201x7苯乙烯系强碱阴离子交换树脂密度范围是0.67-0.72之间。出厂离子形式不同密度也不同,一般出厂形式为CL-型,CL-型行业内密度标准是1kg=约1.43L。
㈡ 离子交换树脂按作用和用途可分为哪几种
1、强酸性阳离子交换树脂
强酸性阳离子交换树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性,树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子,这两个反应使树脂中的H+与溶液中的阳离子互相交换。
强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用,如强酸性阳离子交换树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
2、弱酸性阳离子交换树脂
弱酸性阳离子交换树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。
弱酸性阳离子交换树脂离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5-14)起作用,这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
3、强碱性阴离子交换树脂
强碱性阴离子交换树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性,这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
强碱性阴离子交换树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。
4、弱碱性阴离子交换树脂
弱碱性阴离子交换树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性,这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
弱碱性阴离子交换树脂在多数情况下是将溶液中的整个其他酸分子吸附,只能在中性或酸性条件(如pH1-9)下工作。它可用Na2CO3、NH4OH进行再生。
㈢ 在离子交换树脂里有一个技术名称。全交换容量(mmol/g)
离子交来换自树脂交换容量是什么?
交换容量指的是离子交换树脂能够交换的离子的数量,交换容量一般和离子交换树脂内的活性基团数成正比,一般树脂的再生交换容量是树脂总共交换容量的50-90%左右(通常控制在70-80%)。单位为(mmol/g)。
离子交换树脂的交换容量:
1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量
2、工作交换容量,表明了该树脂在特定条件下的离子交换的能力,这与树脂的种类和总的交换容量的值,以及具体的工作条件等因素有关。
3、再生交换容量,表示在特定的再生剂量的条件下所取得的再生树脂的交换容量,也明确地表明了树脂中原有的化学基团的一个再生复原的程度。
离子交换树脂的密度:
离子交换树脂的密度有两种,一种是树脂干燥时的密度,被称为真密度,另外一种是树脂湿润时的密度,被称为视密度。树脂的密度和树脂的交联度是息息相关的,交联度高的树脂密度一般也较高,而强酸性或强碱性的树脂要比弱酸性或弱碱性树脂的密度高一些。单位为(g/ml) 。
㈣ 离子交换树脂的指标所代表具体含义是什么
(东营市禾成化学科技有限公司的离子交换树脂 )
离子交换树脂是高分子化合物,所以它们的结构和性能因制造工艺的不同而不同,为此,对于商品离子交换树脂的性能,必须用一系列指标加以说明。
同一类型的离子交换树脂,其交联剂加入量的多少,对产品的物理化学性能有很大的影响,一般加交联剂多(即交联度大)的树脂,由于许多苯乙烯链都被交联成网状,所以其产品有网孔小、机械强度大和稳定性较好等特点,其特点是交换容量较小。
一、物理性能
1、外观
⑴ 颜色。离子交换树脂是一种透明或半透明的物质,依其组成的不同,呈现的颜色也各异,苯乙烯系均呈黄色,其他也有黑色及赤褐色的。树脂的颜色稍深。树脂在使用中,由于可交换离子的转换或受杂质的污染等原因,其颜色会发生变化,但这种变化不能确切表明它发生了什么改变,所以只可以作为参考。
⑵ 形状。离子交换树脂一般均呈球形。树脂呈球状颗粒数占颗粒总数的百分率,称为圆球率。对于交换柱水处理工艺来说,圆球率愈大愈好,它一般应达90%以上。
树脂圆球率的测定方法,是先将树脂在60℃烘干、称重,然后慢慢倒在倾斜10°的玻璃上端,让树脂分散地向下自由滚动,将滚动下来的树脂再称重,后者与前者比值的百分数即为圆球率。
2、粒度
树脂颗粒的大小对水处理的工艺过程有较大的影响。颗粒大,交换速度就慢;颗粒小,水通过树脂层的压力损失就大。如果各个颗粒的大小相差很大,则对水处理的工艺过程是不利的。这首先是因为小颗粒堵塞了大颗粒间的孔隙,水流不匀和阻力增大;其次,在反洗时流速过大会冲走小颗粒树脂,而流速过小,又不能松动大颗粒。用于水处理的树脂颗粒粒径一般为0.3~1.2mm。树脂粒度的表示法和过滤介质的粒度一样,可以用有效粒径和不匀系数表示。
3、密度
离子交换树脂的密度是水处理工艺中的实用数据。例如在估算设备中树脂的装载量,需要知道它的密度。离子交换树脂的密度有以下几种表示法。
(1)干真密度。干真密度即在干燥状态下树脂本身的密度:
干真密度 = g/mL
此值一般为1.6左右,在实用意义不大,常用在研究树脂性能方面。
(2)湿真密度。湿真密度是指树脂在水中经过充分膨胀后,树脂颗粒的密度:
湿真密度 = g/mL
(3)湿视密度.湿视密度是指树脂在水中充分膨胀后的堆积密度:
湿视密度 = g/mL
湿视密度用来计算交换器中装载树脂时所需湿树脂的质量,此值一般在0.60~0.85之间。阴树脂较轻,偏于下限;阳树脂较重,偏于上限。
4、含水率
离子交换树脂的含水率是指它在潮湿空气中所保持的水量,它可以反映交联度和网眼中的孔隙率。树脂的含水率愈大,表示它的孔隙率愈大,并联度愈小。
5、溶胀性
当将干的离子交换树脂浸入水中时,其体积常常要变大,这种现象称为溶胀。
影响溶胀率大小的因素有以下几种:
(1)溶剂。树脂在极性溶剂中的溶胀性,通常比在非极性溶剂中强。
(2)交联度。高交联度树脂的溶胀能力较低。
(3)活性基团。此基团愈易电离,树脂的溶胀性愈强。
(4)交换容量。高交换容量离子交换树脂的溶胀性要比低交换容量的强。
(5)溶液深度。溶液中电解质浓度愈大,由于树脂内外溶液的渗透压差减小,树脂的溶胀率愈小。
(6)可交换离子的本质。可交换的水合离子半径愈大,其溶胀率愈大,故对于强酸和强碱性离子交换树脂,溶胀率大小的次序为:
H+>Na+>NH4+>K+>Ag+
OH->HCO3≈CO32->SO42->Cl-
一般,强酸性阳离子交换树脂由Na转变成H型,强碱性阴离子交换树脂由Cl型转变成OH型,其体积均增加约5%。
由于离子交换树脂具有这样的性能,因而在其交换和再生的过程中会发生胀缩现象,多次的胀缩就容易促使树脂颗粒碎裂。
6、耐磨性
交换树脂颗粒在运行中,由于相互磨轧和胀缩作用,会发生碎裂现象,所以其耐磨性是一个影响其实用性能的指标。一般,其机械强度应能保证每年的树脂耗损量不超过3%~7%。
7、 溶解性
离子交换树脂是一种不溶于水的高分子化合物,但在产品中免不了会含有少量低聚物。因这些低聚物较易溶解,所以其应用的最初阶段。这些物质会逐渐溶解。
离子交换树脂在使用中,有时也会发生转变成胶体渐渐溶入水中的现象,即所谓胶溶。促使胶溶的因素有:树脂的交联度小、电离能力大、离子的水合半径大,有时还有受高温或被氧化的影响。特别是强碱性阴树脂,它会因化学降解而产生胶溶现象。
所以在运行中要密切注意其运行条件:如离子交换树脂处于蒸馏水中要比在盐溶液中易胶溶,Na型比Ca型易胶溶。离子交换器备用后刚投入运行时,有时发生出水带色的现象,就是胶溶的缘故。
8、 耐热性
各种树脂所能承受的温度都有限度,超过此温度,树脂热分解的现象就很严重。由于各种树脂的耐热性能不一,所以对每种树脂能承受的最高温度,应由鉴定试验来确定。一般阳树脂可耐100℃或更高的温度;阴树脂,强碱性的约可耐60℃,弱碱性的可耐80℃以上。通常,盐型要比酸型或碱型稳定。
9、 抗冻性
根据对各种树脂在-20℃的抗冻性试验,发现大孔型树脂的搞冻性优于凝胶型树脂,实际上冰对大孔型树脂没有影响。凝胶型阳树脂的抗冻性不如阴树脂。无论阴、阳树脂,机械强度好的(磨后圆球率高),抗冻性能也好。进行滤干外部水分的001×7阳树脂10周期(冻干24h,再完全解冻24h为1周期)的测定,发现磨后圆球率有所下降,裂球率提高,冰冻对浸在水中的001×7阳树脂的磨后圆球率几乎无影响;201×7阴树脂不管滤干外部水分、还是浸在水中冰冻,磨后圆球率和裂球率均变化不大,表明阴树脂韧性较强。
10、 耐辐射性能
在有核反应堆的企业中,所用离子交换剂的抗辐射性是很重要的。一般而论,无机离子交换剂的耐辐射性能较好,而树脂均易降解,其中又以阴树脂为严重。
11、导电性
干燥的离子交换树脂不导电,纯水也不导电,但用纯水润湿的离子交换树脂可以导电,所以这种导电属于离子型导电。这种导电在离子交换膜及树脂的催化作用上很重要。
二、化学性能
㈤ 计算树脂体积采用树脂的哪个密度
什么叫离子交换树脂的选择性?与什么因素有关?
水中各种离子在与离子交换树脂交换时,其能力是不一样的:有的离子很容易被树脂吸附,但很难被“置换"下来;有的则很难被树脂吸附,但很容易被“置换”下来。这种性能就称为离子交换树脂的“选择性”。
离子交换树脂的这种选择性与下列因素有关:
①离子带的电荷越多,则越容易被离子交换树脂吸附。例如二价离子就比一价离子易被吸附。
②对带有相同电荷量的离子而言,则原子序大的离子,较易被吸附。
③浓溶液与稀溶液相比,则在浓溶液中低价离子易于被树脂吸附。
一般讲,对H型强酸性阳离子交换树脂而言,对水中离子的选择顺序。对OH型强碱性阴离子交换树脂而言,对水中阴离子的选择顺序。
离子交换树脂的这种选择性,对于分析和判断化学水处理过程是很有用的。
什么叫离子交换树脂的密度?有什么意义?
为使用方便,离子交换树脂的密度有下述两种表示方法:
(1)湿真密度 湿真密度是指离子交换树脂在水中充分膨胀后的真密度。
这里的“颗粒体积”不包括树脂颗粒间的孔隙。湿真密度同反洗分层情况和树脂沉降性能有关。其相对密度值二般在1.04~1.30之间,其中阳棚旨一般为1.24~1.29,阴树月旨一般为1-06~1.11。
(2)湿视密度 湿视密度也有称“湿堆密度”,指离子交换树脂在水中充分膨胀后的堆积密度。
这里的“堆体积”包括离子交换树脂颗粒问的孔隙。湿视密度常用来计算交换床需要装树脂的量。
一般讲,阳离子交换树脂拘湿视密度为O.65~O.85,阴树脂的则为O.60~0.80。
离子交换树脂使用时对温度有什么要求?
离子交换树脂有一定的耐热性。当使用温度超过其所能承受的温度极限时,树脂易因热分解而遭到破坏。
通常,阳离子交换树脂可耐温80~100℃,弱碱性阴离子交换树脂能耐温100℃;强碱性阴离子交换树脂能耐温60℃。当用于除硅时最适宜的温度在40℃以下。 179什么叫交联度?对离子交换树脂的性能
有什么影响?
交联度是苯乙烯系树脂的重要性质之一。交联度是指在苯乙烯树脂中,所含二乙烯苯(俗称“交联剂”)的质量百分率。
树脂的交联度小,对水的溶胀性好,则树脂的交联网孔大,交换速度快,但树脂的强度低。反之,当树脂的交联度高时,其交联网孔小,树脂的强度高,但对水的溶胀性差,反应速度慢。
化学水处理使用的苯乙烯系树脂,其交联度一般在4%一14%之间,以交联度在7%左右的性能比较理想。
什么叫离子交换树脂的溶胀性?与什么因素有关?
当将干离子交换树脂浸入到水中时,其体积常常要变大,这种现象称为离子交换树脂的“溶胀”。
影响离子交换树脂“溶胀”的因素有:
①交联度。高交联度树脂的“溶胀"能力较低。
②活性基团。活性基团越易电离,树脂的溶胀度就越大。如强酸性、强碱性的交换容量大的树脂,
溶胀率也大。
③溶液浓度。溶液中电解质浓度越大,树脂内外溶液的渗透压差反而减小,树脂的溶胀就小。所以对于“失水"的树脂,应先将其浸泡在饱和食盐水中,使树脂缓慢膨胀,使其不易破碎,就是基于上述道理。
通常,强酸性阳离子交换树脂由Na型变为H型,强碱性阴离子交换树脂由Cl型变为OH型,体积约增加5%。
㈥ 什么叫离子交换树脂的选择性与什么因素有关
什么是离子交来换源树脂的选择性?
离子交换树脂的选择性是指离子交换树脂能吸附的金属离子,污水中有很多金属离子而离子交树脂不可能可以把所有的金属离子都吸咐干净的,有一些金属离子树脂对它的吸附能力是比较弱的而有一些则比较强,也就是说离子交换树脂只能针对性的吸附某一些金属离子,这就是离子交换树脂的选择性。
离子交换树脂的选择性怎样?
离子交换反应和其他化学反应一样,完全服从质量作用定律。离子交换亲和力,也就是离子交换树脂对水中金属离子的吸附能力。离子交换树脂对离子的吸附能力与离子半径大小和离子所带的电荷数有关。离子交换树脂的吸附能力与金属离子的电荷数、价态和金属离子的半径成正比。
离子交换树脂的选择性:
经过实验证明,低浓度、常温下,离子交换树脂对不同离子的吸附能力顺序有下列规律。
阳离子交换树脂对金属离子的吸附顺序是:
Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+。
强碱性阴离子树脂对阴离子的吸附顺序是:
SO42->NO3->CI->HCO3->OH-。
弱碱性阴离子树脂对阴离子的吸附顺序是:
OH->柠檬酸根3->SO42->酒石酸根2->草酸根2->PO43->NO2->Cl->醋酸根-
>HCO3-。
㈦ 1升离子交换树脂等于多少公斤
1升离子交换树脂等于1升。
按湿视密度为:0.72算,一般情况用的是堆积体积=1KG/堆积密度。
阴阳树脂的各比重不一样,普通的阳树脂指001X7(732)约在0.8到0.85之间,意思就是1公斤除于0.8等于1.25升。
㈧ 工业锅炉钠离子交换器树脂的密度是多少
是这样的:
密度
离子交换树脂的密度是水处理工艺中的实用数据。例如在估算设备中树脂的装载量,需要知道它的密度。离子交换树脂的密度有以下几种表示法。
(1)干真密度。干真密度即在干燥状态下树脂本身的密度:
干真密度 = g/mL
此值一般为1.6左右,在实用意义不大,常用在研究树脂性能方面。
(2)湿真密度。湿真密度是指树脂在水中经过充分膨胀后,树脂颗粒的密度:
湿真密度 = g/mL
(3)湿视密度.湿视密度是指树脂在水中充分膨胀后的堆积密度:
湿视密度 = g/mL
湿视密度用来计算交换器中装载树脂时所需湿树脂的质量,此值一般在0.60~0.85之间。阴树脂较轻,偏于下限;阳树脂较重,偏于上限。
粒度
树脂颗粒的大小对水处理的工艺过程有较大的影响。颗粒大,交换速度就慢;颗粒小,水通过树脂层的压力损失就大。如果各个颗粒的大小相差很大,则对水处理的工艺过程是不利的。这首先是因为小颗粒堵塞了大颗粒间的孔隙,水流不匀和阻力增大;其次,在反洗时流速过大会冲走小颗粒树脂,而流速过小,又不能松动大颗粒。用于水处理的树脂颗粒粒径一般为0.3~1.2mm。树脂粒度的表示法和过滤介质的粒度一样,可以用有效粒径和不匀系数表示。
㈨ 离子交换树脂的基本类型
1.离子交换树脂的基本类型
(1) 强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2) 弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3) 强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。
(4) 弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。
(5) 离子树脂的转型
以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。
2、离子交换树脂基体的组成
离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。苯乙烯系树脂是先使用的,丙烯酸系树脂则用得较后。
这两类树脂的吸附性能都很好,但有不同特点。丙烯酸系树脂能交换吸附大多数离子型色素,脱色容量大,而且吸附物较易洗脱,便于再生,在糖厂中可用作主要的脱色树脂。苯乙烯系树脂擅长吸附芳香族物质,善于吸附糖汁中的多酚类色素(包括带负电的或不带电的);但在再生时较难洗脱。因此,糖液先用丙烯酸树脂进行粗脱色,再用苯乙烯树脂进行精脱色,可充分发挥两者的长处。
树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。通常,交联度高的树脂聚合得比较紧密,坚牢而耐用,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不高于8%;单纯用于吸附无机离子的树脂,其交联度可较高。
除上述苯乙烯系和丙烯酸系这两大系列以外,离子交换树脂还可由其他有机单体聚合制成。如酚醛系(FP)、环氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
3、离子交换树脂的物理结构
离子树脂常分为凝胶型和大孔型两类。
凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。湿润树脂的平均孔径为2~4nm(2×10-6 ~4×10-6mm)。
这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。
大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。孔道的表面积可以增大到超过1000m2/g。这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waal's force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。
大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。使用时的作用快、效率高,所需处理时间缩短。大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。
4、离子交换树脂的离子交换容量
离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。
1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。
2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。
3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。
通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。
在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。
离子树脂交换容量的测定一般以无机离子进行。这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。
5、离子交换树脂的吸附选择性
离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。主要规律如下:
(1) 对阳离子的吸附
高价离子通常被优先吸附,而低价离子的吸附较弱。在同价的同类离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
(2) 对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:
SO42-> NO3- > Cl- > HCO3- > OH-
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:
OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
(3) 对有色物的吸附
糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。这被认为是由于前两者通常带负电,而焦糖的电荷很弱。
通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。这种选择性在稀溶液中较大,在浓溶液中较小。
6、离子交换树脂的物理性质
离子交换树脂的颗粒尺寸和有关的物理性质对它的工作和性能有很大影响。
(1) 树脂颗粒尺寸
离子交换树脂通常制成珠状的小颗粒,它的尺寸也很重要。树脂颗粒较细者,反应速度较大,但细颗粒对液体通过的阻力较大,需要较高的工作压力;特别是浓糖液粘度高,这种影响更显著。因此,树脂颗粒的大小应选择适当。如果树脂粒径在0.2mm(约为70目)以下,会明显增大流体通过的阻力,降低流量和生产能力。
树脂颗粒大小的测定通常用湿筛法,将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50……目筛网上的留存量,以90%粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。多数通用的树脂产品的有效粒径在0.4~0.6mm之间。
树脂颗粒是否均匀以均匀系数表示。它是在测定树脂的“有效粒径”坐标图上取累计留存量为40%粒子,相对应的筛孔直径与有效粒径的比例。如一种树脂(IR-120)的有效粒径为0.4~0.6mm,它在20目筛、30目筛及40目筛上留存粒子分别为:18.3%、41.1%、及31.3%,则计算得均匀系数为2.0。
(2) 树脂的密度
树脂在干燥时的密度称为真密度。湿树脂每单位体积(连颗粒间空隙)的重量称为视密度。树脂的密度与它的交联度和交换基团的性质有关。通常,交联度高的树脂的密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性者,而大孔型树脂的密度则较低。例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1.26g/mL,视密度为0.85g/mL;而丙烯酸系凝胶型弱酸阳离子树脂的真密度为1.19g/mL,视密度为0.75g/mL。
(3) 树脂的溶解性
离子交换树脂应为不溶性物质。但树脂在合成过程中夹杂的聚合度较低的物质,及树脂分解生成的物质,会在工作运行时溶解出来。交联度较低和含活性基团多的树脂,溶解倾向较大。
(4) 膨胀度
离子交换树脂含有大量亲水基团,与水接触即吸水膨胀。当树脂中的离子变换时,如阳离子树脂由H+转为Na+,阴树脂由Cl-转为OH-,都因离子直径增大而发生膨胀,增大树脂的体积。通常,交联度低的树脂的膨胀度较大。在设计离子交换装置时,必须考虑树脂的膨胀度,以适应生产运行时树脂中的离子转换发生的树脂体积变化。
(5) 耐用性
树脂颗粒使用时有转移、磨擦、膨胀和收缩等变化,长期使用后会有少量损耗和破碎,故树脂要有较高的机械强度和耐磨性。通常,交联度低的树脂较易碎裂,但树脂的耐用性更主要地决定于交联结构的均匀程度及其强度。如大孔树脂,具有较高的交联度者,结构稳定,能耐反复再生。
7、离子交换树脂的品种
离子交换树脂在国内外都有很多制造厂家和很多品种。国内制造厂有数十家,主要的有上海树脂厂、南开大学化工厂、晨光化工研究院树脂厂、南京树脂厂等;国外较著名的如美国Rohm & Hass公司生产的Amberlite系列、Dow化学公司的Dowex系列、法国Duolite系列和Asmit系列、日本的Diaion系列,还有Ionac系列、Allassion系列等。树脂的牌号多数由各制造厂或所在国自行规定。国外一些产品用字母C代表阳离子树脂(C为cation的第一个字母),A代表阴离子树脂(A为Anion的第一个字母),如Amberlite的IRC和IRA分别为阳树脂和阴树脂,亦分别代表阳树脂和阴树脂。我国化工部规定(HG2-884-76),离子交换树脂的型号由三位阿拉伯数字组成。第一位数字代表产品的分类:0 代表强酸性,1代表弱酸性,2代表强碱性,3代表弱碱性,4代表螯合性,5代表两性,6代表氧化还原。第二位数字代表不同的骨架结构:0代表苯乙烯系,1代表丙烯酸系,2代表酚醛系,3代表环氧系等。第三位数字为顺序号,用以区别基体、交联基等的差异。此外大孔型树脂在数字前加字母D。因此,D001是大孔强酸性苯乙烯系树脂。
㈩ 离子交换树脂的结构是什么样的什么是树脂的交联度
高分子骨架是由化学单体和交联体共聚而成。例如常用的聚苯乙烯树脂回其化学单体为苯答乙烯,交联剂则为二乙烯苯,共聚后生成球形小颗粒,再将离子交换基团引入。树脂中引入的离子交换基团不同,其能交换的离子种类也不同。例如当引入磺酸基(-SO3H)时为强酸阳离子交换树脂,引入羧酸基(-COOH)时为弱酸阳离子交换树脂,如引入胺基[N(CH3)3OH]时则生成强碱阴离子交换树脂,引入亚胺基[N(CH3OH)2]时则生成弱碱阴离子交换树脂。
在树脂中交联剂的含量会决定树脂结构的紧密程度,树脂中含交联剂的重量%称为树脂的交联度。交联度愈大,则树脂网孔愈紧,其含水量小,湿视密度愈大,工交容量愈高,机械强度愈好。