一段时间后,吸附的杂志达到饱和的状态,需要进行再生处理,使用化学药剂将树脂所吸附的离子和其他杂质洗脱除去棚粗,让其回复原来的组成和性能。所以意义是将饱和离子交换树脂把结合上的阴阳离子拿下来,让它恢复软化水的功能。该项操作使其资源可再生,节约成本,保护环境。
离子交换树脂的再生原理:
1、 常规的再生处理:强酸行和强碱性树脂再生困难,需要再生剂量比理棚毁论值高很多;
弱酸性或弱碱性则较易再生,所以剂量只需稍多于理论值。
大孔型和交联度低的树脂易再生,链和镇凝胶型和交联度高的树脂则要较长的再生反应时间。
再生剂的种类根据树脂的离子类型来选用,并适当地选择价格低的酸碱或盐。
2、 特殊的再生处理:污染严重的树脂,可用酸、碱性食盐溶液反复处理。如果效果未达到理想状态,还可以用氧化法处理(加入次氯酸钠溶液)。
C. 离子交换树脂的作用有哪些
离子交换树脂是一种独特的过滤材料,具有出色的过滤性能。它能够有效滤除水中的氯离子、钙离子、镁离子以及多种金属离子,显著降低了水质的硬度。相比传统的活性炭,离子交换树脂的吸附能力更为强大,净化效果更佳,因此在当前的水处理领域被广泛应用。
这种树脂的核心优势在于其高效的离子交换能力。当水流经过离子交换树脂时,树脂中的离子会与水中不希望的离子发生交换,从而净化水质。这一过程中,树脂中的钠离子会与水中的钙、镁离子交换位置,使得原本硬度较高的水变得柔软,有效减少了水垢的形成。此外,离子交换树脂还能够有效去除水中的有害物质,如铅、汞等重金属离子,保障饮水的安全性。
除了在水处理方面的应用,离子交换树脂还在其他领域发挥着重要作用。在制药行业,它用于提纯和分离药物成分;在食品工业中,它被用来净化饮料和酒类;在环保领域,它能够有效处理工业废水中的有害物质。这些广泛的应用场景都得益于离子交换树脂卓越的性能和稳定性。
总的来说,离子交换树脂以其优异的过滤性能和广泛的应用前景,成为了现代水处理和其他工业领域中不可或缺的重要材料。随着科技的进步和研究的深入,相信未来离子交换树脂将在更多领域展现出其巨大的潜力和价值。
D. 弱酸阳离子安换树脂软化为什么要转成Na型
第一个阶段是20世纪60年代的开创时期。这个时期电渗析是我国最早得到推广应用的膜分离过程,其应用领域涉及苦咸水淡化;电厂锅炉补给水预除盐等。第二个阶段是20世纪70年代。这一时期,电渗析、反渗透、超滤和微滤等各种膜和相应组件、装置都在研究中,或已开发出来,除电渗析外,其它膜组件仍未得到应用。第三个阶段是20世纪80年代以后。这一时期我国膜分离技术跨入应用阶段,一些技术上较为成熟的膜过程开始得到应用。在自己研制成功的醋酸纤维素(CA)膜于复合膜生产装置的基础上,又相继引进了外国有关公司的反渗透膜生产线。反渗透技术已在我国电厂锅炉补给水预除盐、超纯水制造、海水和苦咸水淡化等方面大规模推广应用,并取得很好的技术效益和经济效益。因此,提高膜预处理的综合利用研究意义重大且大有前途。
自超滤膜预处理后,多年来国内外研究人员都一直在探索预处理的新途径。到1995年12月,全世界RO淡化工厂产水量达7293079m3/d,占总淡化生产量的35%,占当年世界淡化市场88%。RO技术将成为21世纪淡化技术的主要方法。
技术实现要素:
本发明正是基于以上技术问题,提供一种以弱酸阳离子树脂交换酸化软化方法。该方法主要针对河水而言,由于河水中含有较多的生活污水,而本发明通过设计合理的工艺流程,提高纯水的回收率,并简化原水的处理过程,降低水耗,使以河水制纯水具有优越的经济效益。
本发明的技术方案为:
一种以弱酸阳离子树脂交换酸化软化方法,其包括如下步骤:
(1)将待处理的水放入已放置了絮凝剂的澄清池中,除去大部分胶质物质;再将水经过过滤器,进一步除去胶质物质;
(2)将经过步骤(1)处理后的水通过弱酸阳离子树脂交换床,使水中的阳离子(如Ca2+、Mg2+、Na+等)被树脂吸附,树脂中的H+进入水中,与水中的阴离子组成相应的无机酸,反应式如下:
弱酸阳离子树脂交换床失效后,向其添加无机酸使其再生,且将弱酸阳离子树脂上部的晶型变为H+型,将弱酸阳离子树脂的下部的晶型变为Na+型,无机酸的加入量与水的质量比为1.01-1.015。作为优选,所述的无机酸为硝酸、盐酸或硫酸。弱酸阳离子树脂交换床再生的时间不超过1h,再生的水温为30- 45℃,压力为常压,无机酸的流量不超60m3/h。
待水在弱酸阳离子树脂交换床交换完成后,用脱盐水对弱酸阳离子树脂进行置换,置换的温度为30-45℃,压力为常压,交换时间不超过1h,脱盐水流量不超60m3/h。
待脱盐水置换后,用清水对弱酸阳离子树脂进行清洗;清洗的温度小于 45℃,压力为常压,清洗时间不超过1h,清水流量不超80m3/h,弱酸阳离子树脂交换床中的清洗出水电导小于1200μs/cm。
(3)将经过弱酸阳离子树脂,除去大部分阳离子后并携带H+的水进入保安过滤器和反渗透RO膜除去绝大部分离子;再将经过RO膜除去大部分离子后的水进入强酸阳离子交换床,进一步除去阳离子;经过RO膜除去大部分离子后,因进入RO膜的水带酸性,CO32-大部分以游离CO2存在,产生的游离二氧化碳经脱碳风机除去。
(4)将经步骤(3)中除去阳离子的水进入阴离子交换床,除去大部分阴离子,特别是硅酸根离子,除去大部分阴离子,得到除盐水;
(5)将步骤(4)中得到的除盐水再经过混床进一步除盐,混床相当于 1000-2000个复合床对除盐水进一步除盐,得到精制水。