⑴ 氯量及溴量的测定 高效离子色谱法
1 范围
本方法规定了地球化学勘查试样中氯和溴含量的测定方法。
本方法适用于水系沉积物及土壤试料中氯量和溴量的测定。
本方法检出限(3S):10μg/g氯,0.3μg/g溴。
本方法测定范围:30μg/g~20000μg/g氯,0.9μg/g~600μg/g溴。
2 规范性引用文件
下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。
下列不注日期的引用文件,其最新版本适用于本方法。
GB/T 20001.4 标准编写规则 第4部分:化学分析方法。
GB/T 14505 岩石和矿石化学分析方法总则及一般规定。
GB 6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。
GB/T 14496—93 地球化学勘查术语。
3 方法提要
试料用(Na2CO3:ZnO=3:2)混匀,经烧结后用水浸取,浸取液用氢型阳离子交换树脂静态交换分离大量基体(阳离子)后,将试液注入仪器,在[c(NaHCO3)=0.0028mol/L-c(1/2NaCO3)=0.0044mol/L]淋洗液携带下,流入阴离子分离柱(HPIC-AG3+HPIC-AS3),经洗提与交换使氯离子与其他阴离子分离,然后流经阴离子抑制器,以降低淋洗液的背景电导;再流经电导检测器,测定氯离子电导率。在[c(NaNO3)=0.015mol/L]的淋洗液携带下,流入阴离子分离柱(HPIC-AG5+HPIC-AS5),经洗提与交换使溴离子与其他阴离子分离,然后流经电化学检测器,测定溴离子在银工作电极上产生氧化反应而产生的电流值。由记录器分别记录各离子浓度的峰高值,同时测定工作曲线上各个氯离子和溴离子浓度的峰高值,并在相应工作曲线上,分别查得试液中各离子含量,计算氯量和溴量。
4 试剂
除非另有说明,在分析中仅使用确认为分析纯的试剂和去离子水(电导率<1μS/cm)。
4.1 无水乙醇
4.2 碳酸钠和氧化锌混合熔剂
碳酸钠(优级纯)和氧化锌(优级纯)按3∶2的比例充分混匀备用。
4.3 硫酸(ρ 1.84g/mL)
4.4 硫酸溶液Ⅰ[c(1/2H2SO4)=2mol/L]
移取42mL硫酸(4.3)缓慢地加入700mL水中,搅匀。
4.5 硫酸溶液Ⅱ[c(1/2H2SO4)=0.025mol/L]
准确分取12.5mL的硫酸溶液Ⅰ(4.4)于1000mL水中,搅匀。
4.6 732型阳离子交换树脂(50~100网目)
先用水浸泡,清洗数遍,然后将树脂装入直径约1.5cm、长约30cm的玻璃柱中,顶端与梨形分液漏斗衔接。在分液漏斗中加入150mL硫酸溶液Ⅰ(4.4),以约 1.5mL/min流速流经交换柱,流毕。用水以同样流速流经交换柱,直至流出液洗至无硫酸根。再生的树脂以真空抽滤至干,装瓶备用。收集已经用本法静态交换过的阳离子交换树脂,可用上述步骤再生后,继续使用。
4.7 碳酸氢钠-碳酸钠溶液[c(NaHCO3)-c(1/2Na2CO3)=0.0028mo1/L-0.0044mol/L]
称取碳酸氢钠(优级纯)0.2352g和碳酸钠(优级纯)0.2332g溶于1000mL水中。用时配制。
4.8 硝酸钠溶液[c(NaNO3)=0.015mo1/L]
称取1.275g硝酸钠[含Ag<100 ng]溶于1000mL水中。用时配制。
4.9 氯标准溶液
4.9.1 氯标准溶液I[ρ(Cl-)=1.000mg/mL]称取1.6485g已在500℃灼烧1h后的高纯氯化钠,置于 250mL烧杯中,加水溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
4.9.2 氯标准溶液Ⅱ[ρ(Cl-)=100μg/mL]移取10.0mL氯标准溶液Ⅰ(4.9.1),置于100mL容量瓶中,用水稀释至刻度,摇匀。
4.9.3 氯标准溶液Ⅲ[ρ(Cl-)=5.0μg/mL]移取5.0mL氯标准溶液Ⅱ(4.9.2),置于100mL容量瓶中,用水稀释至刻度,摇匀。
4.10 溴标准溶液
4.10.1 溴标准溶液Ⅰ[ρ(Br-)=100μg/mL]称取0.1489g已于105℃干燥1h后的高纯溴化钾,置于 250mL烧杯中,加水溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
4.10.2 溴标准溶液Ⅱ[ρ(Br-)=10μg/mL]移取10.0mL溴标准溶液Ⅰ(4.10.1),置于100mL容量瓶中,用水稀释至刻度,摇匀。
4.10.3 溴标准溶液Ⅲ[ρ(Br-)=1.0μg/mL]移取10.0mL溴标准溶液Ⅱ(4.10.2),置于100mL容量瓶中,用水稀释至刻度,摇匀。
5 仪器及材料
5.1 DIONEX-2020i离子色谱仪
5.2 DIONEX分离柱 HPIC-AG3(4mm×50mm),HPIC-AS3(4mm×250mm);HPIC-AG5(4mm×50mm),HPIC-AS5(4mm×250mm)
5.3 抑制器DIONEX ASRS-ULTRA4-mm
5.4 电导检测器
5.5 安培检测器
5.6 银工作电极
5.7 记录器
量程1mV~10mV。
6 分析步骤
6.1 试料
试料粒径应小于0.097mm,在60℃干燥2h,置干燥器中,备用。
试料量 依据元素含量,称取0.1g~0.5g试料,精确至0.0002g。
6.2 空白实验
随同试料分析全过程做两份空白试验。
6.3 质量控制
选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试料同时分析。
6.4 测定
6.4.1 依据各元素的含量,称取试料(6.1)置于预先盛有1.5g碳酸钠和氧化锌混合熔剂(4.2)的磁坩埚中,搅匀后,并均匀覆盖1.5g碳酸钠和氧化锌混合熔剂(4.2);置于低温马弗炉中,自低温升温至800℃,保持800℃ 0.5h后取出冷却;将熔块倒入100mL烧杯中,用热水洗净坩埚,加20mL水及几滴无水乙醇,煮沸,冷却,将溶液连同沉淀一起移入50mL比色管中,用水稀释至刻度,摇匀后放置澄清。
6.4.2 吸取5.0mL清液(6.4.1)置于50mL干烧杯中,加5g阳离子交换树脂(4.6),静态交换2h,在静态交换过程中须摇动2次~3次。
6.4.3 按仪器工作条件(见附录A),将仪器调试好,待基线稳定后,用注射器吸取1.0mL清液(6.4.2),注入仪器(进样阀),经分离柱再流经电导检测器,由记录器记录氯离子浓度的峰高值,同时测量工作曲线上各个氯离子浓度的峰高值,从工作曲线查得相应的氯量。
6.4.4 按仪器工作条件(见附录B),将仪器调试好,待基线稳定后,用注射器吸取1.0mL清液(6.4.2),注入仪器(进样阀),经分离柱再由安培检测器测量,由记录器记录溴离子浓度的峰高值,同时测量工作曲线上各个溴离子浓度的峰高值,从工作曲线查得相应的溴量。
注:每测试5个试液后,应校对检查测量工作曲线是否发生偏倚,以监控仪器的稳定性,提高测量的准确性。
6.4.5 工作曲线的绘制
6.4.5.1 分别移取0.0mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL氯标准溶液Ⅲ(4.9.3),置于一组10mL烧杯中,分别加入5.00mL、4.50mL、4.00mL、3.00mL、2.00mL、1.00mL、0.00mL水至5mL,摇匀。以下操作按(6.4.3)节进行。测量完毕,以氯离子浓度为横坐标,峰高值为纵坐标,绘制氯的工作曲线。
6.4.5.2 分别移取0.0mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL、3.00mL溴标准溶液Ⅲ(4.10.3),置于一组25mL容量瓶中,用水稀释至刻度,摇匀。以下操作按(6.4.4)节进行。测量完毕,以溴离子浓度为横坐标,峰高值为纵坐标,绘制溴的工作曲线。
7 分析结果的计算
按公式(1)计算氯的含量,按公式(2)计算溴的含量。
区域地球化学勘查样品分析方法
式中:P——从工作曲线上查得试料溶液中氯或溴的浓度,氯为μg/mL,溴为ng/mL;P0——从工作曲线上查得空白试验溶液中氯或溴的浓度,氯为μg/mL,溴为ng/mL;V——制备溶液总体积,mL;m——试料质量,g。
8 精密度
氯量、溴量的精密度见表1及表2。
表1 精密度[w(Cl-),10-6]
表2 精密度[w(Br-),10-6]
附 录 A
(资料性附录)
A.1 测定氯的仪器工作条件
测定氯的仪器工作条件见表A.1。
表A.1 测定氯的仪器工作条件
附 录 B
(资料性附录)
B.1 测定溴的仪器工作条件
测定溴的仪器工作条件见表B.1
表B.1 测定溴的仪器工作条件
B.1.1 电极活化步骤 首先将分离柱从色谱仪上取下,再用一个联接器把淋洗液出口管与电化学池进口管联接,然后用注射器取5mL溴离子标准溶液(ρ(Br-)=1.00 mg/L)分两次注入仪器,由淋洗液带入电化学池。两次时间间隔为5min。
注:电极活化只是在电极抛光后才需要。
附 录 C
(资料性附录)
C.1 从实验室间试验结果得到的统计数据和其他数据
如表C.1及表C.2。
本方法精密度协作试验数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。
表C.1及表C.2中不需要将各浓度的数据全部列出,但至少列出了3个或3个以上浓度所统计的参数。
C.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据)。
C.1.2 列出了方法的相对误差参数,计算公式为,公式中为多个实验室测量平均值为一级标准物质的标准值。
C.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差、SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为“重复性变异系数”及“再现性变异系数”。
C.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。
表C.1 CI统计结果表
表C.2 Br统计结果表
附加说明
本方法由中国地质调查局提出。
本方法由武汉综合岩矿测试中心技术归口。
本方法由安徽省地质实验研究所负责起草。
本方法主要起草人:佘小林。
本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。
⑵ 电导法测弱电解质的解离平衡常数和难溶盐的溶解度
2-7不溶性强电解质的溶度积溶度积测定实验
?
首先,实验的目的
了解很稀的溶液浓度测量方法;
了解难溶性盐溶度积的决心;
3,巩固活动,活动的浓度和相关系数的概念。
二,实验原理
??一些在一定温度下的离子平衡,电解质的不溶性盐的饱和溶液,在溶液中形成,并且一般表示式如下:
严格地说溶度积的平衡常数溶度积称为的溶度积,或简称为相应的离子的活性产物的溶液牵制的离子作用的溶度积,但认为几乎不含有电解质的饱和溶液的离子强度是非常小,可以的警告,而不是使用浓度活动。
在对氯化银
从上面的等式中,如果测得的饱和溶液中的不溶性的电解质离子浓度,可以计算出的溶度积的溶度积,。因此,测量最终测量的离子浓度。设计一种方法测定的浓度,发现测量方法的溶度积。
具体测量的浓度的方法,包括的滴定法测定(如AgCl溶解度产品),离子交换法(如硫酸铜的溶解性产物的测定),电导率(如AgCl的溶度积的测定),离子电极方法(如氯铅的测定的溶度积)时,电极电位的电极电位的方法(溶度积的关系),即分光光度法(例如氢碘酸铜的溶度积的测定),等,下面分别予以介绍。
?
Ⅰ,硫酸钙的溶度积的测定(离子交换法)
?
首先,实验的目的
1,练习使用离子交换树脂;
要了解离子交换所测得的硫酸钙的溶解度和溶度积的原则和方法。
进一步实践酸碱滴定法,大气中的滤波操作。
二,实验原理
离子交换树脂是一类合成,与其他物质的固体球形聚合物,含酸性基团可以与其他物质交换的离子交换包含特殊的反应性基团在分子中,阳离子是一种阳离子交换树脂含有碱性基团,其中可以与其它物质交换,阴离子的阴离子交换树脂。聚苯乙烯磺酸型树脂,最常用的是强酸性阳离子交换树脂,其结构式可表示为:
此实验是强酸性阳离子交换树脂(R-SO 3 H)(型号732)交换硫酸钙饱和溶液中的Ca2 +交换反应:
2R-SO3H +钙+→(R SO3)2的Ca + 2H +
?
硫酸钙是微溶盐,其溶解度以外的部分增加了Ca2 +和SO42-离子的硫酸钙饱和溶液中存在的离子对和简单离子之间的平衡:
硫酸钙(AQ)=内Ca2 + + SO42-
由于Ca2 +离子交换平衡向右侧移动时,该溶液流经交换树脂,硫酸钙(ag)的离解的结果都被交换为H +从流出物中[H +]计算值硫酸钙摩尔溶解度?:
?
[H +]的测量可用的pH计,并且还可以是一个标准的NaOH溶液滴定绘制这里介绍滴定。
让饱和的硫酸钙溶液的[Ca2 +] = C [SO42-] = C,然后按[硫酸钙(AQ)] = Y - C
和
KD,25℃,离子解离常数Kd = 5.2×10-3
和
由等式,C,并通过以下方式获得溶度积= [内Ca2 +] [SO 4 2 - ] = C2,所定义的溶度积Ksp。
第三,的实验步骤
1。填充柱离子交换柱(基本滴定管替代)洗少量的玻璃纤维或关闭棉脂肪填充的底部,说要带一定数目的732强酸性阳离子交换树脂放入小烧杯中,加蒸馏水浸泡和搅拌后与水一起除去的悬浮颗粒和杂质被转移到离子交换柱,交换柱旋钮剪辑的下端打开,使水慢慢流出,直到液位高于树脂约1cm,夹紧螺钉夹紧,如果气泡,使玻璃棒插入树脂以除去气泡,之后的操作过程中,应先浸泡在溶液中,使树脂。去掉气泡,添加少量的上述的树脂中的玻璃纤维(或棉花)。
2。过渡到确保的Ca2 +完全交换成H +和Na +型树脂,必须完全转换后的模制的H +,采取40毫升2mol / L的盐酸溶液分批加入交换柱中,控制每分钟80-85滴流量让通过交叉树脂HCl溶液流后,保持10分钟后。 [注意:如果使用的是一个很好的酸处理树脂,装柱后直接按治疗],用50-70ml的蒸馏水,漂洗树脂,直到流出物的pH值是6-7(pH试纸测试)。
3下游饱和硫酸钙1克分析纯硫酸钙固体的溶液放置约70毫升,煮沸后,冷却至室温的蒸馏水,搅拌10分钟后,静置5分钟,并用定量滤纸(过滤器过滤纸,一个漏斗和抽滤瓶应干燥),将滤液饱和硫酸钙溶液。
4。外汇吸取20.00毫升饱和硫酸钙溶液,注射远离交叉柱,控制交换柱流出物的20-25滴/分钟的速度,用洗涤的锥形烧瓶中进行污水。在树脂床层几乎完全的饱和溶液流入,在蒸馏水中洗涤树脂中加入(约50毫升水分批洗脱)流出的液体的pH为6-7。请注意不要将整个交换和浸出工艺废水损失。
5的氢离子浓度的测定在酸 - 碱滴定,污水加2滴溴百里酚酞指示剂,将溶液从黄色到明亮的蓝色用标准NaOH溶液滴定,滴定终点。准确地记录使用的NaOH溶液,在溶液中的氢离子浓度的下述式的体积。
数据记录和结果
硫酸钙的饱和液体温度
?
?
通过交换柱的饱和溶液的体积(mL)
?
?
NNaOH(MOL / L)
?
?
VNaOH(mL)的
?
?
[H +] mol / L的
?
?
硫酸钙溶解度?
?
?
硫酸钙溶度积Ksp
?
?
计算Kd值近似25°C的数据,计算过程写实验报告。
错误分析操作错误,根据文献值吗?硫酸钙的溶解度,并讨论错误的原因。
五问题
为什么操作来控制液体的流速是不是太快了?为什么不允许气泡的存在下的树脂层?如何避免?
2,计算得出的实验结果硫酸钙的溶解度产品?
制备的饱和溶液,硫酸钙,为什么您要使用的CO2的蒸馏水已被删除?
影响最终测定结果的因素?影响因素分析,你认为在整个操作中的关键步骤?
5,下面的实验结果有什么影响?
1)过渡,树脂不能完全转化为H +形式。
2)是不允许的硫酸钙的饱和溶液冷却至室温,在过滤器上。
3)过滤漏斗硫酸钙饱和液体和接收烧瓶中未干燥。
4)改造,洗脱液流出,低于中性停止浸出和交流。
?
附加硫酸钙溶度积的文学价值
?
T℃
?0
?10
?20
?30
?40
?
溶解性×102mol / L
?1.29
?1.43
?1.50
?1.54
?/
?
单位为克每百克(g/100g)
?0.1759
?0.1928
?/
?0.2090
?0.2097
?
?
阅读材料
离子交换技术
通过离子交换树脂的离子交换柱中的化合物,该方法由于交换的离子键,得到相应的产物被称为作为离子交换方法。该方法被广泛用于元素的分离,提取,纯化,有机脱色精制,水净化,并用作反应催化剂,等,离子交换法所需要的项目,包括相应的??离子交换树脂的离子交换柱。
离子交换树脂,包括天然的和合成的两类,其中较重要的是一种合成的有机树脂,它主要是作为树脂基体结构的聚合物的交联成的苯乙烯和二乙烯基苯的使用,然后连接相应上部反应性基团的和合成的。合成的离子交换树脂是一种不溶性聚合物,含有反应性基团的,具有网状结构的聚合物,有许多的网状结构的骨架可以被离子化和周围溶液中的一些离子交换活性基团,网状结构的离子交换树脂溶解在水或酸,碱溶液是极其困难的,对于大多数有机溶剂,氧化剂,还原剂,和热不发挥作用。
A.离子交换树脂的分类
发生纠纷组和不同的离子交换树脂的作用,可以划分为不同的类别,如阳离子交换反应用的阳离子交换树脂,阴离子交换树脂的离子交换树脂具有特殊的功能。
1。的阳离子交换树脂,阳离子交换树脂是用酸性的交换基团的树脂,这些酸性基团包括磺酸基(-SO 3 H),羧基(-COOH),酚性羟基基团(-OH)。在这些树脂中,它们的阳离子可以是在溶液中的阳离子交换,根据上的活性基团的强度,pH值,所述阳离子交换树脂被进一步细分为强酸性阳离子交换树脂(活性基团是-SO 3 H ),国内732树脂(新牌号001-100),中度酸性阳离子交换树脂(活性基团-PO3H2)和(#401-500)取得了新的成绩和弱酸性阳离子交换树脂(活性基团-CO 2 - C6H4OH等)(例如,724型,#101-200新牌号)等,这是最广泛使用的强酸性树脂。
2。的阴离子交换树脂含有一个基本的反应性基团的树脂,这种树脂的阴离子可以是溶液的阴离子交换。根据碱性强度差异中的活性基团的强碱性阴离子交换树脂(活性基团是季胺碱,如,711#,714#,等),和弱碱性阴离子交换树脂被分成(活性基团是伯胺,仲胺基和叔胺基团,如701#树脂,等等。)
3。具有特殊的功能性树脂,如螯合树脂,两性树脂,氧化还原树脂等(见表2-8)。
在使用中应根据该实验中,不同类型的离子交换树脂的具体要求。
II。离子交换的基本原则
?离子交换过程是在溶液中的离子通过扩散到颗粒内的树脂,在用树脂上的H +离子交换(或Na +等离子的活性基团),交换的H +离子扩散的解决方案,并已出院。因此,在离子交换过程是可逆的,阳离子交换树脂,更大的离子价交换电位越大,即与树脂结
表2-8中,离子交换树脂类型的
类型
?活动组
?类别
?案例
?
阳离子交换树脂
?强酸性
?磺酸基
H-型(R-SO 3 H)的Na型(R-竹红菌素衍生物)
?732,IR-120型
?
磷酸基团
H-型(R-PO3H2):Na型(R-PO3Na2)。
?
?
弱酸
?羧酸基
H-型(R-CO 2 H):Na型(R-CO2Na)。
724型,IRC-50型
?
酚基
H-型(R-C6H4OH)Na型(R-C6H4ONa)
?
?
阴离子交换树脂
?强碱性
?第四纪胺组
OH-型(R-NR`3OH)
氯型(R-NR“3CL)
?717,IRA-400型
?
弱碱性
伯胺组
OH-型(R-NH3OH)
氯型(R-NH3Cl)
701,IR-45型
?
仲氨基的基团
OH-型(R-NR“H2OH)
氯型(R-NR“H2Cl)
?
?
叔胺基团
OH-型(R-NHR`2OH)
氯型(R-NHR“2CL)
?
?
特殊功能树脂
螯合树脂,两性的树脂,氧化还原树脂
?
较强的合作能力:
K + <H +的Na + <K +银+ <FE2 + CO2 +镍+铜+镁+钙+ <Ba2 +的<SC3 +
?同样,对于目的的结果,离子交换树脂,与增加的离子价的增加,如在强碱性阴离子树脂的交换势:
AC-F-OH-HCOO-H2PO4-HCO3-BrO3-CL-<NO3-<BR-NO2-I-CrO42-C2O42-SO42-
??一般制造的所谓的交换容量的1克干树脂的离子交换容量交换容量是毫当量相应的离子交换的数目。不同类型的树脂的交换容量为强酸性离子交换树脂,一般≥4.5毫克当量/克干树脂的交换容量,从而可以计算出从最小量的树脂,需要一个特定的实验。
III。交换树脂的影响因素
有许多因素影响树脂的交换,主要包括以下几个方面:
1。的性质的树脂本身的不同制造商,不同型号的不同树脂的交换容量。
2。预处理的树脂或再生的质量。
3。填充树脂,在离子交换柱中的树脂填充的是是否有气泡。
4。柱直径和由于离子交换过程的流出速度的比率是一个缓慢的交换过程中,这种交换是一个可逆过程。的流出速度交换的结果造成很大的影响,流出速度过大,为时已晚,离子交换,从十字架上的效果是不佳的。流出速度的柱塔直径比[离子交换柱的高度与直径之比的溶液中的离子浓度与流动相和离子交换(图2-35)]和其他因素,如离子浓度小时,可能是适当增加流出的速度。在实验室中柱直径比为10:1或以上的一般要求,可适当增加柱直径比较大的流出速度。为了得到更好的效果,流出速度一般控制在20-30滴/分为适当的。
IV。新树脂预处理老化树脂再生的
1。阳离子交换树脂预处理的目的⑴清洗以去除一些外源性杂质会购买一个新的树脂,用清水浸泡,不烦躁时。丢弃的酸洗液,并不断换水,直到酸洗液无色。的⑵苛性由于稳定性要求,购买新的树脂基本上是钠型,苛性处理的使用,可能是一些非钠的类型转换为钠形式,以方便下一处理。增加的容量的8%的NaOH溶液中浸泡30分钟后,分离的碱液,用水洗至中性。 (3)转化率7%的HCl溶液三次,每次是容量和浸泡30分钟后,分离出酸,并洗涤至中性备用(注:应使用最后用蒸馏水或去离子水)的多次。
2。阴离子交换树脂预处理⑴新购阴离子交换树脂加入等量的50%乙醇,搅拌,静置过夜,除去乙醇,用清水洗净,直到酸洗液无色无味。 ⑵用7%的HCl溶液3次,每次,容量和浸泡30分钟,分离的酸,并用水洗至中性。 ⑶与8%NaOH溶液3次,每次在容量和允许浸泡30分钟,用水洗涤至pH为8-9。
3。随着时间的推移,变色,和损失的交换容量,可以是该树脂的老化处理,以再生的离子交换树脂的离子交换树脂的再生使用。再生树脂的方法,是对类似的不同而不同,但基本步骤和预处理,第一漂洗,然后用离子交换过程的可逆性原理,与H +,Na +的(或OH - ,Cl-)的交换树脂离子IE浏览器可以。再生过程中,你可以使用静态方法和动态方法和其他方法。 2mol / L的盐酸的阳离子交换树脂的再生,例如:(1)静态方法,漂洗后的树脂中加入适量(2-3倍(体积)或更多)的24小时或更长时间(的放置过程中应始终是搅拌),弃掉的酸,并用水洗至中性。 (2)动态方法是2-3倍容量的2 mol / L的(约7%)的HCl溶液(或其它酸),从下部的横柱的开关旋钮打开第一次释放,残留水从跨列,让液体慢慢的pH值测试的污水流出,并在任何时候,当污水呈强酸性,关闭旋钮,静置一段时间,换来的是完全的(静态再胜)后释放的酸,以及所添加的酸的其余部分(动态的再生),最后用水洗至中性漂洗可以。
注(1)为了避免在洗涤过程中,树脂的交换动作的自来水中的离子发生,最好先用自来水洗出,大部分的树脂酸(或碱)[的流出物的pH为约2-3(11 - 12)](去离子水),用蒸馏水洗涤至pH为6-7(或8-9)。 (2)阴离子交换树脂可以很容易地分解超过40个时,应特别注意。 ⑶树脂支付的过程中逐渐开裂破碎,但一般为3-4年,甚至更长的时间,而且不容易倒掉。 (4)交易(或再生)树脂应立即使用,不能阻止足够长的时间,因
?
?
Ⅰ阳离子交换柱
Ⅱ阴离子交换柱
Ⅲ混合离子交换柱
?
?
?????????????????
?
?
?
图2-35图2-36离子交换装置图的横栏柱直径比
?
它的稳定性差。交叉Na +型阳离子树脂通常比H +从十字架上的阴离子树脂的Cl-比OH-的形式形成稳定的稳定。 ⑸树脂再生,应选择于树脂上的酸(碱),如对Pb2 +的组合相结合的离子的基础上,不能使用盐酸硝酸铅(NO3)2应是可溶的。
五,离子交换方法的具体操作
1。应该是预处理或再生树脂树脂的变换,变换后的树脂放置在蒸馏水中。
2。装柱(1)的选择是根据实验的目的和情况不同性质的离子交换树脂中选择的树脂,
如果吸附的无机阳离子或有机碱,应该使用的阳离子交换树脂,而随后的吸附是一种无机阴离子或有机认为应该使用的阴离子交换树脂,如果分离的氨基酸,例如两性物质,使用阳离子阴离子交换树脂可以是。未定羊后,阴离子交换树脂,以确定需要的类型的交换基团的,弱的酸(碱)等树脂为强吸附的离子从交叉的电阻,可以使用,和用于吸附较弱的酸(碱)电阻,应选择从AC树脂。几种离子的共存应该使用弱吸附县,强交换树脂的吸附后的重新选择。的树脂作为催化剂时,应使用强酸性离子交换树脂(基峰)。 (2)树脂填充柱好书装入离子交换柱的激活过程被加载柱。柱填料,关键在于的间隙中或气泡不能为树脂的具体做法是:第1离子交换柱部的去离子水,然后放入列中的树脂与水,并打开所述活塞的下部,水开始流程。当树脂滴加结束后,用去离子水冲洗树脂,直到流出物的pH为中性。柱填料的过程中特别注意不能没有水,树脂层,以避免气泡和使树脂故障。如果无意中产生的气泡,用玻璃棒搅拌分支,并与气泡。
3。开关旋钮远离交叉打开的离子交换柱的下端,将已处理的离子交换柱,在去离子水排出(注:进一步测试一次的流出物的pH值是中性的,如果不是则继续去离子水冲洗至中性) 。直到刚好隐瞒树脂的去离子水,被添加到待处理的样品液体的离子交换柱(注意:当他们不使树脂翻转),开关旋钮打开该树脂柱的下端,控制流速20-30滴每分钟,样品液体时,当几乎所有进入到树脂中,加入去离子水(注:不能让树脂层的交叉过程中没有水,以避免产生气泡,影响从交叉影响)继续在十字架上,直到出水pH约6-7年。 ⑷
树脂再生方法的运算。
⑶ 水泥化学分析方法:离子交换发检测SO3
1、方法提要
在水介质中,用氢型阳离子交换树脂,对水泥中的硫酸钙进行两次回静态交答换,生成等物质的量的氢离子,以酚酞为指示剂,用氢氧化钠标准滴定溶液滴定。
2、分析步骤
称取约0.2g试样(m40),精确到0.0001g置于已放有5g树脂、10ml热水及一根磁力搅拌子的150ml烧杯中,摇动烧杯使试样分散。然后加入40ml的沸水,立即置于磁力搅拌器上,加热搅拌10min。取下,以快速滤纸过滤,用热水洗涤烧杯上和滤纸上的树脂4-5次,滤液及洗液收集于已放有2g树脂及一根磁力搅拌子的150ml烧杯中(此时溶液体积在100ml左右)。将烧杯再置于磁力搅拌器上,搅拌3min。取下,以快速滤纸将溶液过滤于300ml烧杯中,用热水洗涤烧杯上和滤纸上的树脂5-6次。
向溶液中加入5-6滴酚酞指示剂溶液,用氢氧化钠标准滴定溶液滴定至微红色。
保存滤纸上的树脂,可以回收处理后再利用。
3、结果的计算与表示
SO3的质量分数wSO3,按下式计算:
⑷ 732树脂再生
732树脂加入碱后,变成黑色。可能加碱前树脂里所含有酸的成分导致的.解决办法将树脂冲洗到中性再加碱.其他问题请关注我!
⑸ 高效离子色谱法测定氯溴
方法提要
试样用碳酸钠-氧化锌混合熔剂烧结,用水浸取,用氢型阳离子交换树脂静态交换分离大量基体(阳离子)后,将试液注入离子色谱仪,在碳酸氢钠-碳酸钠淋洗液携带下,流入阴离子分离柱(HPIC-AG3+HPIC-AS3),经洗提与交换使氯离子与其他阴离子分离,然后流经阴离子抑制器,以降低淋洗液的背景电导,再流经电导检测器,测定氯离子电导率。在硝酸钠淋洗液携带下,流入阴离子分离柱(HPIC-AG5+HPIC-AS5),经洗提与交换使溴离子与其他阴离子分离,然后流经电化学检测器,测定溴离子在银工作电极上发生氧化反应而产生的电流值。据此测得氯离子和溴离子浓度。
方法适用于水系沉积物及土壤中氯、溴的测定。
检出限(3s):10μg/g氯,0.3μg/g溴。
测定范围:30~20000μg/g氯,0.9~600μg/g溴。
仪器及装置
DIONEX-2020i离子色谱仪。
DIONEX分离柱HPIC-AG3(4mm×50mm),HPIC-AS3(4mm×250mm);HPIC-AG5(4mm×50mm),HPIC-AS5(4mm×250mm)。
抑制器DIONEXASRS-ULTRA4-mm。
电导检测器。
安培检测器。
银工作电极。
记录器量程1~10mV。
试剂
无水乙醇。
碳酸钠-氧化锌混合熔剂碳酸钠(优级纯)和氧化锌(优级纯)按(3+2)充分混匀。硫酸。
硫酸溶液Ⅰc(1/2H2SO4)=2mol/L移取42mLH2SO4缓慢地加入700mL水中,搅匀。
硫酸溶液Ⅱc(1/2H2SO4)=0.025mol/L分取12.50mL的硫酸溶液Ⅰ置于1000mL水中,搅匀。
碳酸氢钠-碳酸钠溶液c(NaHCO3)-c(1/2Na2CO3)=0.0028mol/L-0.0044mol/L称取0.2352gNaHCO3(优级纯)和0.2332gNaCO3(优级纯)溶于1000mL水中,用时配制。
硝酸钠溶液c(NaNO3)=0.015mol/L称取1.2750gNaNO3[含Ag<100ng]溶于1000mL水中,用时配制。
氯标准储备溶液ρ(Cl-)=1.00mg/mL称取1.6485g已在500℃灼烧1h的优级纯氯化钠,置于250mL烧杯中,加水溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
氯标准溶液ρ(Cl-)=5.00μg/mL用水逐级稀释氯标准储备溶液配制。
溴标准储备溶液ρ(Br-)=100μg/mL称取0.1489g已于105℃干燥1h的优级纯溴化钾,置于250mL烧杯中,加水溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
溴标准溶液ρ(Br-)=1.00μg/mL用水逐级稀释溴标准储备溶液配制。
732型阳离子交换树脂(50~100目)先用水浸泡,清洗数遍,然后将树脂装入直径约1.5cm、长约30cm的玻璃柱中,顶端与梨形分液漏斗衔接。在分液漏斗中加入150mL硫酸溶液Ⅰ,以约1.5mL/min流速流经交换柱,流毕。用水以同样流速流经交换柱,直至流出液洗至无硫酸根。再生的树脂以真空抽滤至干,装瓶备用。收集已经用本法静态交换过的阳离子交换树脂,可用上述步骤再生后,继续使用。
校准曲线
分别移取0.00mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL氯标准溶液(5.00μg/mL),置于一组10mL烧杯中,分别加入5.00mL、4.50mL、4.00mL、3.00mL、2.00mL、1.00mL、0.00mL水至5mL,摇匀。
按表84.62仪器工作条件,将仪器调试好,待基线稳定后,用注射器吸取1.00mL氯校准系列溶液,注入仪器(进样阀),经分离柱再流经电导检测器,由记录器记录氯离子浓度的峰高值,绘制氯的校准曲线。
表84.62 测定氯的仪器工作条件
分别移取0.0mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL、3.00mL溴标准溶液(1.00μg/mL),置于一组25mL容量瓶中,用水稀释至刻度,摇匀。
按表84.63仪器工作条件,将仪器调试好,待基线稳定后,用注射器吸取1.00mL溴校准系列溶液,注入仪器(进样阀),经分离柱再由安培检测器测定,由记录器记录溴离子浓度的峰高值,绘制溴的校准曲线。
表84.63 测定溴的仪器工作条件
分析步骤
依据各元素的含量,称取0.1~0.5g(精确至0.0001g)试样(粒径小于0.075mm,在60℃干燥2h,置干燥器中备用)置于预先盛有1.5gNa2CO3-ZnO混合熔剂的磁坩埚中,搅匀后,再均匀覆盖1.5g混合熔剂,置于低温高温炉中,自低温升至800℃,保持0.5h。取出冷却,将熔块倒入100mL烧杯中,用热水洗净坩埚,加20mL水及几滴无水乙醇,煮沸,冷却,将溶液连同沉淀一起移入50mL比色管中,用水稀释至刻度,摇匀后放置澄清。
吸取5.00mL清液置于50mL干烧杯中,加5g732型阳离子交换树脂,静态交换2h,在静态交换过程中须摇动2~3次。
按氯校准曲线步骤操作,用注射器吸取1.00mL阳离子交换树脂静态交换后的清液,测得氯量。
按溴校准曲线步骤操作,用注射器吸取1.00mL阳离子交换树脂静态交换后的清液,测得溴量。
氯和溴含量的计算参见式(84.11)。
注意事项
每测5个试液后,应检查校准曲线是否发生偏倚,以监控仪器的稳定性,提高测定准确性。
⑹ 什么物化-生化处理法
就是物理化学生物三种方法中的两种以上联合使用,像,吹脱,吸附,等
⑺ 阴离子交换树脂为什么一般采用Cl型并用动态法测定其交换容量
主要原因是羟型阴离子交换树脂在高温下易分解,故侧水含量不准确,且当用水洗涤时,羟型树脂要吸附CO2,而使部分树脂成为碳酸型,所以应用氯型树脂来测定。用动态法是因为该反应是一个可逆反应,在反应过程中不断加入Na2SO4溶液,使得反应朝着正反应方向不断进行,反应产物离开反应体系,使Cl不断被置换出来。
⑻ 高效离子色谱法测定碘
方法提要
试样用碳酸钠-氧化锌混合熔剂混匀烧结,用水浸取,浸取液用氢型阳离子交换树脂静态交换分离大量基体(阳离子)后,用抗坏血酸将碘酸根还原成碘离子,以0.015mol/LNaNO3溶液为淋洗液,HPIC-AG5+HPIC-AS5为阴离子分离柱,采用电化学检测器进行测定,测得碘量。
方法适用于水系沉积物及土壤中碘量的测定。
方法检出限(3s):0.2μg/g。
测定范围:0.6~500μg/g。
仪器及材料
DIONEX-2020i离子色谱仪。
DIONEX分离柱HPIC-AG5(4mm×50mm),HPIC-AS5(4mm×250mm)。
安培检测器。
银工作电极。
记录器量程1~10mV。
试剂
无水乙醇。
碳酸钠-氧化锌混合熔剂Na2CO3(优级纯)和ZnO(优级纯)按(3+2)比例充分混匀。
硫酸。
硫酸溶液c(1/2H2SO4)=2mol/L移取42mLH2SO4缓慢地加到700mL水中,搅匀。
抗坏血酸溶液称取0.15g抗坏血酸溶于10mL水中,用时配制。
氢氧化钠溶液称取4.0gNaOH溶于100mL水中,用时配制。
硝酸钠溶液称取1.2750gNaNO3(含Ag<100ng)溶于1000mL水中,用时配制。
碘标准储备溶液ρ(I-)=100μg/mL称取0.1308g已于105℃干燥1h的高纯碘化钾,置于250mL烧杯中,加水溶解,并加入2mLNaOH溶液,用水稀释至1000mL容量瓶中,摇匀。
碘标准溶液ρ(I-)=1.00μg/mL由碘标准储备溶液逐级稀释配制,补加NaOH溶液至最终0.4g/L。
732型阳离子交换树脂(50~100目)先用水浸泡,清洗数遍。然后将树脂装入直径约1.5cm、长约30cm的玻璃柱中,顶端与梨形分液漏斗衔接。于分液漏斗中加入150mLH2SO4,以约1.5mL/min流速流经交换柱,流毕。用水以同样流速流经交换柱,直至流出液洗至无硫酸根。再生的树脂以真空抽滤至干,装瓶备用。收集已经用本法静态交换过的阳离子交换树脂,可用上述步骤再生后,继续使用。
校准曲线
分别移取0.00mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL碘标准溶液(1.00μg/mL),置于一组50mL容量瓶中,加入0.20mLNaOH溶液,用水稀释至刻度,摇匀,配成0.000μg/mL、0.005μg/mL、0.010μg/mL、0.020μg/mL、0.030μg/mL、0.040μg/mL、0.050μg/mL的碘标准系列。
按仪器工作条件表84.64,将仪器调试好,待基线稳定后,用注射器吸取1.00mL校准系列溶液,注入仪器(进样阀),经交换柱并流经安培检测器,由记录器记录碘离子浓度的峰高值,绘制校准曲线。
表84.64 测定碘的仪器工作条件
分析步骤
称取0.1~0.5g(精确至0.0001g)试样(粒径小于0.075mm,在60℃干燥2h,置干燥器中备用)置于预先盛有1.5gNa2CO3-ZnO混合熔剂的瓷坩埚中,搅匀并均匀覆盖1.5gNa2CO3-ZnO混合熔剂,置于高温炉中,自低温升温至750℃,保持750℃0.5h后取出冷却。将熔块倒入100mL烧杯中,用热水洗净坩埚,加几滴无水乙醇及20mL水,煮沸,冷却,将溶液连同沉淀一起移入50mL比色管中,用水稀释至刻度,摇匀,放置澄清。
吸取5.00mL清液置于50mL干烧杯中,加入0.1mL抗坏血酸溶液,摇匀。加5g阳离子交换树脂,在静态交换过程中需摇动2~3次,直至溶液呈微酸性后再放置30min(总共约需2h)。
用注射器吸出3.00mL经静态交换后的溶液,置于10mL干的小烧杯中,用氢氧化钠溶液将试液调至pH7~8(约需用0.15mLNaOH溶液)。
用注射器吸取1.00mL用氢氧化钠调节后的清液,按校准曲线步骤操作,测得碘量。
按下式计算试样中碘的含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:w(I)为碘的质量分数,μg/g;ρ为从校准曲线上查得试样溶液中碘的浓度,μg/mL;ρ0为从校准曲线上查得空白试验溶液中碘的浓度,μg/mL;V为制备溶液总体积,mL;m为试样的质量,g;1.07为稀释因子(由实验中加入的抗坏血酸和氢氧化钠所引起测定溶液的体积变化)。
注意事项
每分析5个试液后,应校对检查校准曲线是否发生偏倚,以监控仪器的稳定性,提高测定的准确性。