导航:首页 > 净水问答 > 铵根离子交换树脂改性

铵根离子交换树脂改性

发布时间:2024-09-09 03:58:04

A. 如何去除水中氨氮

以下是去除水中氨氮的一些措施,供参考:

  1. 硝化和脱氮

氨(NH3)被亚硝化细菌氧化成亚硝酸,亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作用需要消耗氧气,当水中溶氧浓度低于1~2毫克/升时硝化作用速度明显降低。在水中溶氧缺乏的情况下,反硝化细菌能将硝酸还原为亚硝酸、次硝酸、羟胺或氮时,这种过程称为硝酸还原,当形成的气态氮作为代谢物释放并从系统中流失时,就称之为脱氮作用。

B. 氨氮的测试方法

氨气敏电极法
1 原理
在pH值大于11的环境下,铵根离子向氨转变,氨通过氨敏电极的疏水膜转移,造成氨敏电极的电动势的变化,仪器根据电动势的变化测量出氨氮的浓度。
2 检测步骤
用新的水样冲洗测量水样、试剂体积的容器和电极安装管。
使用蠕动泵进样。水样并不直接与蠕动泵管接触--有一个空气缓冲区。进样的体积由一可视测量系统控制。
与进样相同,辅助试剂也通过蠕动泵投加,并由可视测量系统控制加药体积。
通过鼓泡混合水样和试剂。
由测量系统自动控制反映时间。
残液由蠕动泵排出。
在用户自定义的测量周期中,分析仪会利用内置的校准标液和清洗溶液自动进行校准和清洗。
3 如何分辨氨气敏电极法仪器的性能
1.量程:电极法氨氮量程规格分为:0-1200;0-2000;0-3000;0-10000不等。并且量程自由切换,量程越大,说明仪器采用的电极的适应性越强。
2.最低检出限:仪器的最低检出限越低,代表电极的品质越好,一般为0.05mg/l。
纳氏试剂分光光度法 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定. 2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管.
2.2 分光光度计
2.3 pH计 配制试剂用水均应为无氨水
3.1 无氨水可选用下列方法之一进行制备:
蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存.
离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱.
3.2 1mol/L盐酸溶液.
3.3 1mol/L氢氧化纳溶液.
3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐.
3.5 0.05%溴百里酚蓝指示液:pH6.0~7.6.
3.6 防沫剂,如石蜡碎片.
3.7 吸收液:
硼酸溶液:称取20g硼酸溶于水,稀释至1L.
0.01mol/L硫酸溶液.
3.8 纳氏试剂:可选择下列方法之一制备:
称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液.
另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存.
称取16g氢氧化钠,溶于50mL水中,充分冷却至室温.
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存.
3.9 酒石酸钾钠溶液:称取50g酒石酸钾钠KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml.
3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮.
3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮. 4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化纳溶液或盐酸溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.
采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.
4.2 标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,加1.0mL酒石酸钾溶液,混匀.加1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度. 由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.
4.3 水样的测定:
分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,加入0.1mL酒石酸钾钠溶液.以下同标准曲线的绘制.
分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.
4.4 空白实验:以无氨水代替水样,做全程序空白测定. 由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮量(mg)后,
按下式计算:
氨氮(N,mg/L)=m/V×1000
式中:m——由标准曲线查得的氨氮量,mg;
V——水样体积,mL. 6.1 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响.静置后生成的沉淀应除去.
6.2 滤纸中常含痕量铵盐,使用时注意用无氨水洗涤.所用玻璃皿应避免实验室空气中氨的玷污. 废水中氨氮的构成主要有两大类,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。共分四种:有机氮.氨氮.亚硝酸氮(NO2-)和硝酸氮(NO3-)。
而自然地表水体和地下水体中主要以硝酸盐氮(NO3-)为主。
高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,
一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,
ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。

C. 铵根离子用阳离子交换树脂吸附,用什么溶液洗脱

h顺流再生液浓度2~4%(H型树脂),逆流再生液浓度1.5~3%(H型树脂),一般再生液流速为4~8m/,再生时间应不少于30min

D. 污泥处理污水中如何去除氨氮

根据废水中氨氮浓度的不同,可将废水分为3类:

高浓度氨氮废水(NH3-N>500mg/l);

中等浓度氨氮废水(NH3-N:50-500mg/l);

低浓度氨氮废水(NH3-N<50mg/l)。

然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。

去除氨氮的主要方法有:物理法、化学法、生物法。物理法有反渗透、蒸馏、土壤灌溉等处理技术;化学法有离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法有藻类养殖、生物硝化、固定化生物技术等处理技术。

目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。

1.折点氯化法除氨氮

折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。

折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下:

Cl2+H2O→HOCl+H++Cl-

NH4++HOCl→NH2Cl+H++H2O

NHCl2+H2O→NOH+2H++2Cl-

NHCl2+NaOH→N2+HOCl+H++Cl-

折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。

2.选择性离子交换化除氨氮

离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性,能成功地去除原水和二级出水中的氨氮。

沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。

3.空气吹脱法与汽提法除氨氮

空气吹脱法是将废水与气体接触,将氨氮从液相转移到气的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至碱性时,离子态铵转化为分子态氨,然后通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会大大降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。

汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样是一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,用填料塔可以满足此要求。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但汽提塔内容易生成水垢,使操作无法正常进行。

吹脱和汽提法处理废水后所逸出的氨气可进行回收:用硫酸吸收作为肥料使用;冷凝为1%的氨溶液。

4.生物法除氨氮

生物法去除氨氮是指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。

硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:

亚硝化:2NH4++3O2→2NO2-+2H2O+4H+

硝化:2NO2-+O2→2NO3-

硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLS•d);泥龄在3~5天以上。

在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为:

6NO3-+2CH3OH→6NO2-+2CO2+4H2O

6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-

反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。

常见的生物脱氮流程可以分为3类:

⑴多级污泥系统

多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇;

⑵单级污泥系统

单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工艺特点:流程简单、构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;将脱氮池设置在缺氧池,降低运行费用;好氧池在缺氧池后,可使反硝化残留的有机污染物得到进一步去除,提高出水水质;缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷。此外,后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果高于前置式,理论上可接近100%的脱氮效果。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。它本质上仍是A/O系统,但利用交替工作的方式,避免了混合液的回流,其脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,必须配置计算机控制自动操作系统;

⑶生物膜系统

将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。

常规生物处理高浓度氨氮废水是要存在以下条件:

为了能使微生物正常生长,必须增加回流比来稀释原废水;

硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。

5.化学沉淀法除氨氮

化学沉淀法是根据废水中污染物的性质,必要时投加某种化工原料,在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。

化学沉淀法处理NH3-N主要原理是NH4+、Mg2+、PO43-在碱性水溶液中生成沉淀。在氨氮废水中投加化学沉淀剂Mg(OH)2、H3PO4与NH4+反应生成MgNH4PO4•6H2O(鸟粪石)沉淀,该沉淀物经造粒等过程后,可开发作为复合肥使用。整个反应的pH值的适宜范围为9~11。pH值<9时,溶液中PO43-浓度很低,不利于MgNH4PO4•6H2O沉淀生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反应将在强碱性溶液中生成比MgNH4PO4•6H2O更难溶于水的Mg3(PO4)2的沉淀。同时,溶液中的NH4+将挥发成游离氨,不利于废水中氨氮的去除。利用化学沉淀法,可使废水中氨氮作为肥料得以回收。

E. 下列离子在强酸性阳离子交换树脂的交换次序

由于你提供的离子交换排代次序没有说明在什么样的介质情况下,尤其是放射性的离子选择性会在不同介质下更为敏感,所以我只能回答您常规水处理的一般应用数据,具体分析回答如下:

离子交换树脂对水中各种离子的交换能力是不同的,即有些离子易被离子交换树脂吸着,但吸着后要把它解吸下来就比较困难;反之,有些离子则难被离子交换树脂吸着,但易被解吸,这种性能称为离子交换树脂的选择性。这种选择性影响到离子交换树脂的交换和再生过程。

它有两个规律:

(1)离子带的电荷越多,越易被离子交换树脂吸着,例如两价离子比一价离子易被吸着;

(2)对于带有相同电荷量的离子,则原子序数大的元素,形成离子的水合半径小,较易被吸着。

对于阳离子交换树脂来说,它对水中各种常见离子的选择性次序为:

Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >Li+

这个次序只适合于在含盐量不很高的水溶液中。在浓溶液中,离子间的干扰较大,且水合半径的大小顺序和上述的次序也有些差别,其结果是使得在浓溶液中各离子间的选择性差别较小。

离子交换树脂的选择性除了和被吸着离子的本质有关外,还与离子交换树脂的结构,特别是与其活性基团有关。例如含磺酸基(-SO3-)的强酸性阳离子交换树脂对H+的吸着能力并不很强,在选择性次序中H+居于Na+和Li+之间,即:

Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >H+ >Li+

而含有羧酸基(-COO-)的弱酸性阳离子交换树脂,对H+有特别强的吸着能力,H+的选择性甚至比Fe3+还强,即:

H+ >Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >Li+

阅读全文

与铵根离子交换树脂改性相关的资料

热点内容
plus树脂 浏览:688
stsm净化器怎么使用 浏览:314
中国反渗透膜排名 浏览:645
航电中和微型空气净化器怎么样 浏览:221
污水处理ph过高会有什么影响 浏览:604
观察自来水跟污水 浏览:167
空气净化器和抽湿器有什么区别 浏览:881
聚氨酯树脂漆理化性质 浏览:777
纸坊地铁7号线汉口蒸馏医院 浏览:144
超滤上反洗和下反洗 浏览:404
饮水机烧水怎么有胶味 浏览:486
纯净水导电是什么意思 浏览:13
店铺饮水机放什么方位好 浏览:535
超滤净水机的一般使用寿命 浏览:617
污水管网坡度需要多少度 浏览:82
你在污水里为什么不能生存 浏览:562
超滤膜鱼缸循环 浏览:289
上纬乙烯基树脂系列 浏览:239
登封市城南污水处理厂 浏览:36
坐便器水箱如何处理水垢 浏览:230