导航:首页 > 净水问答 > 离子交换与吸附应用

离子交换与吸附应用

发布时间:2024-08-28 22:54:17

A. 离子交换树脂和吸附树脂使用中应该注意那些问题

影响树脂使用效果和寿命的因素主要有:
氧化性物质会影响树脂的强度,版如游离氯、双氧水、浓硫酸权、硝酸等,降低树脂时候用寿命,应该尽量避免;
一般树脂系统都是动态吸附,偏流会影响树脂的处理效果,致使料液没有通过全部树脂,在运行过程中应该定期检查上下布水是否均匀,避免偏流发生;
焦油类物质和不溶物颗粒会堵塞树脂孔道,形成结块等使树脂吸附效率下降,应加强进水预处理,提前去除不溶物和焦油类物质。

B. 阳离子交换作用

岩石颗粒的表面往往带负电荷,因此能吸附某些阳离子。当某种成分的地下水与岩石颗粒接触时,水中某些阳离子被岩石颗粒表面吸附,以代替原来被吸附的阳离子,而原来被吸附的阳离子则进入水中,改变了地下水的化学成分,这种作用称为阳离子交换吸附作用。

阳离子交换的强度取决于很多因素,其中主要的是岩石的粒度、交换阳离子的性质、介质的pH值和水中电解质的浓度。

1.粒度

一般岩石的粒度越细,它的交换性能越强。因此,在黏土和黏土岩中,阳离子交换对水化学成分的影响明显。

2.离子性质

不同阳离子的吸附能不同,在其他条件相同的情况下,吸附能的大小取决于它们的离子价,离子价越高吸附能越强,并易留在岩石上。如果阳离子的电价相同,吸附能随原子量的增加而增大。部分离子吸附能强弱的顺序如下:

H+>Fe3+>Al3+>Ba2+>Ca2+>Mg2+>K+>Na+

由上可见,Ca2+的吸附能大于Na+,因此在自然界中常可见到地下水中的Ca2+交换吸附岩石颗粒表面的Na+

水文地球化学基础

阳离子交换吸附作用在含水层中广泛地进行,并且对改变地下水的化学成分及地下水的性质有重大意义。这种作用使硬度大的地下水变为硬度小的软水,形成低矿化度的钠水,如SO4—Na型、HCO3—Na型以及一些其他过渡型水。

3.pH值

在阳离子交换反应中,氢离子有着特殊的作用。它的交换能量不仅高于一价的阳离子,还高于二价和三价的阳离子。介质的pH值影响阳离子的吸附数量,水中的氢离子越多,对其他阳离子进入胶状综合体的阻力越强。增加与土壤处于平衡状态的溶液pH值,土壤的交换性能增强。当介质的pH值由6增加到11时,交换容量增加1~2倍。

4.电解质浓度

离子交换吸附作用并不仅决定于离子的性质,在吸附交换过程中,水中电解质浓度也起着重要作用,浓度大的离子比浓度小的离子易被吸附。因此,如果钠的浓度相当大时,吸附综合体中的部分钙离子将被钠离子排挤出去,水中的Na+与岩石颗粒表面的Ca2+就发生交换吸附的现象,例如海水入侵过程中的Na+与Ca2+的交换吸附。

水文地球化学基础

天然水中的交换主要是阳离子交换,而不是阴离子交换。这是由于岩石和土壤的胶体成分主要是由SiO2、Al2O3和其他带负电的胶粒所组成,它们吸附带正电的阳离子。除阳离子吸附外,在某些情况下也能发生阴离子吸附作用(例如砖红壤),但是对这种过程研究很少。

C. 闃崇诲瓙浜ゆ崲鏍戣剛闃崇诲瓙浜ゆ崲鏍戣剛鍚搁檮浠涔堢诲瓙

1銆侀槼绂诲瓙浜ゆ崲鏍戣剛鍜岄槾绂诲瓙浜ゆ崲鏍戣剛鐨勫尯鍒鏄浠涔堬紵2銆侀槼绂诲瓙浜ゆ崲鏍戣剛鐨勭敤閫斿拰鍘熺悊?3銆侀槼绂诲瓙浜ゆ崲鏍戣剛鍜岄槾绂诲瓙浜ゆ崲鏍戣剛鏈変粈涔堝尯鍒?

闃崇诲瓙浜ゆ崲鏍戣剛鍜岄槾绂诲瓙浜ゆ崲鏍戣剛鐨勫尯鍒鏄浠涔堬紵

闃崇诲瓙浜ゆ崲鏍戣剛鍜岄槾绂诲瓙浜ゆ崲鏍戣剛鐨勫尯鍒鏈涓昏佸湪浜庯紝闃崇诲瓙浜ゆ崲鏍戣剛涓昏佸惛闄勬按涓鐨勯槼绂诲瓙锛岄槾绂诲瓙浜ゆ崲鏍戣剛涓昏佸惛闄勬按涓鐨勯槾绂诲瓙銆

鍏蜂綋鍖哄埆锛

绂诲瓙浜ゆ崲鏍戣剛鍙鍒嗕负涓ょ被锛岄槼绂诲瓙浜ゆ崲鏍戣剛鍜岄槾绂诲瓙浜ゆ崲鏍戣剛锛屽苟涓斿彲浠ュ垎鍒浜ゆ崲婧舵恫涓鐨勯槼绂诲瓙鍜岄槾绂诲瓙銆

闃崇诲瓙浜ゆ崲鏍戣剛锛氭椿鎬у熀鍥㈡槸闃崇诲瓙锛屼緥濡傛阿绂诲瓙鎴栭挔绂诲瓙銆傛爲鑴備笂鐨勬椿鎬у熀鍥㈠啀娆′笌婧舵恫涓鐨勯槼绂诲瓙浜ゆ崲锛屾阿绂诲瓙鎴栭挔绂诲瓙娴佸叆锛屾憾娑蹭腑鐨勯槼绂诲瓙杩斿洖鏍戣剛銆傛竻娲楀悗锛屽皢鐩鏍囩墿璐ㄧ殑闃崇诲瓙娲楁帀锛屼互杩涜屽垎绂诲拰绾鍖栥

闃寸诲瓙浜ゆ崲鏍戣剛锛氭椿鎬у熀鍥㈡槸闃寸诲瓙锛屼緥濡傛阿姘ф牴绂诲瓙鍜屾隘绂诲瓙銆傚啀娆″皢鍔犺浇婧舵恫涓鐨勯槾绂诲瓙浜ゆ崲涓烘阿姘ф牴鎴栨隘绂诲瓙锛屼互浣跨洰鏍囩墿璐ㄤ笌鏍戣剛铻嶅悎骞舵礂鍘汇

闃崇诲瓙浜ゆ崲鏍戣剛鍜岄槾绂诲瓙浜ゆ崲鏍戣剛鐨勫惛闄勯『搴忎笉鍚

闃崇诲瓙鏍戣剛鍙堝垎涓哄己閰稿拰寮遍吀涓ょ嶏紝闃寸诲瓙鏍戣剛鍙堝垎涓哄己纰卞拰寮辩⒈锛堟垨涓绛夊己閰稿拰涓绛夊己纰憋級涓ょ嶃傜诲瓙浜ゆ崲鏍戣剛瀵规憾娑蹭腑鐨勪笉鍚岀诲瓙鍏锋湁涓嶅悓鐨勪翰鍜屽姏锛屽苟涓斿瑰惛闄勫叿鏈夐夋嫨鎬с傝繘琛屾爲鑴備氦鎹㈠惛闄勭殑鍚勭嶇诲瓙鐨勫己搴︽湁涓鑸瑙勫垯锛屼絾鏄涓嶅悓鐨勬爲鑴傚彲鑳戒細鐣ユ湁涓嶅悓銆

闃崇诲瓙浜ゆ崲鏍戣剛鐨勭敤閫斿拰鍘熺悊?

闃崇诲瓙浜ゆ崲鏍戣剛闃崇诲瓙浜ゆ崲鏍戣剛鐨勭敤閫闃崇诲瓙浜ゆ崲鏍戣剛

涓銆侀熷搧琛屼笟锛

绂诲瓙浜ゆ崲鏍戣剛鍙浠ョ敤鏉ュ埗绯栥侀ギ鏂欍侀厭銆佸懗绮剧瓑棰嗗煙闃崇诲瓙浜ゆ崲鏍戣剛锛岄珮鏋滅硸娴嗗氨鏄閫氳繃绂诲瓙浜ゆ崲鏍戣剛澶勭悊鍚庣敓鎴愮殑涓绉嶄骇鍝闃崇诲瓙浜ゆ崲鏍戣剛锛岀诲瓙浜ゆ崲鏍戣剛鍦ㄩ熷搧琛屼笟涓鐨勫簲鐢ㄩ潪甯稿箍娉涳紝涓旀晥鏋滈潪甯稿ソ锛岃兘澶熸湁鏁堢殑鍘婚櫎娑蹭綋鐨勭诲瓙銆

浜屻佸寲宸ヨ屼笟锛

鍦ㄦ湁鏈哄悎鎴愪腑锛岀诲瓙浜ゆ崲鏍戣剛鍙浠ヤ綔涓哄偓鍖栧墏锛岃繘琛岄叝鍖栥佹按瑙g瓑鍙嶅簲锛岃屼笖鍙浠ュ弽澶嶄娇鐢锛屽垎绂荤殑鏁堟灉闈炲父濂斤紝涔熶笉浼氬圭幆澧冮犳垚姹℃煋锛岃兘澶熸湁鏁堢殑鎺у埗锛屼笖涓嶄細瀵逛汉浣撻犳垚鍗卞炽

涓夈佸埗鑽琛屼笟锛

鍦70骞翠唬灏卞凡缁忓紑濮嬩娇鐢ㄧ诲瓙浜ゆ崲鏍戣剛杩涜屽埗鑽锛屼竴寮濮嬫槸鐢ㄤ簬鑽鐗╃殑鎻愬彇銆佸垎绂讳互鍙婄函鍖栫瓑锛岀敱浜庣诲瓙浜ゆ崲鐨勫彲閫嗘э紝鎵浠ュ湪缂撴帶閲婄粰鑽绯荤粺鍜岄澏鍚戠粰鑽绯荤粺涓涔熸湁搴旂敤锛岀诲瓙浜ゆ崲鏍戣剛涓嶄粎鑳藉熸湁鏁堢殑鎺у埗锛屼笖闈炲父鐨勫畨鍏ㄣ

闃崇诲瓙浜ゆ崲鏍戣剛鐨勫師鐞嗭細

闃虫爲鑴傚垎寮辨爲鑴傚拰寮烘爲鑴備袱澶х被銆傞槼绂诲瓙浜ゆ崲鏍戣剛鍒嗗瓙寮廐-R(褰撶劧涔熷彲浠ユ槸Na-R鍨), H灏辨槸姘㈢诲瓙銆傛爲鑴傞珮搴︾害0.8绫冲埌1.6绫炽傚綋姘翠粠涓婂悜涓嬶紝閫氳繃鏍戣剛灞傛椂锛屾按涓鐨勯槼绂诲瓙涓庢爲鑴傜殑H绂诲瓙鍙戠敓浜ゆ崲锛屾爲鑴傝緝涓婂眰鏄閾侀挋闀佺诲瓙锛屾帴鐫鏄閽鹃挔閾电诲瓙銆傚嚭姘存按璐ㄦ槸閰告х殑锛孭H鍊间竴鑸灏忎簬3銆傚綋杩愯岀害涓澶╁乏鍙虫椂锛屽嚭姘村紑濮嬪嚭鐜伴挔绂诲瓙锛岃〃绀哄弽搴斿埌浜嗙粓鐐癸紝闇瑕佺敤閰(HCl)鍙嶆礂锛屽皢閽犻挋绂诲瓙鍐嶇疆鎹㈠嚭鏉ャ

闃崇诲瓙浜ゆ崲鏍戣剛鍜岄槾绂诲瓙浜ゆ崲鏍戣剛鏈変粈涔堝尯鍒?

闃崇诲瓙浜ゆ崲鏍戣剛涓庨槾绂诲瓙浜ゆ崲鏍戣剛鐨勫尯鍒锛

1.闃存爲鑴傜殑鍔熻兘鍩哄洟鏄纰辨у熀鍥锛屾瘮濡傜晶鍩-COOH銆傞槾绂诲瓙浜ゆ崲鏍戣剛鏍规嵁鍔熻兘鍩哄洟鍐呮墍鍚鏈夌殑绂诲瓙锛屽彲浠ュ垎涓篐O-鍨嬫爲鑴傚拰CL-鍨嬫爲鑴傦紝閫氳繃绂诲瓙鍚搁檮鐨勫師鐞嗗规按涓闃寸诲瓙杩涜屽惛闄勶紝鍘婚櫎姘翠腑鐨勯槾绂诲瓙锛屼娇浜ф按杈惧埌浣跨敤瑕佹眰銆

2.闃崇诲瓙浜ゆ崲鏍戣剛鏄鍦7锛呯殑鑻涔欑儻鍜屼簩涔欑儻鍏辫仛鐗╃殑浜よ仈涓鍏锋湁纾洪吀鍩猴紙-SO3 H锛夌殑闃崇诲瓙浜ゆ崲鏍戣剛锛屾槸纾哄寲鐨勮嫰涔欑儻鍑濊兌鍨嬪己閰搁槼绂诲瓙浜ゆ崲鏍戣剛銆傚嵆浣垮湪纰辨э紝涓鎬у拰閰告т粙璐ㄤ腑涔熷叿鏈夌诲瓙浜ゆ崲鍔熻兘銆

3.闃崇诲瓙浜ゆ崲鏍戣剛涓昏佺敤浜庨ギ鐢ㄦ按鐨勮蒋鍖栵紝閿呯倝姘寸殑杞鍖栵紝宸ヤ笟姘村勭悊锛屽伐涓氬簾姘村勭悊锛岄熷搧宸ヤ笟锛屽埗鑽绮惧埗锛屽埗绯栵紝鍐峰嚌姘寸簿鍒剁瓑锛屽埗澶囪秴绾姘淬

4.闃寸诲瓙浜ゆ崲鏍戣剛涓昏佺敤浜庡幓闄ゅ己閰稿拰寮遍吀銆傜數娉虫紗锛屾箍娉曞喍閲戯紝椋熷搧鍔犲伐锛岀敓鐗╁埗鑽鍔犲伐锛屽埗鑽涓氾紝鑴辩洂锛屼簩姘у寲纭呭幓闄わ紝鍐峰嚌娑叉姏鍏夛紝鏈夋満鐗╁幓闄ょ瓑鐨勫幓闄ゅ拰绮惧姞宸ャ

瀹為檯涓婏紝鍦ㄩ夋嫨绂诲瓙浜ゆ崲鏍戣剛鏃讹紝瀹冧富瑕佸彇鍐充簬鍏跺簲鐢ㄩ嗗煙銆傞氬父锛屾渶濂戒娇鐢ㄩ槼绂诲瓙鏍戣剛杩涜屾按杞鍖栧勭悊锛屾渶濂戒娇鐢ㄩ槾绂诲瓙鏍戣剛杩涜岀數娉虫秱鑶滃拰鑴辩洂銆傚綋鐢ㄤ簬瓒呯函姘村勭悊鏃讹紝寤鸿浣跨敤闃寸诲瓙鍜岄槼绂诲瓙鐨勬贩搴婃爲鑴傘

D. 离子交换法净化水的原理

离子交换法净化水的原理分为吸附、交换和冲洗三个阶段。

3、冲洗阶段

冲洗阶段是为了重新使离子交换树脂处于可交换状态而进行的。当离子交换树脂吸附的离子达到一定饱和程度后,树脂需要进行再生以继续有效工作。这一阶段通常使用适当浓度的酸和碱溶液进行。

在冲洗过程中,这些溶液流经树脂,将之前吸附在树脂上的离子释放出来,同时恢复树脂上的官能基的可交换性。这使得离子交换树脂可以再次用于吸附和交换水中的离子。

E. 涓鍥芥湁鍑鍖栨牳搴熸按鎶鏈鍚

涓鍥芥湁鍑鍖栨牳搴熸按鎶鏈銆傛垜鍥芥牳搴熸按鐨勫勭悊鏂规硶濡備笅锛氬惛闄勫垎绂绘硶銆侀嗘笚閫忔硶銆佺诲瓙浜ゆ崲娉曘

1銆佸惛闄勫垎绂绘硶

鍦ㄦ斁灏勬ф按澶勭悊杩囩▼涓锛岄噰鐢ㄥ氱嶅嚌缁撳墏銆佸惛闄勫墏鍒嗙婚櫎鏀惧皠鎬ф牳绱狅紝姣斿傛斁灏勬ч摨銆侀挻绛夈傞氬父閲囩敤娌夋穩娉曚綔涓轰复鏃舵墜娈碉紝浣挎斁灏勬ф牳绱犲湪娌夋穩鍓備腑鍚庯紝杈惧埌鍘婚櫎鐩鐨勩傚惛闄勫垎绂绘硶鑳藉熸湁鏁堝幓闄ゆ斁灏勬х墿璐锛屼絾杩欑嶆柟娉曠殑鐢熶骇鎴愭湰姣旇緝楂樸

鏍稿簾姘寸殑涓昏佺壒鐐

鏍稿簾姘翠腑涓昏佸惈鏈夋阿鐨勬斁灏勬у悓浣嶇礌姘氾紝鍏跺崐琛版湡涓12.3骞淬傛皻铏界劧鍏锋湁杈冧綆鐨勬斁灏勬у己搴︼紝浣嗘槸鐢变簬鍏朵笌鏅閫氭阿鐩镐技锛屽彲浠ヤ笌姘х粨鍚堝舰鎴愭皻姘у寲鐗╋紙閲嶆按锛夛紝浠庤岃繘鍏ョ敓鐗╀綋鍐呮垨鐜澧冧腑銆

姘氬圭幆澧冧篃鏈変竴瀹氱殑褰卞搷锛屽傚奖鍝嶇粏鑳炲垎瑁傘佸熀鍥犺〃杈剧瓑銆傛牴鎹涓嶅悓鐨勬潵婧愬拰鎯呭喌锛屾牳搴熸按涓姘氱殑娴撳害鍜屾瘮渚嬩篃涓嶅悓锛屼絾閫氬父閮戒綆浜庡浗闄呮爣鍑嗗拰瀹夊叏闄愬笺

鏍稿簾姘寸敱浜庡叾浣庢斁灏勬у拰浣庡嵄闄╂э紝鍙浠ラ噰鐢ㄨ緝绠鍗曠殑鏂规硶杩涜屽勭悊锛屼互杈惧埌鎺掓斁鏍囧噯鎴栧洖鐢ㄦ爣鍑嗐傚父鐢ㄧ殑澶勭悊鏂规硶鏈夋矇娣娉曘佽繃婊ゆ硶銆佸弽娓楅忔硶绛夈傝繖浜涙柟娉曞彲浠ユ湁鏁堝湴鍘婚櫎鏍稿簾姘翠腑鐨勬皻鎴栧叾浠栧井閲忔斁灏勬х墿璐锛屽噺灏戝圭幆澧冪殑褰卞搷銆

澶勭悊鍚庣殑鏍稿簾姘村繀椤荤﹀悎鍥介檯鏍囧噯鍜屽畨鍏ㄨ勮寖锛屾帶鍒跺叾鏀惧皠鎬ф按骞冲拰鎺掓斁閲忥紝鐩戞祴鍏剁幆澧冨奖鍝嶏紝骞堕噰鍙栧繀瑕佺殑闃叉姢鎺鏂姐

浠ヤ笂鍐呭瑰弬鑰冿細鐧惧害鐧剧-鏍稿簾姘

F. 什么是离子交换法

离子交换法是:一种借助于离子交换剂的离子和污水中的离子进行交换反应而除去污水中有害离子的方法。

离子交换法的运用:

1、水处理

离子交换法可以有效地去除水中的有害离子,如钙、镁、铁、锰等,以及重金属离子,如汞、铅、镉等,使水质得到净化。

2、药品制备:

药品制备是离子交换法的重要应用领域之一。通过离子交换法,可以提取和纯化生物碱、氨基酸、抗生素等药品的有效成分,以提高药品的纯度和质量。同时,离子交换法也可用于制备放射性药物,通过吸附和富集放射性空前搏离子,实现药物的制备和纯化。

3、环境保护:

环境保护是当今社会面临的重要问题之一,而处理工业废水中的重金属离子和有机污染物是其中的一个关键环节。离子交换法作为一种高效的分离方法,可以用于处理工业废水中的有害物质,如汞、铅、镉等重金属离子和有机污染物,从而达到环保排放标准。

4、湿法冶金:

湿法冶金是一种利斗祥用溶液中的金属离子进行提取和纯化的工艺,其中离子交换法是一种重要的技术手段。通过离子交换法,可以吸附和富集溶液中的金属离子,从而实现金属的提取和纯化。如铜、锌、钴等,可用于湿法冶金工业。

G. 离子交换树脂的吸附选择

离子交换树脂的吸附交换原理:

树脂本身的离子内一般是低价离子,所以树脂在与水接触时,根据树脂的容吸附选择性,会将水中的高价离子吸附,将低价离子释放,而这些被释放的低价离子会与水中的其他离子结合,成为无害的物质,而在实际使用的过程中,经常都是将树脂转化为其他的离子形式进行使用,比如一般阳离子交换树脂会转化为钠型树脂再进行使用,从而达到软化水的目的。


离子交换树脂的吸附顺序:

1、离子交换树脂对阳离子的吸附顺序:

Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+


2、强碱性阴离子交换树脂对阴离子的吸附顺序:

SO42- > NO3- > Cl- > HCO3- > OH-


3、弱碱性阴离子交换树脂对阴离子的吸附顺序:

OH- > 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-

H. 离子交替吸附作用

离子交替吸附作用主要发生在具有固定电荷的固体矿物表面,无论是阳离子还是阴离子,均可发生交替吸附作用,但目前研究得较多的是阳离子交替吸附作用。离子交替吸附作用的一个重要特点就是,伴随着一定量的一种离子的吸附,必然有等当量的另一种同号离子的解吸(图2-5-4)。离子交替吸附作用之所以具有这样的特点,主要是由于吸附剂通常都具有一定的离子交换容量,因此这里首先对离子交换容量予以讨论。

图2-5-3 有机质表面的负电荷

图2-5-4 阳离子交替吸附作用图解

2.5.2.1 离子交换容量

离子交换容量包括阳离子交换容量(CEC—Cation Exchange Capacity)和阴离子交换容量(AEC—Anion Exchange Capacity),我们主要讨论阳离子交换容量,它被定义为每100 g干吸附剂可吸附阳离子的毫克当量数。例如,在蒙脱石的结晶格架中,铝八面体中的三价铝可被二价镁所置换,根据测定,每摩尔蒙脱石中镁的含量为0.67 mol,即蒙脱石的分子式为:Si8Al3.33Mg0.67O20(OH)4。已知蒙脱石的分子量是734 g,因此这种蒙脱石的阳离子交换容量为:

水文地球化学

在实际中,通常都是通过实验来测定吸附剂的阳离子交换容量。尤其是对于野外所采取的土样或岩样,由于其中含有多种吸附剂,实验测定往往是唯一可行的方法。阳离子交换容量的实验测定在多数情况下都是用pH为7的醋酸铵溶液与一定量固体样品混合,使其全部吸附格位被所饱和,然后用其他溶液(例如NaCl溶液)把被吸附的全部交换出来,达到交换平衡后,测定溶液中Na+的减少量,据此便可计算样品的阳离子交换容量。表252列出了一些粘土矿物及土壤的阳离子交换容量,由表可见,与土壤相比,矿物的阳离子交换容量有更大的变化范围。

松散沉积物的阳离子交换容量受到了多种因素的影响,主要有:

(1)沉积物中吸附剂的种类与数量。例如,我国北方土壤中的粘土矿物以蒙脱石和伊利石为主,因此其CEC值较大,一般在20 meq/100 g以上,高者达50 meq/100 g以上;而南方的红壤,由于其有机胶体含量少,同时所含的粘土矿物多为高岭石及铁、铝的氢氧化物,故CEC较小,一般小于20 meq/100 g。

表2-5-2 一些粘土矿物及土壤的阳离子交换容量

(2)沉积物颗粒的大小。一般来说,沉积物的颗粒越小,其比表面积越大,CEC值越高。例如,根据一河流沉积物的粒径及其CEC的实测结果,随着沉积物的粒径为从4.4μm增至1000μm,其CEC从14~65 meq/100 g变到4~20 meq/100 g,最终减小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般来说,随着水溶液pH值的增加,土壤表面的可变负电荷量增多,其CEC相应增加;相反,随着水溶液pH值的减小,土壤表面的可变负电荷量不断减少,其CEC也随之减小。

2.5.2.2 阳离子交换反应及平衡

阳离子交换反应的一般形式可写为:

水文地球化学

式中:Am+、Bn+表示水溶液中的A、B离子;AX、BX表示吸附在固体表面的A、B离子。上述反应的平衡常数可写为:

水文地球化学

式中:a标记溶液中组分的活度;{}表示表示吸附在固体表面上的离子的活度。对于水溶液中的离子,其活度可使用表2-1-1中的公式进行计算;但对于吸附在固体表面上的离子,其活度的计算至今还没有满意的方法。目前主要采用两种替代的方法来处理这一问题,一种是Vanselow惯例,另一种是Gaines-Thomas惯例。Vanselow惯例是由Vanselow于1932年提出的,他建议使用摩尔分数来代替式(2-5-7)中的{AX}和{BX}。若固体表面仅吸附了A离子和B离子,在一定重量(100 g)的吸附剂表面A、B的含量(mmol)依次为qA和qB,则吸附剂表面A、B的摩尔分数分别为:

水文地球化学

显然,xA+xB=1。这样式(2-5-7)可改写为:

水文地球化学

Gaines-Thomas惯例是由Gaines和Thomas于1953年提出的,他们建议采用当量百分数来代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分别表示吸附剂表面A、B的当量百分数,则有:

水文地球化学

同样,yA+yB=1,这样式(2-5-7)变为:

水文地球化学

目前,这两种惯例都还在被有关的研究者所使用,各有优点,互为补充。事实上,离子交换反应的平衡常数并不是一个常数,它往往随着水溶液的成分、pH值及固体表面成分的变化而变化,因此许多研究者认为将其称为交换系数(Exchange Coefficient)或选择系数(Selectivity Coefficient)更合适一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知两种不同离子与同一种离子在某种吸附剂中发生交换反应的交换系数,则可计算出这两种离子发生交换反应的交换系数。例如,若在某种吸附剂中下述反应:

水文地球化学

交换系数分别为KCa-Na和KK-Na,则在该吸附剂中反应:

水文地球化学

的交换系数为:

水文地球化学

这是因为(以Vanselow惯例为例):

水文地球化学

故有:

水文地球化学

表2-5-3列出了不同离子与Na+发生交换反应的交换系数(Vanselow惯例),据此便可按照上述的方法求得这些离子之间发生交换反应时的交换系数。

需要说明的是,在表2-5-3中,I离子与Na+之间交换反应的反应式为:

水文地球化学

表2-5-3 不同离子与Na+发生交换反应时的交换系数

其交换系数的定义式如下:

水文地球化学

【例】在某地下水系统中,有一段含有大量粘土矿物、因此具有明显阳离子交换能力的地段,假定:

(1)该地段含水层的阳离子交换容量为100 meq/100 g,含水层中的交换性阳离子只有Ca2+和Mg2+,初始状态下含水层颗粒中Ca2+、Mg2+的含量相等;

(2)在进入该地段之前,地下水中的Ca2+、Mg2+浓度相等,均为10-3 mol/L;

(3)含水层的孔隙度为n=0.33,固体颗粒的密度为ρ=2.65 g/cm3

(4)含水层中发生的阳离子交换反应为:

水文地球化学

不考虑活度系数的影响,其平衡常数(Vanselow惯例)为:

水文地球化学

试使用阳离子交换平衡关系计算,当地下水通过该地段并达到新的交换平衡后,水溶液中及含水层颗粒表面Ca2+、Mg2+浓度的变化。

【解】:设达到新的交换平衡后,含水层颗粒中Ca2+的摩尔分数为y、水溶液中Ca2+的浓度为x(mmol/L),则这时含水层颗粒中Mg2+的摩尔分数为1-y、水溶液中Mg2+的浓度为2-x(mmol/L),故有:

水文地球化学

整理得:

水文地球化学

已知含水层的CEC=100 meq/100g,因此对于二价阳离子来说,含水层颗粒可吸附的阳离子总量为50 mmol/100 g=0.5 mmol/g。若用z表示达到交换平衡后1 g含水层颗粒中Ca2+的含量,则有:

水文地球化学

以式(2-5-25)带入式(2-5-24)得:

水文地球化学

为了计算上述变化,需要对1 L水所对应的含水层中Ca2+的质量守恒关系进行研究。已知含水层的孔隙度为0.33,显然在这样的含水层中,1 L水所对应的含水层颗粒的体积为0.67/0.33(L),相应的含水层颗粒的质量为:

水文地球化学

故吸附作用前后1 L水所对应的含水层中Ca2+的质量守恒关系为:

水文地球化学

式中的0.25为吸附作用前1 g含水层颗粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化学

以式(2-5-26)带入式(2-5-28)并整理得:

水文地球化学

这是一个关于z的一元二次方程,求解该方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得达到新的交换平衡后含水层颗粒中Ca2+的摩尔分数为0.5001254,水溶液中Ca2+的浓度为0.75 mmol/L,故这时含水层颗粒中Mg2+的摩尔分数为0.4998746、水溶液中Mg2+的浓度为1.25 mmol/L。由此可见,地下水通过该粘性土地段后,尽管Ca2+、Mg2+在含水层颗粒中的含量变化很小,但它们在地下水中的含量变化却较大,Mg2+从原来的1 mmol/L增加到了1.25 mmol/L,Ca2+则从原来的1 mmol/L减少到了0.75 mmol/L。

2.5.2.3 分配系数及离子的吸附亲和力

除了交换系数,还有一个重要的参数需要介绍,这就是分配系数(Separation Factor)(Benefield,1982)。对于反应(2-5-6),它被定义为:

水文地球化学

式中cA和cB分别为水溶液中A、B离子的摩尔浓度。显然,若不考虑活度系数的影响,对于同价离子间的交换反应,QA-B=KA-B。式(2-5-29)可改写为:

水文地球化学

由式(2-5-30)可见,QA-B反映了溶液中B与A的含量之比与吸附剂表面B与A的含量之比之间的相对关系。当QA-B=1时,说明达到交换平衡时B与A在水溶液中的比例等于其在吸附剂表面的比例,因此对于该吸附剂,A和B具有相同的吸附亲和力;当QA-B>1时,说明达到交换平衡时B与A在水溶液中的比例大于其在吸附剂表面的比例,因此A与B相比具有更大的吸附亲和力;当QA-B<1时,说明达到交换平衡时B与A在水溶液中的比例小于其在吸附剂表面的比例,因此B与A相比具有更大的吸附亲和力。

事实上,即使对于同一阳离子交换反应,其分配系数也会随着水溶液性质的变化而变化(Stumm and Morgan,1996)。图2-5-5给出了Na—Ca交换反应的分配系数随Na+浓度的变化。沿着图中的虚线,QNa-Ca=1,这时Na+和Ca2+具有相同的吸附亲和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附剂中的比例要远大于其在水溶液中的比例,因此在这种情况下Ca2+具有更强的吸附亲和力。随着Na+浓度的增大,Ca2+的吸附亲和力逐渐减弱,Na+的吸附亲和力则逐渐增强,当[Na+]=2 mol/L时,Na+已经变得比Ca2+具有更强的吸附亲和力。Na—Ca交换反应分配系数的这种变化对于解释一些实际现象具有重要的意义,根据这种变化,我们可以推断淡水含水层中通常含有大量的可交换的Ca2+,而海水含水层中通常含有大量的可交换的Na+。这种变化关系也解释了为什么硬水软化剂能够选择性地去除Ca2+,同时通过使用高Na+浓度的卤水溶液进行冲刷而再生。

图2-5-5 溶液中Ca2+的含量对吸附作用的影响

根据离子交换反应的分配系数,可以定量地评价离子的吸附亲和力。一般来说,离子在土壤中的吸附亲和力具有下述的规律:

(1)高价离子比低价离子具有更高的吸附亲和力。例如,Al3+>Mg2+>Na+;>。这是因为离子交换反应从本质上说是一个静电吸引过程,离子价越高,所受到的静电吸引力就越大,它就越容易被吸附剂所吸附。

(2)同价离子的吸附亲和力随着离子水化半径的减小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。这是因为离子的水化半径越小,它越容易接近固体表面,从而也就越易于被固体所吸附。

Deutsch(1997)根据Appelo和Postma(1994)的资料,对二价阳离子的吸附亲和力进行了研究,他所得到了吸附亲和力顺序如下:

水文地球化学

在常见的天然地下水系统中,Ca2+和Mg2+通常为地下水中的主要阳离子,它们在水溶液中相对较高的含量将使其成为含水层颗粒表面的主要吸附离子,尽管一些微量元素可能更紧密地被吸附在含水层颗粒表面上。但在污染地下水系统中,若吸附亲和力更强的Pb2+和Ba2+的含量与Ca2+、Mg2+的含量在同一水平上,则含水层颗粒表面的主要吸附离子将变为Pb2+和Ba2+,这将大大地影响Pb2+和Ba2+在地下水中的迁移能力。

综合来讲,阳离子和阴离子的吸附亲和力顺序分别为(何燧源等,2000):

水文地球化学

可见,阳离子中Li+和Na+最不易被吸附,阴离子中Cl-和最不易被吸附。

离子交换对地下水质产生重要影响的一种常见情况就是海水入侵到淡水含水层中。当在沿海地带大量抽取含水层中的淡水时,海水将对含水层进行补给。初始状态下含水层颗粒表面吸附的主要是Ca2+和Mg2+,海水中的主要阳离子为Na+,阴离子为Cl-。这样入侵的海水将导致含水层中发生下述的阳离子交换反应:

水文地球化学

由于Cl-通常不易被吸附,也不参与其他的水岩作用过程。所以相对于Cl-来说,该过程将使得Na+的迁移能力降低。

地下水系统中另一种常见的情况与上述过程相反,这就是Ca2+置换被吸附的Na+,反应式如下:

水文地球化学

人们在大西洋沿岸的砂岩含水层(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉积盆地中(Thorstenson等,1979;Henderson,1985)均发现了这种天然的软化过程。该反应发生的前提条件是:含水层中含有碳酸盐矿物,CO2的分压较高,含水层颗粒中含有大量的可交换的Na+

I. 离子交换法富集分离阳离子和阴离子的原理各是什么

主要利用阴阳离子在树脂上的吸附与解吸附来完成的,比如阴离子树脂用于有机酸的富集,而阳离子用于生物碱的富集.当有机酸的阴离子与阴离子上的羟基负离子交换时被吸附,用酸水去洗脱,把有机酸阴离子置换下来,而达到富集效果.生物碱原理也一样,其他成分先区分不同物质的性质来设计富集的方法

阅读全文

与离子交换与吸附应用相关的资料

热点内容
树脂滤芯可以去钙镁离子吗 浏览:597
超滤反与渗透过滤 浏览:251
脱硫废水石灰乳把ph调至多少 浏览:213
ro过滤膜哪个好 浏览:431
为什么净水机水喝了会上厕所频繁 浏览:26
长虹牌ro反渗透净化器多少钱 浏览:362
饮水机供水属于什么形式供水 浏览:429
智选720净化器怎么用 浏览:1
呋喃树脂排气 浏览:864
餐饮污水检测收取检测费吗 浏览:541
gf6变速箱怎么换滤芯 浏览:634
反渗透纯水机有什么缺点 浏览:306
壁挂炉除垢剂加注方法 浏览:86
达川工业园区北部污水处理厂项目 浏览:536
亚硫酸钙能过滤水 浏览:821
生活污水选管径水力计算表 浏览:711
大便水是属于污水还是废水 浏览:365
树脂粉做型材企业标准 浏览:541
多离子去皱注射 浏览:32
重汽豪沃柴油滤芯卡怎么拆 浏览:636