导航:首页 > 净水问答 > 纳滤脱盐pH

纳滤脱盐pH

发布时间:2024-12-05 19:52:56

㈠ 卷式纳滤膜清洗时有哪些注意事项

纳滤膜清洗时的注意事项

1、纳滤膜清洗后产水量不能恢复到百回分之百

一答般来说,纳滤膜在进行离线清洗之后,大部分膜会恢复到开始的性能。

2、纳滤膜将脱盐率提高到一定程度

根据膜元件受到的不同污染来进行最终判断,对于污染来说,如果没有损害脱盐层,就不会达到一定状态。

3、清洗要有专业人员到场

事实上,在现场进行离线清洗主要是避免出现膜元件不足的现象,而且还要很好的保证纳滤膜的清洗效率。

㈡ 纳滤的应用

纳滤分离作为一项新型的膜分离技术,技术原理近似机械筛分。但是纳滤膜本体带有电荷性。这是它在很低压力下仍具有较高脱盐性能和截留分子量为数百的膜也可脱除无机盐的重要原因。
纳滤分离愈来愈广泛地应用于电子、食品和医药等行业,诸如超纯水制备、果汁高度浓缩、多肽和氨基酸分离、抗生素浓缩与纯化、乳清蛋白浓缩、纳滤膜-生化反应器耦合等实际分离过程中。与超滤反渗透相比,纳滤过程对单价离子和分子量低于200的有机物截留较差,而对二价或多价离子及分子量介于200~500之间的有机物有较高脱除率,基于这一特性,纳滤过程主要应用于水的软化、净化以及相对分子质量在百级的物质的分离、分级和浓缩(如染料、抗生素、多肽、多醣等化工和生物工程产物的分级和浓缩)、脱色和去异味等。主要用于饮用水中脱除Ca、Mg离子等硬度成分、三卤甲烷中间体、异味、色度、农药、合成洗涤剂,可溶性有机物,及蒸发残留物质。
随着对环境保护和资源综合利用认识的不断提高,人们希望在治理废水的同时实现有价物质的回收,比如:大豆乳清废液中含有1%左右的低聚糖和少量的盐,亚硫酸盐法制备化纤浆和造纸浆过程出现的亚硫酸钙废液中含有2%~2.5%的六碳糖和五碳糖,制糖工业中出现的废糖蜜中含有少量的盐等等。
NF分离是一种绿色水处理技术,在某些方面可以替代传统费用高,工艺繁琐的污水处理方 法.其技术特点是:能截留分子量大于100的有机物以及多价离子,允许小分子有机物和单 价离子透过;可在高温,酸,碱等苛刻条件下运行,耐污染;运行压力低,膜通量高,装置 运行费用低;可以和其他污水处理过程相结合以进一步降低费用和提高处理效果.在水处理 中,NF膜主要用于含溶剂废水的处理,能有效地去除水中的色度,硬度和异味.NF膜以其特殊的分离性能已成功地应用于制糖,制浆造纸,电镀,机械加工以及化工反应催化剂的回收等行业的废水处理.
纳滤是一种绿色水处理技术,是国际上膜分离技术的最新发展,在某些方面可以替代传统费用高、工艺繁琐的污水处理方法。纳米级孔径且带有电荷的特殊过滤性能特点是:能截留分子量大于200的有机物以及多价离子,允许小分子有机物和单价离子透过;可在高温、酸、碱等苛刻条件下运行,膜耐受的条件范围宽,浓缩倍数高,耐污染;运行压力低,膜通量高,装置运行费用低,能耗极低(唯一驱动力是压力)。
由于纳滤膜特殊的孔径范围和制备时的特殊处理(如复合化、荷电化),使得纳滤膜具有较特殊的分离性能,其在降低废水COD、水源水的色度、硬度和去除饮用水中的有机物(TOC)、三卤代烷(THMs)前驱物等方面的应用近年来受到广泛重视,已成功地应用于制糖行业、造纸行业、电镀行业、机械加工行业及化工反应催化剂的回收行业等的废水处理中。纳滤膜的应用研究主要集中在几个方面:根据中性溶质的分子量大小而进行分离;截留有机物分子而让单价电解质透过膜层;根据离子价态而实现离子问的分离。根据纳滤膜分离的特点,其应用范围主要适用于下述情况的物质分离:①对单价盐分离的截留率要求不高;②要求进行不同价态离子的分离,如软化处理;③需要对高分子量有机物与低分子量有机物进行分离,如葡萄酒脱醇;④盐和对应的酸的分离;⑤有机物和无机物的分离,如染料脱盐、乳清浓缩脱盐和饮用水净化。
纳滤膜具有热稳定性、耐酸、耐碱和耐溶剂等优良性质,在废水的有价物质回收中起到不可估量的作用,广泛地应用于各种有机废水的回收处理。比如农药废液处理、乳清和抗菌素脱盐、电镀废液中金属回收、各种石化废水处理等。在给水处理中,纳滤膜主要用于制备软化水、饮用纯净水,能有效地去除水中的色度、硬度和异味 。
试验研究及应用
(1)日用化工废水处理.用NF膜处理日用化工废水的应用研究表明NF膜耐酸碱,有优良的截留率,对重金属有很好的去除率,不存在膜污染问题.据估计,由于NF膜的运行费用低于反渗透技术,对有机小分子有良好的脱除率,可能会覆盖90%以上的日用化工废水处理.
(2)石油工业废水处理.
石油工业废水主要包括石油开采和炼制过程中产生的含各种无机盐和有机物的废水,其成分 非常复杂,处理难度大.采用膜法特别是NF法与其他方法相给合,既可有效处理废水还可以 回收有用物质.例如,先用NF膜将原油废水分离成富油的水相和无油的盐水相,然后把富油 相加入到新鲜的供水中再进入洗油工序,这样既回收了原油又节约了用水.以前多采用反渗 透 和相分离结合的方法处理石油工业废水,但存在着膜污染严重的问题,如果在反渗透前加一NF膜,就可以解决膜污染的问题.石油工业的含酚废水中主要含有苯酚,甲基酚,硝基酚以 及各类取代酚,此类物质的毒性很大,必须脱除后才能排放,若采用NF技术,不仅酚的脱除 率可达95%以上,而且在较低压力下就能高效地将废水中的镉,镍,汞,钛等重金属高价离子脱除,其费用比反渗透等方法低得多.
(3)杀虫剂废水处理.一般的水处理方法不能除去污染水中的低分子有机农药.通过研究NF膜对不含酚杀虫剂的截留性能发现除了二氯化物以外,其他杀虫剂的截留 率均高于96.7%,所有杀虫剂在NF膜上的吸附能力均受其疏水性的影响.采用NF处理含有酚 类杀虫剂的废水也十分有效.
(4)化纤,印染工业废水处理.NF可以用于印染过程排水中染料及助剂的脱除和回用.处 理染料聚合浆料时,由于大多数染料的分子量在几百到几千,NF膜可以让一些无机盐或小分 子通过,而对较大的染料分子进行截取,粗染料浆液经NF系统后,染料可以富集,而无机盐 的浓度下降,脱盐率大于98%,染料损失率小于0.1%,而且可以在高温下运行.此外,NF还 可以用于纤维加工过程中的含油废水的处理及回收再利用.
(5)生活污水处理.采用常用的生物降解和化学氧化相结合的方法处理生活污水时,氧化 剂的消耗很大,残留物多.如果在它们之间增加一个NF系统,让能被微生物降解的小分子( 分子量小于100)通过,不能生物降解的有机大分子(分子量大于100)被截留下来经化学氧化 后再生物降解,这样就可以充分发挥生物降解的作用,节省氧化剂或活性炭的用量,降低最 终残留物的含量.
(6)热电厂二次废水的治理及回收利用.热电厂的二次废水主要来自冲灰,除尘及冷却系统,此类废水中含有大量的悬浮固体,灰份 及高含量的盐份和部分有机物.利用NF可以把这一类废水处理成工业回用水.首先用微滤除 去水中的全部悬浮颗粒,质量分数为99%的BOD,98%的COD,73%的总氮和17%的总磷,同时将水中的菌落总数降到3~4个/L,然后加酸降低pH以除去CO2,最后再经NF脱盐,达到锅炉用水的质量.澳大利亚太平洋热电厂的Eraring发电站已用NF对此类废水进行处理,每天处理1 000~15 000 m3废水,既减轻了市政供水系统的负荷,每年又可为热电厂节约 操作费用80万美元.该热电厂准备扩大发电规模,用水量也相应增大,估计到2010年,处理 此类废水量将达5 000 m3/d,效益极其可观.
(7)酸洗废液处理.钢厂的酸洗工序是将钢材浸入质量分数为20%左右的硫酸酸洗槽中进行 酸洗.随着酸洗的进行,硫酸浓度逐渐降低,硫酸亚铁浓度不断增高,当溶液中硫酸的质量 分数降至6%~8%,生成的硫酸亚铁浓度超过200~250 g/L时,酸洗速率下降,必须更 换酸洗液,排放酸洗废液.酸洗好的钢材必须用清水进行冲洗以除去表面的酸性物质,又造 成了废酸水的外排.为了保护环境,节约资源,可采用NF工艺处理酸洗废液.利用NF膜对硫 酸和硫酸亚铁截留率的不同,先将硫酸亚铁截留在浓缩液中,然后将浓缩液送入冷却结晶罐,冷却结晶出FeSO4·7H2O;透过液再经能截留硫酸的另一NF膜组件,截留后浓缩为20%的 硫酸,再生酸液回收利用,透过液则排至废酸水站,进一步处理排放或回收.这一工艺回收 了硫酸和硫酸亚铁,同时实现了酸洗废液的回收综合利用和废酸水达标排放的目的.
(8)造纸废水处理.采用NF膜技术替代传统的化学处理 法能更为有效地除去深色木质素.木浆漂白过程产生的氯化木质素 是带负电的,容易被带负电性的NF膜截留,并且对膜不会产生污染.另外,因为整个处理过程中对阳离子(Na+)的脱除率并没有严格要求,采用反渗透技术就显得没有必要 .采用超滤/纳滤处理牛皮纸制造废水有很好的效果。
工程应用
纳滤膜的孔径范围介于反渗透膜和超滤膜之间,其对二价和多价离了及分子量在200~1000之间的有机物有较高的脱除性能,而对单价离子和小分子的脱除率则较低。而且,与反渗透过程相比,纳滤过程的操作压力更低(一般在1.0Mpa左右);同时由于纳滤膜对单价离子和小分子的脱除率低,过程渗透压较小,所以,在相同条件下,纳滤与反渗透相比可节能15%左右[3]。因而在水处理中,纳滤被广泛应用于饮用水的浓度净化、水软化、有机物和生物活性物质的除盐和浓缩、水中三卤代物前躯物的去除、不同分子量有机物的分级和浓缩、废水脱色等领域。
Sibille等研究了法国Auverw-sur-Oise市的地下水,对纳滤和生物处理饮用水(臭氧—生物活性炭过滤)进行了对比。结果表明,纳滤可以显著提高饮用水的水质,减少细菌数量和有机物的浓度,从而使后续消毒更有效,也减少了三氯甲烷的形成。但是,研究又指出,少量极易被细菌等吸收的可生物降解的有机物质(BOM:BiologicalOrganicMatter)、可同化有机碳(AOC:AssimilableOrganicCarbon)也能透过纳滤膜。
虽然,纳滤技术的工程应用在美国、日本等国家的给水行业中已经得到大规模的推广,但在我国,将纳滤技术广泛地应用于工程实践的条件还不成熟,尚处于尝试阶段、本要问题是国产纳滤膜的性能指标不够过关。已有工程实例的报道,如国内首套工业化大规模膜软化系统——山东长岛南隍城纳滤示范工程,是纳滤技术在高硬度海岛苦咸水净化的实际应用。该工程由国家海洋局杭州水处理中心设计,于1997年4月正式投入生产淡水,系统连续正常运行27个月,淡化水符合国家生活饮用水卫生标准。
有关学者曾采用纳滤膜对某市自来水(以污染严重的淮河水为原水)进行深度处理试验,研究了纳滤循环制水试验工艺的效果。结果表明,循环试验工艺与单级纳滤工艺相比,在同样较低的压力下,出水率较高,并且能耗降低,减少了浓水排放。即使在回收率较高(80%)的情况下,膜出水中的总有机碳(TOC)仍比自来水低50%;对致会变物的去除十分显著,使Ames试验阳性的水转为阴性。
纳滤膜应用问题
纳滤膜有较高的膜通量,可以截留有机及无机污染物,而对人体必需的一些离子又有较大的透过率,因此,把纳滤膜应用于饮用水的深度净化较其它的膜分离技术有较大的优势。把钢滤膜应用于给水处理领域的主要问题是:
这三个问题是膜分离的基本问题,也是纳滤膜法水处理技术难以广泛应用的主要原因。世界各国的水处理工作者正在进行广泛的研究,寻求解决这些问题的途径。纳滤技术在给水处理领域的推广应用还依赖于这些问题的进一步解决。

㈢ 在RO膜反冲洗时电导率和PH值都升高是什么原因影响PH值的因素有哪些

系统故障概述产水量和脱盐率是反渗透、纳滤系统的基本性能参数,如果这两项指标达不到系统原设计要求,产水量小或者脱盐率低,就需要找到问题发生的原因。由于进水TDS和温度的波动以及系统机械性能等原因,即使完全没有污染倾向的系统,基本性能指标也会在小范围波动。下面是我们判别系统运行出现故障的参考标准值。1 参考指标反渗透、纳滤系统的主要性能参数变化达到以下指标范围时,要及时进行故障分析,并进行相应的处理。● 在正常给水压力下,产水量较正常值下降10~15%;● 为维持正常的产水量,经温度校正后的给水压力增加10~15%;● 产水水质降低10~15%(产水电导率增加10~15%;)● 给水压力增加10~15%;● 系统各段之间压力降明显增加。
2 设计提示远离故障最好的办法是从开始就消灭发生故障的可能,在进行系统设计时尽量考虑做到:● 设计系统时要依据完整的水质分析。对于地表水源要考虑到季节变化的影响,对于普通市政水源要考虑到原水变化的影响,要确认拿到的报告是最新的有效数据。● 测定RO进水的SDI值,确定胶体污染的可能性。● 保证预处理的效果。● 存在污染的可能时,一定要选择较为保守的系统通量。水质洁净的地下水的设计通量可以高一些,地表水的设计通量一定不要超过设计导则规定的数值。降低单位面积的膜通量可以减少污染物在膜面上的沉积。● 选择较为保守的系统回收率。回收率较低时浓水的污染物浓度也相应较低。● 膜元件的错流速率要尽量大。较高的错流速率能增加盐分和污染物向进水水流的扩散,降低膜面的浓度。● 选择适当的膜元件类型。
3 故障原因基本类型系统发生产水量减少和水质下降问题的原因比较复杂,可以简单归纳出几种类型:1)进水TDS增加、水温波动、运行参数调整等原因造成的性能变化不属于故障范围。2)系统硬件故障:O型圈密封泄漏、膜氧化、机械故障等;需要更换或修理故障元器件。如果是膜氧化,要找到氧化的原因,消除氧化剂来源,更换膜元件。3)膜污染:膜污染是处理系统故障的核心工作,需要确定污染物类型、污染程度和污染分布,在此基础上进行清洗恢复。4)系统设计失误,系统设计问题可能与前面的几项都有关。对于有设计失误的系统,在恢复系统元器件性能之后,一定要对系统进行改造,纠正原有错误设计或运行参数。
运行参数对系统性能的影响在系统发生问题时,首先要做的是确认问题的性质,消除温度、进水TDS、产水量和回收率的影响,获得标准化性能参数。依据上述标准判断系统是否处于故障状态,是不是发生了膜污染。系统操作参数的变化对与系统的性能有影响。比如, TDS每增加100ppm,由于渗透压增加了,进水压力要增加0.07bar,产水电导也会相应上升。进水温度增加6.6℃,进水压力降低15%。提高回收率会提高浓水浓度和产水电导(回收率为50%、75%和90%时,浓水的浓度分别为进水的2倍、4倍和10倍)。在回收率相同时,降低产水量会提高产水电导,原因是用来稀释透过盐分的水量少了。要通过数据的标准化来确定系统是否有问题。可以借助海德能的系统数据标准化软件ROdata.xls,来求得标准化的产水量、脱盐率和进水—浓水压力降。通过标准化消除了温度、进水TDS、回收率和进水压力的影响。将系统目前的标准化性能参数与与运行第一日的标准化数据进行对比,就可以确定系统性能的变化情况。以下将列举的是运行参数对膜的性能有正常影响,这些影响可能会导致产水流量和水质的下降。1 产水量下降下列运行参数的变化将降低系统中膜的实际产水量:● 进水泵压力不变时进水温度下降;● 用节流阀降低RO进水压力;● 进水泵压力不变时增加产水背压;● 进水TDS(或电导率)增加,这会增加产水通过膜时所必须克服的渗透压;● 系统回收率增加,这会增加系统的平均进水/浓水的TDS,从而增加渗透压;● 膜表面发生污染;● 进水流道网格的污染导致进水-浓水压力降(ΔP)增加,从而降低了元件末端的NDP(净驱动压力)。2 产水品质下降下列运行参数变化会导致实际产水水质劣化,即产水的TDS和电导率增加:● 进水温度上升时通过调节运行参数保持系统产水量不变;● 系统产水量下降,这会降低膜通量,导致原来稀释透过膜的盐分所需的纯水量减少;● 进水TDS(或电导率)增加,脱盐率不变,但产水盐度随之增加;● 系统回收率增加,这会增加系统的进水/浓水TDS浓度;● 膜面污染;● O型圈密封损坏;● 望远镜现象,进水—浓水压力降过大,膜元件外皮脱落;● 膜面损坏(比如受到氯的影响)致使膜的透盐率增加。
发生故障的常见原因 系统故障可以划分为两个类型:产水量小,脱盐率低。回答以下问题会有助于找到发生故障的原因。1 产水量下降时膜污染会造成产水量下降,检查以下提问来寻找发生问题的原因。● 是否正常关闭系统?在一些情况下,要在装置关闭之前要用反渗透产水冲洗系统浓水,否则无机污染物会在膜面上沉积。● 停机保护是否得当?在系统停机期间没有采取适当的保护措施,会导致严重的微生物生长(特别是在温暖的环境中)。● 加酸或阻垢剂是否达到了要求的pH值或饱和指数?● 进水和浓水之间的压力降是否超过了15%?压力降增加标志着进水流道受到了污染,膜面水流被限制。检查各段的压力降情况,确定发生问题的位置。● 在海水系统中,关机时是否对系统进行了产水冲洗?快速冲走膜面的高浓度盐分,可以防止离子从溶液中沉淀出来。● 保安过滤器是否污染?2 脱盐率低● 低脱盐率时,产水电导率高。可能的原因有膜污染、膜降解和O型圈损坏。确认产水电导增加是否超过了15%。● 各段膜组件的产水电导率一样吗?逐段测试产水电导,尽可能对每个膜组件测试产水电导率。产水电导率明显高的组件可能有O型圈或膜元件损坏。要对该组件进行探测和检查。● 膜元件是否与氯或其它强氧化剂有接触?任何氧化物质的接触都会损坏膜元件。● 仪器经过校准了吗?确认所有的仪器都经过校准。● 膜元件的外观有变色或损坏吗?观察膜元件污染物及损坏物理情况。● 进水的实际电导率和温度与原设计指标有差别吗?如果实际进水的TDS或温度高于原设计指标,产水水质达不到设计值是正常的。要对进水、浓水和产水进行取样分析,与海德能设计数件的结果标进行对比。● 发生过产水压力超过进水压力的情况(产水背压)吗?如果产水要提升到较高位置,管道上又没有安装逆止阀,停机时产水压力会超过进水,膜叶会膨胀破裂。● O型圈有问题吗?O型圈会因老化而失去弹性或破裂,导致泄漏。周期性更换O型圈,或者定期探测膜组件。3 膜污染 如果以上问题都解决了,而系统依然没有恢复,还要考虑以下提问:● 一旦排除了所有机械故障,就需要确定污染物并实施清洗。● 分析清洗出来的污染物及清洗液的颜色和pH的变化。重新投运系统可以确认清洗效果。● 如果不知道是什么污染物又缺乏现场经验,可以委托专用清洗剂供应商对膜元件进行分析并提出清洗方案。● 如果所有尝试都没有结果,就需要对膜元件进行解剖。打开膜元件进行膜面分析和污染物分析,以确定发生问题的原因和解决方案。● 一些污染物影响系统的前端,一些污染物在后端更为严重。
故障诊断一览表(表-1)对于判断污染物的性质非常有用。表-1 膜系统故障诊断一览表污染种类可能污染位置 压降 进水压力 脱盐率下降 金属氧化物污染(Fe,Mn,Cu,Ni,Zn)一段,最前端膜元件 迅速增加 迅速增加 迅速增加 胶体污染(有机和无机混合物)一段,最前端膜元件 逐渐增加 逐渐增加 轻度增加 矿物垢(Ca,Mg,Ba,Sr)末段,最末端膜元件 适度增加 轻度增加 一般增加 聚合硅沉积物末段,最末端膜元件 一般增加 增加 一般增加 生物污染任何位置,通常前端膜元件 明显增加 明显增加 一般增加 有机物污染(难溶NOM)所有段 逐渐增加 增加 降低 阻垢剂污染二段最严重 一般增加 增加 一般增加 氧化损坏(Cl2,Ozone,KMnO4)一段最严重 一般增加 降低 增加 水解损坏(超出pH范围)所有段 一般降低 降低 增加 磨蚀损坏(碳粉等)一段最严重 一般降低 降低 增加 O型圈渗漏(内连接管或适配器)无规则(通常在给水适配器处) 一般降低 一般降低 增加 胶圈渗漏(由于产水背压造成)一段最严重 一般降低 一般降低 增加 胶圈渗漏(在清洗或冲洗时由关闭产水阀而造成)最末端元件 增加(污染初期和压差升高) 增加(污染初期和压差升高)增加
探针法——压力容器内脱盐率下降原因的诊断RO装置的产水是由装置内所有压力容器产水汇集而成的。RO装置脱盐率下降有时是由于个别压力容器脱盐率下降引起的,故而应首先检查各个压力容器的出水电导,找出产水水质异常的压力容器,然后对这些压力容器进一步检查确定原因。一支压力容器内串联有若干支膜元件,两端的膜元件由适配器与压力容器端板连接,中间各支膜元件由产水连接管连接,适配器与连接管均装有橡胶O型圈密封。故一支压力容器出水水质异常的原因有以下几种:1.膜元件损坏、渗漏;2.适配器损坏或O型圈泄漏;3.连接管损坏或O型圈泄漏;为确定上述原因,可用探针法进行探测,所谓探测是将一支塑料软管插入位于压力容器端板中心的产水管口,在不同插入长度处引出产水并测量电导率,以确定电导偏高的位置。以8英寸压力容器为例,探测步骤如下:1.停止RO装置的运行,2.拆除被测压力容器端板上产水管口的堵头,3.在原来堵头的位置上安装一个球阀,4.准备一根外径8~12mm,有足够长的塑料软管,并在软管沿长度方向上,每隔0.5m作一刻度标记,5.启动RO装置,低压运行15分钟后打开球阀,插入塑料软管,一直插到压力容器另一端的端板处,6.一分钟后测量软管中流出的产水电导,7.将软管拔出0.5m,等待一分钟后再次测量产水电导并记录软管插入长度,8.重复步骤7直至测量完压力容器全长,9.比较全长度方向上电导值,找出电导异常的位置。9.5 膜元件分析
系统故障处理一般步骤1)数据分析、现场调查数据分析和现场调查工作是进行诊断、排除系统故障的基础,要对系统运行实际数据进行全面分析,跟踪系统性能指标变化的细微过程,掌握现场运行过程中所有相关事件的具体情况。● 开始变化的时间点及相关事件,查阅系统运行日志或记录。● 进水水质或水源的变化:TDS、温度、SDI、余氯、个别离子浓度、pH。● 系统运行参数的调整及结果。● 系统性能变化时相关的特殊事件,比如开关机、关机保护措施(关机系统快冲、停机保护、高压泵前中间水箱停留时间等)、更换保安过滤器滤芯、产水用水量变化及操作人员变化等。● 系统加药的变化:阻垢剂、分散剂、还原剂、加酸、预处理系统加药,包括药剂供应商的变化。● 变化的方式,比如缓慢的平稳变化,较快的但均匀的变化,加速的变化和突变。2)数据标准化 确认系统性能参数下降的实际值,排除水质及运行参数变化对系统性能的影响。3)运用海德能RO设计软件进行模拟计算核查系统设计的合理性,检查系统预置参数可能存在的问题。膜元件选型、膜元件排列方式、泵配置、系统运行参数、结垢倾向、浓差极化、预测产水水质等。4)压力容器探测发现问题膜元件,绘制系统脱盐率分布图,了解系统脱盐率下降的规律性,为污染性质判断提供依据。5)O型圈检察更换损坏O型圈。6)膜元件污染观察分析 首末端膜元件端头目测观察,膜元件称重,污染物化学分析和仪器分析,确定污染物的物理化学特性。7)污染原因分析 查明系统污染的原因,尽量从源头控制膜污染。8)清洗方案根据污染物及污染状况分析,制定化学清洗方案。9)清洗试验对于大系统或污染严重的膜系统,需要在实施系统清洗之前进行试验清洗,清洗试验结果作为系统清洗方案的直接依据。10)系统清洗注意事项● 注意控制清洗流量,化学清洗初期应低流量,然后逐步增加流量。化学清洗后期特别是水漂洗时应保证足够大的流量,应达到8英寸膜6~9 m3/h,4英寸膜1.3~2.3 m3/h。● 提高清洗温度(如35℃)可加快化学反应速度,保证清洗效率。● 在一般情况下,首先使用低pH清洗液,并优先选用柠檬酸。● 在局部污染明显时可以采用分段清洗。● 为了提高清洗效果,可以适当延长浸泡时间,必要时可浸泡过夜。
其它常见故障1)膜元件安装蹿动:膜元件与压力容器的安装尺寸可能会有一定误差,如果膜元件之间或膜元件与适配器之间留有间隙,会造成膜元件蹿动,导致O型圈及连接部位损伤。润滑剂使用不当:使用凡士林或油质润滑剂会导致严重的负面影响。使用警告:任何时候不允许使用石油类(如化学溶剂、凡士林、润滑油及润滑脂等)的润滑剂用于O 型圈、 连接管、接头密封圈及浓水密封圈的润滑!!允许使用的润滑剂为水溶性润滑剂,如丙三醇(甘油)等。2)系统调试初期冲洗时间不够海德能膜元件出厂时使用亚硫酸氢钠保护液,如果冲洗时间不够,残留保护液成份会致使产水电导率高于设计指标。正常情况下应冲洗30分钟以上。3)预处理故障漏砂、漏碳、铁锰超标、絮凝剂残余、SDI高。 4)产水染菌由于RO产水中没有任何抑菌性成份,如果产水与染菌空气接触,便会在产水管道、膜元件中心管内及产水流道中形成感染。在产水中会发现不明丝状悬浮物。产水染菌现象一般发生在不规则间歇运行的小型系统中。处理方法:产水系统消毒。用反渗透产水配置1%食品级亚硫酸氢钠溶液,灌满产水系统管道,包括膜元件产水流道。浸泡过夜后排放,运行冲洗2小时以上,直到产水电导率达标。
膜污染物及清洗对策无论反渗透系统设计的如何完美,以及所采取的措施如何完善,膜污染都是不可避免的。当反渗透系统性能下降至已不能接受,且已排除其它影响因素,则可以断定膜已受到了污染,需要清洗以恢复其性能。目前,依靠经验确定膜污染,以及选择不同的清洗剂进行反复尝试,这种方法通常隐含着较多主观的内容,其结果对膜均有不同程度的损坏。众所周知,膜污染物一般为泥砂、微粒、胶体、脂肪、油、蛋白质、难溶盐、高分子多聚糖以及胞外聚合物等等。从实际情况分析,膜污染物往往不是单一性的,而是多元性的复杂沉积物,那种将膜污染物进行各种各样的归类分析,是一种理想化的做法。成功的实践表明:不仅依靠经验简单判断膜污染物,而且还需要科学的检测技术,如采用原子吸收光谱、电镜扫描、傅里叶红外光谱、X-Ray衍射、色谱质谱联用以及DNA检测等,来准确鉴别实际的膜污染物,从而正确地选择膜清洗剂以及清洗过程。同济公司承诺能为你做到这一切。
超滤工艺与传统工艺的比较超滤工艺 传统过滤工艺工艺适应性强,原水浊度为15-20度均可采用。膜过滤精度高于传统,可去除大于0.1微米的胶体和颗粒物,对大分子有机物有较好的去除效果,受原水波动小,出水水质稳定(产水SDI小于2)设备占地空间小,仅为传统工艺的1/5-1/3,可全自动运行,可显著提高反渗透产水通量,节省反渗透用膜量大幅度降低反渗透清洗频率,提高反渗透的效率及稳定性工艺占地空间大,操作强度大,运行管理不便。出水水质受原水波动大。特别处理高浊度,高污染水源时,SDI很难满足反渗透进水要求(SDI小于5)。该工艺系统为模块设计,各组件互相独立,可单独拆卸而不影响整个系统其他组件。该工艺采用一般钢制设备,滤料密封其中,填装及更换难度大系统模块采用塑料材质,设备拆卸,更换方便该工艺系统设备庞大,金属管道多,管径大,检修维护难度大完全实现自动控制,工人只需要在控制室监控操作即可,劳动强度大大降低。一般采用人工操作,工人劳动强度大,人员配置多。新兴水处理技术,发展迅速,技术日趋成熟,是反渗透处理的首选工艺水处理传统工艺,从目前反渗透系统处理工艺的应用来看,传统工艺将逐渐被超滤工艺所取代。

㈣ 纳滤水硬度为多少合适

纳滤净水机来的TDS值一般是源50-150这个范围,综合脱盐率一般是60%,高价脱盐率一般95%以上。推荐使用德国纳米通NANOTON净水机的,真正的纳滤膜厂家,很多其他公司是吧中空纤维超滤膜当纳滤膜来忽悠消费者的

㈤ 卷式纳滤膜对离子分离的操作条件是什么

纳滤膜对离子的截留率受到共离子的强烈影响,
对同一种膜在分离同种离子并在该离子浓度恒定条件下,共离子价数相等,共离子半径越小,膜对该离子的截留率越小,共离子价数越高,膜对该离子的截留率越高。
纳滤膜对二价离子的截留率较一价离子截留率高得多,
主要是由于离子半径和静电斥力作用影响造成的由于道南离子效应的影响、物料的荷电性、离子价数、离子浓度、溶液pH值等对纳滤膜的分离效率有一定的影响。

㈥ 有谁知道反渗透膜的材质与纳滤膜有什么不同

反渗透膜是一般用高分子材料制成。如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。
纳滤膜材质是聚酰胺材质。

㈦ 反渗透和纳滤的区别是什么

反渗透(RO)和纳滤(NF)是两种常见的净水技术,它们在水处理中有不同的应用和特点。以下是它们的主要区别:
**过滤精度不同:**
反渗透膜能够去除水中的大多数离子和微粒,其过滤精度可达分子量小于0.0001微米。这种高精度的过滤能够去除水中的细菌和各类杂质,因此常用于家庭纯净水、工业超纯水和医疗超纯水的生产。相比之下,纳滤膜的过滤精度稍低,可去除分子量大约在0.001微米的溶质。纳滤适用于过滤精度要求不太高的场合,如水软化、微污染脱盐和工业纯水的制造。
**脱盐率不同:**
反渗透技术的脱盐率通常在99.5%以上,能有效截留几乎所有溶解盐份及大于100分子量以上的有机物,同时允许小分子团通过。纳滤系统的脱盐率在80%到90%之间,主要应用于大分子物质的浓缩和纯化。
**废水产生比例不同:**
由于反渗透和纳滤都需要加压或加电来净化水,它们产生的废水比例也有差异。反渗透系统产生的废水比例通常在1:2到1:3之间,而纳滤系统的废水比例约为1:1。在节省水和环保方面,纳滤技术相对更节能、环保。
**其他净水技术:**
除了反渗透和纳滤,还有超滤(UF)和微滤(MF)等技术。超滤的过滤精度在0.001到0.1微米之间,能滤除水中的铁锈、泥沙、悬浮物、胶体等,但无法消除部分杂质和病菌,常用于制药、食品、电子工业。微滤的过滤精度在0.1到50微米之间,主要用于去除大颗粒杂质,如泥沙和铁锈,常作为工业给水预处理的一部分。
这些技术各有特点,适用于不同的水处理需求。

㈧ 影响纳滤膜,超滤膜,RO膜的性能因素有哪些

压力的影响
进水压力影响RO和NF膜的产水通量和脱盐率,我们知道渗透是指水分子从稀溶液侧透过膜进入浓溶液侧的流动,反渗透和纳滤技术即在进水水流侧施加操作压力以克服自然渗透压。当高于渗透压的操作压力施加在浓溶液侧时,水分子自然渗透的流动方向就会被逆转,部分进水(浓溶液)通过膜成为稀溶液侧的净化产水。透过膜的水通量增加与进水压力的增加存在直线关系,增加进水压力也增加了脱盐率,但是两者间的变化关系没有线性关系,而且达到一定程度后脱盐率将不再增加。
由于RO和NF膜对进水中的溶解性盐类不可能绝对完美地截留,总有一定量的透过量,随着压力的增加,因为膜透过水的速率比传递盐分的速率快,这种透盐率的增加得到迅速地克服。但是,通过增加进水压力提高盐分的排除率有上限限制,正如图1脱盐率曲线的平坦部分所示那样,超过一定的压力值,脱盐率不再增加,某些盐分还会与水分子耦合一同透过膜。
温度的影响
膜系统产水电导对进水温度的变化非常敏感,随着水温的增加,水通量几乎线性地增大,这主要归功于透过膜的水分子的粘度下降、扩散能力增加。增加水温会导致脱盐率降低或透盐率增加,这主要是因为盐分透过膜的扩散速率会因温度的提高而加快所致。膜元件能够承受高温的能力增加了其操作范围,这对清洗操作也很重要,因为可以采用更强烈和更快的清洗程序。
盐浓度的影响
渗透压是水中所含盐分或有机物浓度和种类的函数,盐浓度增加,渗透压也增加,因此需要逆转自然渗透流动方向的进水驱动压力大小主要取决于进水中的含盐量。如果压力保持恒定,含盐量越高,通量就越低,渗透压的增加抵消了进水推动力,水通量降低,增加了透过膜的盐通量(降低了脱盐率)。
回收率的影响
通过对进水施加压力当浓溶液和稀溶液间的自然渗透流动方向被逆转时,实现反渗透过程。如果回收率增加(进水压力恒定),残留在原水中的含盐量更高,自然渗透压将不断增加直至与施加的压力相同,这将抵销进水压力的推动作用,减慢或停止反渗透过程,使渗透通量降低或甚至停止。RO
系统最大可能回收率并不一定取决于渗透压的限制,往往取决于原水中的含盐量和它们在膜面上要发生沉淀的倾向,最常见的微溶盐类是碳酸钙、硫酸钙和硅,应该采用原水化学处理方法阻止盐类因膜的浓缩过程引发的结垢。
pH 值的影响
各种反渗透和纳滤膜元件适用的pH值范围相差很大,像这样的超薄复合反渗透和纳滤膜与醋酸纤维素反渗透和纳滤膜相比,在更宽广的 pH
值范围内更稳定,因而,具有更宽的操作范围。膜脱盐率特性取决于pH值,水通量也会受到影响。

阅读全文

与纳滤脱盐pH相关的资料

热点内容
净化器怎么换芯 浏览:81
常压蒸馏及折射率的测定 浏览:569
做空气滤芯用什么纸好 浏览:412
全自动智能一体化蒸馏仪品牌 浏览:719
微型烟尘玻璃过滤器 浏览:443
井泉净水器要多少钱 浏览:691
好空气的空气净化器怎么打开 浏览:842
壁挂调料瓶饮水机怎么用 浏览:440
奔驰b2000空调滤芯怎么拆 浏览:497
简述EDI应用的作用 浏览:364
丙烯腈改性丙烯酸树脂 浏览:137
高效陶瓷膜过滤器价格 浏览:241
小型废水池管道怎么排放 浏览:446
水加错可以除去水垢吗 浏览:912
阳离子交换器再生作业指导书 浏览:160
北京大元厂家污水提升泵 浏览:156
后牙树脂充填步骤 浏览:256
净水器一次性杯子多少钱 浏览:233
柠檬酸除垢剂可以洗瓷砖 浏览:788
无机空气滤芯是什么 浏览:994