Ⅰ 请问离子交换的作用是什么啊
您问的太笼统了啊。
(1)按骨架材料分类
按合成离子交换树脂骨架材料的不同,离子交换树脂可分为苯乙烯系、丙烯酸系、酚醛系、环氧系等。
(2)按交换基团的性质分类
根据交换基团的性质不同,离子交换树脂可分为两大类:凡与溶液中阳离子进行交换反应的树脂,称为阳离子交换树脂,阳离子交换树脂可电离的反离子是氢离子及金属离子;凡与溶液中的阴离子进行交换反应的树脂,称为阴离子交换树脂,阴离子交换树脂可电离的反离子是氢氧根离子和酸根离子。
离子交换树脂同低分子酸碱一样,根据它们的电离度不同又可将阳离子交换树脂分为强酸性阳树脂和弱酸性阳树脂;可将阴离子交换树脂分为强碱性阴树脂和弱碱性阴树脂。表1中归纳了离子交换树脂的类别。
表1 离子交换树脂的类别
树脂名称
交换基团
酸碱性
化学式
名称
阳离子交换树脂
—SO3-H+
磺酸基
强酸性
—COO-H+
羧酸基
弱酸性
阴离子交换树脂
—N+OH-
季铵基
强碱性
—NH+OH-
—NH2+OH-
—NH3+OH-
叔胺基
仲胺基
伯胺基
弱碱性
此外,还可以根据交换基团中反离子的不同,将离子交换树脂冠以相应的名称,例如:氢型阳树脂、钠型阳树脂、氢氧型阴树脂、氯型阴树脂等。离子交换树脂由钠型转变为氢型或由氯型转变为氢氧型称为树脂的转型。
(3)按离子交换树脂的微孔型态分类
由于制造工艺的不同,离子交换树脂内部形成不同的孔型结构。常见的产品有凝胶型树脂和大孔型树脂。
a)凝胶型树脂。这种树脂是均相高分子凝胶结构,所以统称凝胶型离子交换树脂。在它所形成的球体内部,由单体聚合成的链状大分子在交联剂的链接下,组成了空间结构。这种结构像排布错乱的蜂巢,存在着纵横交错的“巷道”,离子交换基团就分布在巷道的各个部位。由巷道所构成的空隙,并非我们想象的毛细孔,而是化学结构中的空隙,所以称为化学孔或凝胶孔。其孔径的大小与树脂的交联度和膨胀程度有关,交联度越大,孔径就越小。当树脂处于水合状态时,水分子链舒伸,链间距离增大,凝胶孔就扩大;树脂干燥失水时,凝胶孔就缩小。反离子的性质、溶液的浓度及pH值的变化都会引起凝胶孔径的改变。
凝胶孔的特点是孔径极小,平均孔径约1~2nm,而且大小不一,形状不规则。它只能通过直径很小的离子,直径较大的分子通过时,则容易堵塞孔道而影响树脂的交换能力。凝胶型树脂的缺点是抗氧化性和机械强度较差,特别是阴树脂易受有机物的污染。
b)大孔型树脂。这种树脂在制造过程中,由于加入了致孔剂,因而形成大量的毛细孔道,所以称为大孔树脂。在大孔树脂的球体中,高分子的凝胶骨架被毛细孔道分割成非均相凝胶结构,它同时存在着凝胶孔和毛细孔。其中毛细孔的体积一般为0.5mL(孔)/g(树脂)左右,孔径在20~200nm以上,比表面积从几m2/g到几百m2/g。由于这样的结构,大孔型树脂可以使直径较大的分子通行无阻,所以用它去除水中高分子有机物具有良好的效果。
大孔型树脂由于孔隙占据一定的空间,骨架的实体部分就相对减少,离子交换基团含量也相应减少,所以交换能力比凝胶型树脂低。大孔型树脂的吸附能力强,与交换的离子结合较牢固,不容易充分恢复其交换能力。但大孔树脂的抗氧化性能比较好,因为它的交联度较大,大分子不易降解。再者,大孔树脂具有较好的抗有机物污染性能,因为被树脂截留的有机物,易于在再生操作中,从树脂的孔眼中清除出去。
离子交换原理
应用离子交换树脂进行水处理时,离子交换树脂可以将其本身所具有的某种离子和水中同符号电荷的离子相互交换而达到净化水的目的。
如H型阳离子交换树脂遇到含有Ca2+、Na+的水时,发生如下反应:
2RH + Ca2+ R2Ca + 2H+
RH + Na+ RNa + H+
当OH型阴离子交换树脂遇到含有Cl-、SO42-的水时,其反应为:
ROH + Cl- RCl + OH-
2ROH + SO42- R2SO4 +2OH-
反应的结果是水中的杂质离子(Ca2+、Na+、Cl-、SO42-等)分别被吸着在树脂上,树脂由H型和OH型变为Ca型、Na型和Cl型SO4型,而树脂上的H+、OH-则进入水中,相互结合成为水,从而除去水中的杂质离子,制得纯水。
H+ + OH- H2O
离子交换树脂的离子与水中的离子之间所以能进行交换,是在于离子交换树脂有可交换的活动离子。而且因为离子交换树脂是多孔的,即在树脂颗粒中存在着许多水能渗入其内的微小网孔,这样使树脂和水有很大的接触面,不仅能在树脂颗粒的外表面进行交换,而且在与水接触的网孔内也可以进行这一交换。
如前所述,合成的离子交换树脂是一种带有交联剂的高分子化合物,有许多水能渗入的网孔,交换剂的内部是一个立体的网状结构作为骨架,这些网组成了无数的四通八达的孔隙,孔隙里面充满了水。在孔隙的一定部位上有一个可以自由活动的交换离子。当离子交换树脂和水溶液接触时,水溶液即通过这些网状结构的孔渗入其内,离子交换树脂进行离解,结果是一定数量的离子(H型离子交换树脂为氢离子,OH型离子交换树脂为氢氧根离子)进入围绕离子交换树脂颗粒四周的水溶液中,形成离子雾。
离子交换树脂与水溶液中离子的交换过程,实际上就是离子雾中的离子与水溶液中的离子的相互交换过程,其机理可以用双电层理论进行解释。
这种理论是将离子交换树脂看作具有胶体型结构的物质,即在离子交换树脂的高分子表面上有和胶体表面相似的双电层。也就是说,在离子交换树脂的高分子表面有两层离子,紧挨着高分子表面的一层离子(如强酸性阳树脂中的—SO3-),称为内层离子,在其外面的是一层符号相反的离子层(如强酸性阳树脂中的H+)。和内层离子符号相同的离子称为同离子,符号相反的称为反离子。
根据胶体结构的概念,双电层中的离子按其活动性的大小,可划分为吸附层和扩散层。那些活动性较差,紧紧地被吸附在高分子表面的离子层,称为吸附层,它包括内层离子和部分反离子;在吸附层外侧,那些活动性较大,向溶液中逐渐扩散的离子,称为扩散层。
内层离子依靠化学键结合在高分子的骨架上,吸附层中的反离子依靠异电荷的吸引力被固定着。而在扩散层中的反离子,由于受到异电荷的吸引力较小,热运动比较显著,所以这些反离子有向水溶液中渐渐扩散的现象。
当离子交换树脂遇到含有电解质的水溶液时,电解质对其双电层有以下的作用:
(1)交换作用
扩散层中的离子与胶核距离大,受胶核电荷吸引力小,在溶液中活动较自由,离子交换作用主要是由扩散层中的反离子和溶液中其它离子互换位置所致。
在H型阳离子交换树脂与溶液中Na+的交换中,树脂内部网孔间的水中有很多从树脂上离解下来的H+,形成了很大的H+浓度,但在流动的水中H+浓度却很小;相反在流动的水中,Na+浓度很大,而树脂内部网孔水溶液中原来没有Na+。浓度大的地方的离子要向浓度小的地方运动,这就是扩散。所以水溶液中的Na+要扩散到树脂颗粒内部去,而H+要从树脂颗粒内部扩散到水溶液中去。这就是离子交换的过程。
上述的交换过程并不局限于扩散层。溶液中也有一些反离子先交换至扩散层,然后再与吸附层中的反离子互换位置;吸附层中的反离子,也会先与扩散层的反离子互换位置后,再完成上述的交换过程。
(2)压缩作用
当水溶液中盐类浓度增大时,可以使扩散层受到压缩,从而使原来处于扩散层中的部分反离子变成吸附层中的反离子,以及使扩散层的活动范围变小。这使扩散层中的反离子活性减弱,不利于进行离子交换。这也可以说明为什么当再生溶液的浓度太大时,不仅不能提高再生效果,有时反使效果降低。
上述将离子交换树脂看作具有胶体型结构的物质,用扩散理论对其交换过程进行解释,适合与水处理工艺的离子交换过程。但关于离子交换过程的机理,有多种说法,现尚还不能统一。
Ⅱ 绂诲瓙浜ゆ崲鑶滅殑浣滅敤_绂诲瓙浜ゆ崲鑶滃師鐞哶浠锋牸
绂诲瓙浜ゆ崲鑶滀富瑕佺敤浜庣诲瓙浜ゆ崲杩囩▼涓锛岃捣鍒板皢娴佷綋涓鐨勭诲瓙鍒嗙诲嚭鏉ョ殑浣滅敤銆傜诲瓙浜ゆ崲鑶滆兘澶熷皢娴佷綋涓鐨勪笉鍚岀诲瓙閫氳繃浜ゆ崲鑶滅殑浣滅敤锛屼娇瀹冧滑鍦ㄨ啘鐨勪袱渚у垎鍒鑾峰緱鐩稿弽鐢佃嵎鐨勭诲瓙銆傝繖绉嶄氦鎹㈣繃绋嬪彲浠ヤ娇娴佷綋鍙樺緱鏇村姞绾鍑锛屽逛簬鍖栧伐銆佺數瀛愮瓑琛屼笟鐨勫緢澶氱敓浜ц繃绋嬮兘鏈夌潃閲嶈佺殑搴旂敤銆
绂诲瓙浜ゆ崲鑶滃師鐞嗘槸鍒╃敤绂诲瓙浜ゆ崲鏍戣剛鍏锋湁鐨勫~鍏呫佸垎鏁c佷翰姘淬佸瓟闅欑粨鏋勭瓑鐗规э紝閫氳繃鍙嶅嶄氦鎹㈡爲鑴備腑鐨勭诲瓙鏉ュ疄鐜扮墿璐ㄥ垎绂荤殑鍔熻兘銆傜诲瓙浜ゆ崲鑶滅殑浜ゆ崲鏍戣剛閫氬父鏈夊己闃寸诲瓙浜ゆ崲鏍戣剛鍜屽己闃崇诲瓙浜ゆ崲鏍戣剛涓ょ嶏紝瀹冧滑涓昏侀氳繃鏅閫氱诲瓙浜ゆ崲鐨勬柟寮忓规祦浣撲腑鐨勭诲瓙杩涜屽垎绂诲拰鍘婚櫎銆傚悓鏃讹紝绂诲瓙浜ゆ崲鑶滅殑閫夋潗鍜屽埗閫犲伐鑹轰篃浼氬奖鍝嶅叾绂诲瓙浜ゆ崲鎬ц兘鍜屽簲鐢ㄦ晥鏋溿
绂诲瓙浜ゆ崲鑶滀环鏍奸氬父浼氬彈鍒板氱嶅洜绱犵殑褰卞搷锛屽傚搧鐗屻佽勬牸銆佸瀷鍙枫佹ц兘銆佸簲鐢ㄩ渶姹傜瓑銆備竴鑸鑰岃█锛屽ぇ鍝佺墝鐨勭诲瓙浜ゆ崲鑶滀环鏍艰緝璐碉紝浣嗗叾鎬ц兘鍜屽簲鐢ㄦ晥鏋滀篃鏇村姞鍙闈犲拰绋冲畾銆傛ゅ栵紝绂诲瓙浜ゆ崲鑶滅殑瑙勬牸鍜屽瀷鍙蜂篃浼氬奖鍝嶄环鏍硷紝涓鑸鏉ヨ达紝瑙勬牸瓒婂ぇ銆佸瀷鍙疯秺澶嶆潅鐨勭诲瓙浜ゆ崲鑶滀环鏍间篃浼氳秺楂樸傛牴鎹搴旂敤闇姹傜殑涓嶅悓锛岀诲瓙浜ゆ崲鑶滅殑浠锋牸涔熶細鏈夋墍鍙樺寲銆
Ⅲ 离子交换吸收作用名词解释
离子交换吸收作用是指土壤溶液中的阳离子或阴离子与土壤胶粒表面扩散层中的阳离子或阴离子进行交换后而保存在土壤中的作用,又称物理化学吸收作用。这种吸收作用是土壤胶体所特有的性质,由于土壤胶粒主要带有负电荷,因此绝大部分土壤发生的是阳离子交换吸收作用。离子交换吸收作用是土壤保肥供肥最重要的方式。
Ⅳ 离子交换原理
离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于丙烯酸系弱酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。以D113型离子交换树脂制备硫酸钙晶须为例说明: D113丙烯酸系弱酸性阳离子交换树脂是一种大孔型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当硫酸锌溶液中的Zn2+,S042-扩散到树脂的孔道中时,由于该树脂对Zn2+选择性强于对Ca2+的选择性,,所以Zn2+就与树脂孔道中的交换基团Ca2+发生快速的交换反应,被交换下来的Ca2+遇到扩散进入孔道的S042-发生沉淀反应,生成硫酸钙沉淀。其过程大致为:
(1)边界水膜内的扩散 水中的Zn2+,S042-离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Zn2+,S042-离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点;
(3)离子交换 Zn2+与树脂基团上的可交换的Ca2+进行交换反应;
(4)交联网孔内的扩散 被交换下来的Ca2+在树脂内部交联网孔中向树脂表面扩散;部分交换下来的Ca2+在扩散过程中遇到由外部扩散进入孔径的S042-发生沉淀反应,生成CaS04沉淀;
(5)边界水膜内的扩散 没有发生沉淀反应的部分Ca2+扩散通过树脂颗粒表面的边界水膜层,并进入水溶液中。 此外,由于离子交换以及沉淀反应的速度很快,硫酸钙沉淀基本在树脂的孔道里生成,因此树脂的孔道就限制了沉淀的生长及形貌,对其具有一定的规整作用。通过调整搅拌速度、反应温度等外界条件,可以使树脂颗粒及其内部孔道发生相应的变化,这样当沉淀在树脂孔道中生成后,就得到了不同尺寸和形貌的硫酸钙沉淀。