导航:首页 > 净水问答 > 反渗透膜使用ph39

反渗透膜使用ph39

发布时间:2024-07-29 19:15:53

反渗透RO膜及清洗方法怎样的预处理才能使RO膜的寿命达到最大海德能ESPA2-4040大概多久换一次

注 1:在任何情况下不要让带有游离氯的水与复合膜元件接触,如果发生这种接触,将会造成膜元件性能下降,而且再也无法恢复其性能,在管路或设备杀菌之后,应确保送往反渗透膜元件的给水中无游离氯时,应通过化验来确证,应使用酸溶液来中和残余氯,并确保足够的接触时间以保证反应完全。

注 2:在反渗透膜元件担保期内,建议每次渗透膜清洗应与公司协商后进行,至少在第一次清洗时,公司的现场服务人员应在现场。

注 3:在清洗溶液中应避免使用阳离子表面活性剂,因为如果使用可能会造成膜元件的不可逆转的污染。

1. 反渗透膜元件的污染物

在正常运行一段时间后,反渗透膜元个会受到在给水中可能存在的悬浮物质或难溶物质的污染,这些污染物中最常见的为碳酸钙垢、硫酸钙垢、金属氧化物垢、硅沉积物及有机或生物沉积物。

污染物的性质及污染速度与给水条件有关,污染是慢慢发展的,如果不早期采取措施,污染将会在相对短的时间内损坏膜元件的性能。定期检测系统整体性能是确认膜元件发生污染的一个好方法,不同的污染物会对膜元件性能造成不同程度的损害。

表 1 列出了常见污染物对膜性能的影响。

2. 污染物的去除

污染物的去除可通过化学清洗和物理冲洗来实现,有时亦可通过改变运行条件来实现,作为一般的原则,当下列情形之一发生时应进行清洗。

2.1 在正常压力下如产品水流量降至正常值的 10 ~ 15% 。

2.2 为了维持正常的产品水流量,经温度校正后的给水压力增加了 10 ~ 15% 。

2.3 产品水质降低 10 ~ 15% 。盐透过率增加 10 ~ 15% 。

2.4 使用压力增加 10 ~ 15%

2.5 RO 各段间的压差增加明显 ( 也许没有仪表来监测这一迹象 ) 。

3. 常见污染物及其去除方法:

3.1 碳酸钙垢

在阻垢剂添加系统出现故障时或加酸系统出现而导致给水 PH 升高,那么碳酸钙就有可能沉积出来,应尽早发现碳酸钙垢沉淀的发生,以防止生长的晶体对膜表面产生损伤,如早期发现碳酸钙垢,可以用降低给水PH值至3.0 ~ 5.0之间运行 1 ~ 2 小时的方法去除。对沉淀时间更长的碳酸钙垢,则应采用RT-818A清洗液进行循环清洗或通宵浸泡。

注:应确保任何清洗液的 PH值不要低于 2.0 ,杯则可能会 RO 膜元件造成损害,特别是在温度较高时更应注意,最高的 PH 不应高于 11.0 。查使用氨水来提高 PH ,使用硫酸或盐酸来降低 PH 值。

3.2 硫酸钙垢

RT-818B清洗剂是将硫酸钙垢从反渗透膜表面去除掉的最佳方法。

3.3 金属氧化物垢

可以使用上面所述的去除碳酸钙垢的方法,很容易地去除沉积下来的氢氧化物 ( 例如氢氧化铁 ) 。

3.4 硅垢

对于不是与金属化物或有机物共生的硅垢,一般只有通过专门的清洗方法才能将他们去除,有关的详细方法请与公司联系。

3.5 有机沉积物

有机沉积物 ( 例如微生物粘泥或霉斑 ) 可以使用RT-818C 清洗剂去除,为了防止再繁殖,可使用经海德能公司认可的杀菌溶液在系统中循环、浸泡,一般需较长时间浸泡才能有效,如反渗透装置停用三天时,最好采用消毒处理,请与公司会商以确定适宜的杀菌剂。

3.6 清洗液

清洗反渗透膜元件时建议采用RT-818系列RO膜系统清洗剂。确定清洗前对污染物进行化学分析十分重要的,对分析结果的详细分析比较,可保证选择最佳的清洗剂及清洗方法,应记录每次清洗时清洗方法及获得的清洗效果,为在特定给水条件下,找出最佳的清洗方法提供依据。

对于无机污染物建议使用RT-818A 。对于硫酸钙及有机物污染建议使用RT-818B 。对于严重有机物污染建议使用RT-818C 。所有清洗可以在最高温度为摄氏 40℃以下清洗 60 分钟,所需用品量以每100 加仑 (379 升 ) 中加入量计算,配制清洗液时按比例加入药品及清洗用水,应采用不含游离氯的反渗透产品水来配制溶液并混合均匀。

清洗时将清洗溶液以低压大流量在膜的高压侧循环,此时膜元件仍装压力容器内而且需要用专门的清洗装置来完成该工作。

清洗反渗透膜元件的一般步骤:

1. 用泵将干净、无游离氯的反渗透产品水从清洗箱 ( 或相应水源 ) 打入压力容器中并排放几分钟。

2. 用干净的产品水在清洗箱中配制清洗液。

3. 将清洗液在压力容器中循环 1 小时或预先设定的时间,对于8 英寸或 8.5 英寸压力容器时,流速为 35~40 加仑/分钟 (133~151 升/分钟 ) ,对于 6 英寸压力容器流速为 15~20 加仑/分钟 (57~76 升/分钟 ) ,对于 4 英寸压力容器流速为 9~10 加仑/分钟 (34~38 升/分钟 ) 。

4. 清洗完成以后,排净清洗箱并进行冲洗,然后向清洗箱中充满干净的产品水以备下一步冲洗。

5. 用泵将干净、无游离氯的产品水从清洗箱 ( 或相应水源 ) 打入压力容器中并排放几分钟。

6. 在冲洗反渗透系统后,在产品水排放阀打开状态下运行反渗透系统,直到产品水清洁、无泡沫或无清洗剂 ( 通常需 15~30 分钟 ) 。

② 净水器R膜使用1个月后'数值越来越多到了100是R膜坏了吗

只能说是有可能坏。如果之前用过,后来一直放着不用了,膜很可能就会干燥,之前过滤的物质就会在上面结固,导致膜孔损坏。如果之前膜一直没用,也是有可能损坏,只是概率大小问题。你可以先试试水,看看过滤的速度是否减慢,水中的TDS值是否很高,如果TDS值大于50以上,过水速度明显很慢,就该考虑换膜了。

③ 请问杀菌剂会运用到什么行业啊,怎么用在线等!!

造纸:
异噻唑啉酮杀菌剂是一种广谱性杀菌剂,在循环冷却和造纸废水处理可用作杀菌剂,具有特好的杀菌,抑制粘泥增长的效果,该品投加40ppm后,可维持一周内细菌不会回升。
活性溴杀菌剂适用于工业循环冷却水,油田注水,造纸废水和污水等的杀菌灭藻。与液氯相比,该品特别适合于碱性和含氨、氮化合物的水系统中,不会造成环境污染。该品只有与次氯酸钠或氯气同时作用时才具有杀菌活性,一般维护余氯0.3~1ppm2~4小时,每天加一次。使用时先将活性溴用水稀释10~20倍,然后加入相应的杀菌剂,10~15分钟后即可加到需处理的水系统中,约5~10分钟后测定余氯。
噻苯咪唑、多菌灵、邻苯基苯酚、二硫氯基甲烷、百菌清、水杨酰苯胺、生物抑等可复配使用。
皮革:
目前,用于皮革工业的防霉剂主要有以下几类:
1无机化合物
(1)次氯酸及其盐、亚氯酸钠、高锰酸钾、碘化物、硼酸及其盐、亚硫酸盐和焦亚硫酸盐等。这类化合物目前主要作为防霉剂产品的辅助成分。
(2)无机纳米材料:纳米TiO2、纳米SiO2、纳米ZnO 等。开发无机纳米材料是目前皮革抗菌防霉剂开发的一个热点,但大多处于起步阶段,真正使用的纳米皮革防霉剂产品还未见报道。
2 有机化合物
(1)有机酚及卤代酚:酚类主要有甲酚、苯酚、焦油酚、苄基苯酚、乙萘酚、氨基酚等,卤代酚主要有氯代酚、二氯酚、溴代酚、对氯间二甲酚、2,2-亚甲基二氯代酚等。这类化合物是以前使用最多的防霉剂,但随着环保法规的日益严格,这类防霉剂的使用受到了限制,已逐渐被其它种类的化合物所取代。
(2)醇类化合物:苯甲醇、乙醇、卤代硝基烷醇类等。这类化合物目前也是主要作为防霉剂产品的辅助成分。
(3)酯类化合物:卤代水杨酸酯、羟基苯甲酸酯、卤代乙烯基苯酯、卤代乙酸苯甲醇酯、五氯苯基十二烷酸酯、α,β-不饱和羧酸酯等。这类化合物的毒性比较低,特别是α,β-不饱和羧酸酯对霉菌的作用效果比较好,是一类有开发潜力的防霉剂。
(4)酰胺类化合物:卤代乙酰胺、水杨酰苯胺、氨基苯磺酰胺、四氯间苯二甲腈等。这类化合物是目前常用的防霉剂的有效成分,其防霉效果比较好。
(5)季铵盐化合物:十二烷基苄基二甲基氯化铵(洁尔灭)、十二烷基苄基二甲基溴化铵(新洁尔灭)、烷基吡啶盐酸盐、十六烷基三甲基溴化铵(1631)等。由于这类化合物的毒性低、灭菌谱广、高效,而且还有很好的水溶性,已大量地运用在工业水处理、废水处理及石油化工中,在制革工业中,季铵盐化合物一般是用做皮革防腐剂,而用做皮革防霉剂的较少。目前,开发新的季铵盐杀菌组分用于皮革的防霉也是一个研究方向。
(6)杂环化合物:苯并咪唑、苯并噻唑、巯基苯并咪唑及其盐、六氢三羟乙基均三嗪、硝基吡啶、8-羟基喹啉及其盐、苯并异噻唑酮、二甲噻二嗪等。目前,皮革防霉剂大多数均以杂环化合物为有效成分,其毒性较低、灭菌谱广、防霉效果很好,是皮革防霉剂研制的主流方向。
(7)有机硫化合物:双三氯甲砜、大蒜素、双苯甲酰二硫、巯基吡啶、五氯硫酚等。皮革防霉剂中以有机硫化合物为有效成分的还较多,例如防霉效果较好的2-(硫氰基甲基硫)苯并噻唑也常被归为有机硫化合物。
使用防霉剂对其用量要控制适当,如果使用浓度过低起不到杀菌或抑菌的目的,而使用浓度过高会造成生产成本偏高。制革过程中所用的防霉剂的浓度依不同的防霉剂而不同,一般应为革重的0.1~0.5%左右。常用的皮革防霉剂的用量如下:
A-26 用量为0.3~0.5%,OITZ 用量为0.04~0.1%,TCMTB 为0.01~0.15%,对氯间甲苯酚(PCMC)为0.2~0.5%,邻苯基苯酚(OPP)为0.2~0.5%,2-苯并咪唑基氨基甲酸甲酯(BMC)为0.2~0.5%,三氯苯酚(TCP)为0.4~0.6%。只有浓度达到一定值时防霉剂才能有效起到防霉作用。
混凝土:烷基氮苯溴化物具有非常有效的杀菌效果. 它耐酸、耐碱、易溶、
微毒,能提高拌合物的流动度而不降低混凝土的强度,掺量仅为0125~0105 % ,而且还可以作为金属阻锈剂保护内部钢筋.有机锡制剂也具有十分有效的杀菌性能,它呈中性、不燃烧、溶于水、杀菌谱广,对细菌、真菌、附生物、昆虫等均有效,可保护各种材料免遭生物侵蚀.掺入后,还可提高混凝土的耐水性。

④ 电镀污水处理毕业设计

我最近也要在做的,我们讨论下:

电镀废水文献综述
设计要求:(1)水质:铜离子30mg/L,六价铬25mg/L,锌离子12mg/L,镍离子16mg/L,氰8mg/L,其他微量,铅等,Ph4.5
(2)处理要求:执行《污水综合排放标准》(GB8978-1996)一级标
中文摘要: 电镀行业的废水量在整个工业系统废水中虽然所占比重较小,但电镀废水含有氰化物、酸、碱以及六价铬、铜、镍、锌、镉等金属污染物,对环境有严重的危害,因此,国内外对这类废水积极的展开了治理方法的研究与应用。本文在吸取微电解和生物吸附处理重金属离子废水的优点以及已有实验对单一重金属离子废水进行处理的基础上,确定了使用微电解—生物膜复合工艺对实际电镀废水进行处理。
关键词:含铬废水 处理 还原
英文摘要: The plating wastewater with cyanide, acid, alkali and heavy metal ions such as chromium, copper, nickel, zinc, cadmium etc. has appeared to be environmental serious damage despite its small quantity proportion in all through the instrial wastewater. For the moment, the research and application of the wastewater treatment has commenced forwardly in domestic and overseas. In this paper, micro-electrolysis and biological lessons Absorption of Heavy Metal Ions wastewater treatment, as well as have the experimental advantage of heavy metal ions on a single wastewater treatment on the basis of determining the use of micro-electrolysis – biofilm composite plating process on the actual wastewater treatment.
Keywords: Electroplating wastewater, treatment,restore

铬在水环境中的存在形态主要是三价铬(Cr(Ⅲ)和六价铬(Cr(Ⅵ)),它们在水体中的迁移转化有一定的规律性。Cr(Ⅲ)主要被吸附在固体物质上面而存在于沉积物中;Cr(Ⅵ)多溶于水中,而且是稳定的,只有在厌氧的情况下,才还原为Cr(Ⅲ)。铬的毒性与其存在状态有关,通常认为Cr(Ⅵ)的毒性远比Cr(Ⅲ)大[1]。在电镀含铬废水中,Cr(Ⅵ)是主要的特征污染物。
1 Cr(Ⅵ)污染的来源
Cr(Ⅵ)化合物,是冶金工业、金属加工电镀、制革、颜料、纺织品生产、印染以及化工等行业必不可少的原料,这些工业分布点多面广,每天排放出大量含铬废水,这些废水的排放可造成水体和土壤的污染直接影响人类饮用水的卫生状况。WHO所规定的饮用水中Cr(Ⅵ)的含量标准为1~2μmol/L[2],国内有不少地方的饮用水由于受到工业废水的污染或因地质背景所致使生活饮用水中Cr(Ⅵ)含量严重超标。

2 含Cr(VI)污水的处理技术
通过查资料,电镀工业含铬废水的处理最常用的方法有还原法、电解法,工艺成熟,运行效果好。但是近来又有很多其他的方法被研究出来,综合比较会发现这些方法也各有优缺点。作为新方法,他们自有借鉴之处。
2.1还原沉淀法
化学沉淀法处理电镀含Cr(Ⅵ)废水,一种是通过还原法,把Cr(Ⅵ)还原成Cr(Ⅲ),然后沉淀;另一种是用钡盐,使铬酸根生成铬酸钡沉淀。袁智斌[3]通过建调节池,使含铬废水经调节池后进入还原池,在还原池通过加H2SO4控制pH值在2.5~3投加NaHSO3,将Cr(Ⅵ)还原成Cr(Ⅲ),并在反应池通过投加NaOH形成Cr(OH)3沉淀。窦秀冬等[4]通过研究比较,发现通过还原-沉淀法Cr去除率均达到99%以上,MgO的铬泥沉降性能非常优越,NaOH和CaO中掺入部分MgO可以较大地改善所生成铬泥的性能,最佳投药量以投加后pH≈8.3为宜。郑新卿[5]对还原-沉淀法处理含铬废水工艺步骤、固-液分离后的上清液和沉降污泥Cr(Ⅵ)含量以及Cr(Ⅲ)-Cr(Ⅵ)之间的形态转化相关性进行研究和分析,提出要特别注意控制含铬污水中铬反弹及全过程处理的完整性。

2.2电解法沉淀过滤
1.工艺流程概况
电镀含铬废水首先经过格栅去除较大颗粒的悬浮物后自流至调节池, 均衡水量水质, 然后由泵提升至电解槽电解,在电解过程中阳极铁板溶解成亚铁离子,在酸性条件下亚铁离子将六价铬离子还原成三价铬离子,同时由于阴极板上析出氢气,使废水pH 值逐步上升,最后呈中性。此时Cr3+ 、Fe3+ 都以氢氧化物沉淀析出,电解后的出水首先经过初沉池,然后连续通过(废水自上而下)两级沉淀过滤池。一级过滤池内有填料:木炭、焦炭、炉渣;二级过滤池内有填料:无烟煤、石英砂。污水中沉淀物由过滤池填料过滤、吸附,出水流入排水检查井。而后通过泵进入循环水池作为冷却用水。过滤用的木炭、焦炭、无烟煤、炉渣定期收集在锅炉房掺烧。
2.主要设备
调节池1座;初沉池1座、沉淀过滤池2座;循环水池1 座;电源控制柜、电解槽、电解电源、电解电压1套;水泵5台。
3.结果与分析
某电镀厂电镀废水处理设备在正常工况条件下,间隔不同的时间多次取样。
电镀含铬废水采用电解法沉淀过滤工艺处理后全部回用,过滤池内填料定期集中于锅炉房掺烧,达到了综合治理电镀含铬废水的目的。
该处理技术虽然运行可靠,操作简单,但应注意几个方面:
a)需要定期更换极板;
b)在一定的酸性介质中,氢氧化铬有被重新溶解的可能;
c)沉淀过滤池内的填料必须定期处理,焚烧彻底,否则会引起二次污染。由此可见,对处理设施加强管理非常重要。
4.结论
1)该处理工艺对电镀含铬废水治理彻底,过滤池内填料定期统一处理,不会引起二次污染;处理后清水全部回用,可节省水资源,具有明显的经济效益。
2)该工艺投资较小,技术成熟,运行稳定可靠,操作方便,易于管理,适应于不同规模的电镀生产企业。

2.3吸附法
吸附法是利用多孔性固态物质吸附水中污染物来处理废水的一种常用方法。吸附法的关键技术是吸附剂的选择,目前工业应用中最常用的吸附剂是活性炭,活性炭吸附容量大,对Cr(Ⅵ)阳离子也具有较强还原作用[6],用20%硫酸溶液浸泡后,Cr(Ⅵ)去除率达91.6%,易于再生[7]。Valix等[8]研究了活性炭表面的杂环原子(如S、N、O、H等)以及活性炭的结构特性对吸附Cr(Ⅵ)的影响,认为杂环原子辅助活性炭起还原剂作用,提高活性炭吸附铬酸根离子,此外提高活性炭的总表面积有助于提高吸附容量和取出Cr(Ⅵ)。
活性炭虽然性能优良,但我国活性炭产量少,价格较昂贵,限制了它们在一些经济不发达地区和一些行业的使用,因此,又开发出来了许多类型的吸附剂,一类是利用工农业废弃物做吸附剂,以废治废,不仅吸附效果好,还具有价格低,来源广的优点。李鑫金等[9]用活化赤泥处理含铬废水,处理含Cr(III)浓度在300 mg/L以下废水,去除率可达99%以上;处理含Cr(Ⅵ)废水,先加入硫酸亚铁还原,同样可使Cr(Ⅵ) 浓度在300 mg/L以下废水处理后达到国家标准。马少健等[10]利用钢渣吸附Cr(III),去除率可达99%以上,同时可去除废水中94%以上的Pb2+。蒋艳红等[11]研究了高炉渣对铬离子的吸附特性,在pH4~12范围内高炉渣对Cr(III)去除率可达97%以上,对Cr(Ⅵ)需加硫酸亚铁还原再处理。Hu等[12]研究了磁赤铁矿纳米颗粒吸附Cr(Ⅵ),吸附容量可与活性炭相比,不受其他共存离子的影响,易于再生,可用于回收废水中的Cr(Ⅵ)。程永华等[13]研究了壳聚糖高效吸附含铬废水,在强酸下壳聚糖对Cr(Ⅵ)吸附速度较快,在弱酸下壳聚糖对Cr(Ⅲ)吸附有利,通过控制pH值分段吸附,可有效除去废水中的铬含量。
另一类是用改性材料作为吸附剂,由于一些天然材料(或废弃物)的吸附效果不理想,许多学者就对它们进行改性,目前有许多这方面的报道。韩毅等[14]以氯化铁为改性剂制得改性赤泥,任乃林等[15]用木屑经酸化、与8-羟基喹啉金属络合剂浸泡处理制得改性木屑,马小隆等[16]用无机酸对钙基膨润土进行活化改性,Li等[17]用氯化铁改性汽爆秸秆吸附Cr(Ⅲ),隋国舜等[18]研究了低聚合羟基铁离子-蛭石复合体对Cr(Ⅵ)的吸附,结果都表明了改性后的吸附剂对Cr(Ⅵ)吸附能力明显提高,废水中Cr(Ⅵ)去除能力更强。

2.4其他国内外含铬废水处理方法的研究进展
1.1 生物法
生物法治理含铬废水,国内外都是近年来开始的。生物法是治理电镀废水的高新生物技术,适用于大、中、小型电镀厂的废水处理,具有重大的实用价值,易于推广。国内外对SRB菌(硫酸盐还原菌)、SR系列复合功能菌、SR复合能菌、脱硫孤菌、脱色杆菌(Bac.Dechromaticans)、生枝动胶菌(Zoolocaramigera)、酵母菌、含糊假单胞菌、荧光假单胞菌、乳链球菌、阴沟肠杆菌、铬酸盐还原菌等进行研究,从过去的单一菌种到现在多菌种的联合使用,使废水的处理从此走向清洁、无污染的处理道路。将电镀废水与其它工业废弃物及人类粪便一起混合,用石灰作为凝结剂,然后进行化学—凝结—沉积处理。研究表明,与活性的淤泥混合的生物处理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-.已用于埃及轻型车辆公司的含铬废水的处理。
生物法处理电镀废水技术,是依靠人工培养的功能菌,它具有静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。该法操作简单,设备安全可靠,排放水用于培菌及其它使用;并且污泥量少,污泥中金属回收利用;实现了清洁生产、无污水和废渣排放。投资少,能耗低,运行费用少。
1.2 膜分离法
膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。别的方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。反渗透法是在一定的外加压力下,通过溶剂的扩散,从而实现分离。超滤法也是在静压差推动下进行溶质分离的膜过程。液膜包括无载体液膜、有载体液膜、含浸型液膜等。液膜分散于电镀废水时,流动载体在膜外相界面有选择地络合重金属离子,然后在液膜内扩散,在膜内界面上解络,重金属离子进入膜内相得到富集,流动载体返回膜外相界面,如此过程不断进行,废水得到净化。膜分离法的优点:能量转化率高,装置简单,操作容易,易控制、分离效率高。但投资大,运行费用高,薄膜的寿命短。主要用于回收附加值高的物质,如金等。
电镀工业漂洗水的回收是电渗析在废液处理方面的主要应用,水和金属离子可达到全部循环利用,整个过程可在高温和更广的pH值条件下运行,且回收液浓度可大大提高,缺点为仅能用于回收离子组分。液膜法处理含铬废水,离子载体为TBP(磷酸三丁酯),Span80为膜稳定剂,工艺操作方便,设备简单,原料价廉易得。也有选用非离子载体,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性剂,选用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶剂,分离过程分为:萃取、反萃等步骤。近来,微滤也有用于处理含重金属废水,可去除金属电镀等工业废水中有毒的重金属如镉、铬等。
1.3 黄原酸酯法
70年代,美国研制成新型不溶重金属离子去除剂ISX,使用方便,水处理费用低。ISX不仅能脱除多种重金属离子,而且在酸性条件下能将Cr6+还原为Cr3+,但稳定性差。不溶性淀粉黄原酸酯脱除铬的效果好,脱除率>99%,残渣稳定,不会引起二次污染。钟长庚等人用稻草代替淀粉制成稻草黄原酸酯,处理含铬废水,铬的脱除率高,很容易达到排放标准。研究者认为稻草黄原酸酯脱除铬是黄原酸铬盐、氢氧化铬通过沉淀、吸附几种过程共同起作用,但黄原酸铬盐起主要作用。此法成本低,反应迅速,操作简单,无二次污染。
1.4 光催化法
光催化法是近年来在处理水中污染物方面迅速发展起来的新方法,特别是利用半导体作催化剂处理水中有机污染物方面已有许多报道。以半导体氧化物(ZnO/TiO2)为催化剂,利用太阳光光源对电镀含铬废水加以处理,经90min太阳光照(1182.5W/m2),使六价铬还原成三价铬,再以氢氧化铬形式除去三价铬,铬的去除率达99%以上。
1.5 槽边循环化学漂洗
这一技术由美国ERG/Lancy公司和英国的Ef fluentTreatmentLancy公司开发,故也叫Lancy法。它是在电镀生产线后设回收槽、化学循环漂洗槽及水循环漂洗槽各一个,处理槽设在车间外面。镀件在化学循环漂洗槽中经低浓度的还原剂(亚硫酸氢钠或水合肼)漂洗,使90%的带出液被还原,然后镀件进入水漂洗槽,而化学漂洗后的溶液则连续流回处理槽,不断循环。加碱沉淀系在处理槽中进行,它的排泥周期很长。广州电器科学研究所开发了分别适用于各种电镀废水的三大类体系的槽边循环化学漂洗处理工艺,水回用率高达95%、具有投药少、污泥少且纯度高等优点。有时,用槽边循环和车间循环相结合。
1.6 水泥基固化法处理中和废渣
对于暂时无法处理的有毒废物,可以采用固化技术,将有害的危险物转变为非危险物的最终处置办法。这样,可避免废渣的有毒离子在自然条件下再次进入水体或土壤中,造成二次污染。当然,这样处理后的水泥固化块中的六价铬的浸出率是很低的。
2、电镀含铬废液及污泥的综合利用
由于电镀含铬老化废液有害物质含量高,成分复杂,在综合利用之前应对各种废液进行单独和分类处理。对于镀锌钝化液、铜钝化液及含磷酸的铝电解抛光液均用酸碱调节pH;对于阴离子交换树脂,只需将它变为Na2CrO4即可。
2.1 利用铬污泥生产红矾钠
在高温碱性条件介质Na2CrO4中三价铬可被空气氧化为Na2Cr2O7,同时污泥中所含的铁、锌等转化为相应的可溶盐NaFeO2、Na2ZnO2.用水浸取碱熔体时,大部分铁分解为Fe(OH)3沉淀而除去。将滤液酸化至pH<4,Na2CrO4即转变为Na2Cr2O7,利用Na2SO4与Na2Cr2O7溶解度差异,分别结晶析出。采用高温碱性氧化铬污泥制红矾钠的条件是n(Na2CO3)∶n(Cr2O3)=3.0∶1.0,温度780℃,时间2.5h,铬的转化率在85%以上。
2.2 生产铬黄
利用纯碱作沉淀剂去除电镀废液中的杂质金属离子,再利用净化后的电镀废液替代部分红矾钠生产铅铬黄。电镀液加入Na2CO3饱和液后,调整pH至8.5~9.5.进行过滤,滤液备用。在碱性条件下将滤渣中的Cr3+用H2O2氧化为Cr6+,再经过滤,滤液与上述滤液混合。将滤液与硝酸铅溶液和助剂,在50~60℃反应1h,然后经过滤、水洗,洗去氯根、硫酸根以及其它部分可溶性杂质,再经干燥粉碎即得成品铅铬黄。利用电镀废液生产铅铬黄,不仅解决了污染问题,而且使电镀废液中的铬得到了回收利用。据估算,按年处理电镀废液200t,年平均回收18t红矾钠,可实现年创收4万余元。效益可观。
2.3 生产液体铬鞣剂及皮革鞣剂碱式硫酸铬
含铬废液先用氢氧化钠去除金属离子杂质,控制pH=5.5~6.0,然后过滤,滤液待用,污泥用铁氧体无害化处理。然后,在滤液中投加还原剂葡萄糖,使Na2Cr2O7还原为Cr(OH)SO4,在100℃条件下,进一步聚合,当碱度为40%时,分子式为4Cr(OH)3.3Cr2(SO4)3,即为铬鞣剂。河北省无极县某皮革厂就是利用电镀含铬废水生产液体铬鞣剂。按每天生产5t液体铬鞣剂,每天可得利润为6000余元。可见利用含铬废液生产铬鞣剂的经济效益是十分显著的。另外,可将含铬的污泥与碳粉混合,在高温下煅烧,从而可制得金属铬。因为含铬污泥是电镀车间污泥的主要品种,根据电镀处理方法不同,污泥的回收利用也不同。
电解法污泥:
(1)做中温变换催化剂的原料;
(2)做铁铬红颜料的原料。
化学法的污泥:
(1)回收氢氧化铬;
(2)回收三氧化二铬抛光膏。铁氧体污泥做磁性材料的原料等等。
3、结束语
以上介绍的含铬废水的处理方法及其资源化利用,有的已经实现了工业化,有的尚处于实验室基础研究阶段。在实际使用过程中并不一定限定于上述的处理方法,也可将上述的几种处理方法一起使用。从环保角度出发,人们将摈弃传统的化学法,而选择微生物法、膜分离法等。微生物法将代表21世纪电镀含铬废水处理方法的发展趋势,可以预计在不久的将来,微生物法会得到更为广泛的应用。

参考文献
[1] 马广岳,施国新,徐勤松,等.2004.Cr6+、Cr3+胁迫对黑藻生理生化影响的比较研究[J].广西植物,24(2):161-165
[2] Costa M.2003.Potential hazards of hexavalent chromate in our drinking water[J].Toxicol Appl Pharmacol,188(1):1-5
[3] 袁智斌.2005.化学分类沉淀法处理铜箔废水的工程应用[J].铜业工程,4:23-25
[4] 窦秀冬,方建德,郭振仁,等.2003.皮革废水除铬碱剂筛选[J].新疆环境保护,25(2):27-30
[5] 郑新卿.2005.还原——固液法镀铬废水处理后Cr(Ⅵ)反弹成因与防治对策[J].中国环境管理,3:29-30
[6] 王宝庆,陈亚雄,宁平.2002.活性炭水处理技术应用[J].云南环境科学,19(3):46-50
[7] 李英杰,纪智玲,侯凤,等.2005.活性炭吸附法处理含铬废水的研究[J].沈阳化工学院学报,19(3):184-187
[8] Valix M,Cheung W H,Zhang K.Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters[J].J Hazard Mater,2006,In press
[9] 李鑫金,赵景联.2005.微波煅烧活化赤泥处理含铬废水的研究[J].轻金属,9:16-19
[10] 马少健,刘盛余,胡治流,等.2004.钢渣吸附剂对铬和铅重金属离子的吸附特性研究[J].有色矿冶,20(4):57-59
[11] 蒋艳红,马少健,廖芳艳.2005.高炉渣对铬离子的吸附特性研究[J].有色矿冶,21(s):155-156
[12] Hu J,Chen G H,Lo I M C.2005.Removal and recovery of Cr(VI)from wastewater by maghemite nanoparticles[J].Water Res,39(18):4528-4536
[13] 程永华,闫永胜,王智博,等.2005.壳聚糖高效吸附处理含铬废水的研究[J].华中科技大学学报(城市科学版),22(4):51-53
[14] 韩毅,王京刚,唐明述.2005.用改性赤泥吸附废水中的六价铬[J].化工环保,25(2):132-136
[15] 任乃林,黄俊盛,李红.2004.用改性木屑吸附处理含铬废水[J].广东化工,9/10:53-54
[16] 马小隆,刘晓明,宋吉勇.2005.膨润土的改性及其对废水中铬的吸附性能研究[J].能源环境保护,19(4):18-21
[17] Li C,Chen H Z,Li Z H.2004.Adsorptive removal of Cr(VI) by Fe-modified steam exploded wheat straw[J].Process Biochem,39(5):541–545
[18] 隋国舜,廖立兵,胡鸿佳.2005.低聚合羟基铁离子-蛭石复合体吸附铬的实验研究[J].矿物岩石,25(3):131-136

⑤ 净水器的主要成分是什么

普通净水器由PP棉、活性炭、超滤膜、RO反渗透膜组成,RO膜是目前过滤精密度最强的技术,能够过滤水中的所有细菌、杂质和微量元素,当然也能过滤掉水中的矿物质和有益微量元素。

至于纯水到底对人体健不健康,一直是净水行业争论的问题,但本人认为,水至清则无鱼,为什么纯净水卖那么便宜,依云卖那么贵也不是没有原因的。

想要解决纯水机不能矿化的问题只能在纯水机后面再加一级矿化滤芯

目前市面上的矿化技术主要以陶氏小T麦饭石滤芯为主,麦饭石是一种对生物无毒、无害并具有一定生物活性的复合矿物或药用岩石。麦饭石的母岩常为中、酸性岩浆岩。其化学成分除常见的 Ca 、 Mg 、 Si 、Al 、 Fe 、 K 、 Na 外,还有少量稀有元素、稀土元素、放射性元素。麦饭石具有吸附性、溶解性、 PH调节性、生物活性和矿化性等性能。但是麦饭石滤芯在制作的过程中添加了一个工业粘合剂,长期浸泡容易造成水质的二次污染,并且这类的麦饭石球的表面积太大,根本达不到矿化效果。还有弱碱性陶瓷球滤芯,远红外陶瓷,负电位球,电气石滤芯等等,这些都有相同的问题。而远红外这个矿化法,本来是用作保健宣传,但对水质是否能够改变,我们大家都不得而知。

纯水再矿化技术国内外都进行了很长时间的研发,现在应用比较多的是在海水淡化领域,大的海水再矿化工程使用直接添加化学药剂或者使用石灰石在充入二氧化碳条件下自然矿化。中国地质大学科研团队依托中国地质大学水文地质、地质材料的学科优势和国家重点实验室的研发平台,基于矿物晶体结构、晶体化学研究,通过先进的表面及界面工程学手段研发出PCC矿物加工改性技术,对不同矿物进行针对性改性,增加矿物比表面积和离子交换吸附容量;基于矿物溶解中协同拮抗机制的但是在民用纯水再矿化中很难控制。微量元素谱配比技术,实现微量元素谱释放的稳定可控;基于载银锌复合抑菌火山石制备技术,利用天然火山石的多孔结构为骨架,负载纳米银-氧化锌抑菌剂,相对传统抑菌材料,抑菌效果更好,且对人体无毒副作用。通过模拟泉水形成的水文地球化学过程,将长渗流长度的水质演化在滤芯尺度实现,实现家用设备生产矿泉水的功能。在效果方面,水石矿化滤芯出水微量元素丰富铷、钼、硒等抗癌微量元素和依云矿泉水相当,锶、锌等微量元素含量达到国家饮用矿泉水标准,并且Ph、分子团大小与依云等天然矿泉水接近。

⑥ 药学专业知识一模拟试题及答案

一、最佳选择题

1.灭菌与无菌制剂不包括

A.注射剂B.植入剂

C.冲洗剂D.喷雾剂

E.用于外伤、烧伤用的软膏剂

2.葡萄糖注射液属于注射剂的类型是

A.注射用无菌粉末

B.溶胶型注射剂

C.混悬型注射剂

D.乳剂型注射剂

E.溶液型注射剂

3.水难溶性药物或注射后要求延长药效作用的固体药物,可制成注射剂的类型是

A.注射用无菌粉末

B.溶液型注射剂

C.混悬型注射剂

D.乳剂型注射剂

E.溶胶型注射剂

4.对于易溶于水,在水溶液中不稳定的药物,可制成注射剂的类型是

A.注射用无菌粉末

B.溶液型注射剂

C.混悬型注射剂

D.乳剂型注射剂

E.溶胶型注射剂

5.关于注射剂特点的叙述错误的是

A.药效迅速作用可靠

B.适用于不宜口服的药物

C.适用于不能口服给药的病人

D.可以产生局部定位作用

E.使用方便

6.一般注射液的pH应为

A.3~8B.3~10

C.4~9D.5~10

E.4~11

7.《中国药典》规定的注射用水应该是

A.无热原的蒸馏

B.蒸馏水

C.灭菌蒸馏水

D.去离子

E.反渗透法制备的水

8.关于常用制药用水的错误表述是

A.纯化水为原水经蒸馏、离子交换、反渗透等适宜方法制得的制药用水

B.纯化水中不含有任何附加剂

C.注射用水为纯化水经蒸馏所得的水

D.注射用水可用于注射用灭菌粉末的溶剂

E.纯化水可作为配制普通药物制剂的溶剂

9.为配制注射剂用的溶剂是

A.纯化水B.注射用水

C.灭菌蒸馏水D.灭菌注射用水

E.制药用水

10.用于注射用灭菌粉末的溶剂或注射液的稀释剂

A.纯化水B.注射用水

C.灭菌蒸馏水 D.灭菌注射用水

E.制药用水

11.注射用水和纯化水的检查项目的主要区别是

A.酸碱度B.热原

C.氯化物D.氨

E.硫酸盐

12.注射用青霉素粉针,临用前应加入

A.注射用水B.灭菌蒸馏水

C.去离子水D.灭菌注射用水

E.蒸馏水

13.关于热原的错误表述是

A.热原是微生物的代谢产物

B.致热能力最强的是䓬兰阳性杆菌所

产生的热原

C.真菌也能产生热原

D.活性炭对热原有较强的吸附作用

E.热原是微生物产生的一种内毒素

14.具有特别强的热原活性的是

A.核糖核酸B.胆固醇

C.脂多糖D.蛋白质

E.磷脂

15.关于热原性质的叙述错误的是

A.可被高温破坏

B.具有水溶性

C.具有挥发性

D.可被强酸、强碱破坏

E.易被吸附

16.热原的除去方法不包括

A.高温法B.酸碱法

C.吸附法D.微孔滤膜过滤法

E.离子交换法

17.注射用的针筒或其他玻璃器皿除热原可采用

A.高温法B.酸碱法

C.吸附法D.微孔滤膜过滤法

E.离子交换法

18.配制注射液时除热原可采用

A.高温法B.酸碱法

C.吸附法D.微孔滤膜过滤法

E.离子交换法

19.关于热原性质的说法,错误的是

A.具有耐热性

B.具有滤过性

C.具有水溶性

D.具有不挥发性

E.具有被氧化性

20.不能除去热原的方法是

A.高温法B.酸碱法

C.冷冻干燥法D.吸附法

E.反渗透法

21.关于热原污染途径的说法,错误的是

A.从注射用水中带入

B.从原辅料中带入

C.从容器、管道和设备带入

D.药物分解产生

E.制备过程中污染

22.关于热原耐热性的错误表述是

A.在60℃加热1小时热原不受影响

B.在l00℃加热,热原也不会发生热解

C.在180℃加热3~4小时可使热原彻底破坏

D.在250℃加热30~ 45分钟可使热原彻底破坏

E.在400℃加热1分钟可使热原彻底破坏

23.关于热原的错误表述是

A.热原是微量即能引起恒温动物体温异常升高的物质的总称

B.大多数细菌都能产生热原,致热能力最强的是䓬兰阴性杆菌产生的热原

C.热原是微生物产生的一种内毒素,它存在于细菌的细胞膜和固体膜之间

D.内毒素是由磷脂、脂多糖和蛋白质所组成的复合物

E.蛋白质是内毒素的致热中心

24.制备易氧化药物注射剂应加入的抗氧剂是

A.碳酸氢钠B.焦亚硫酸钠

C.氯化钠D.依地酸钠

E.构橼酸钠

25.制备注射剂应加入的等渗调节剂是

A.碳酸氢钠B.氯化钠

C.焦亚硫酸钠D.枸橼酸钠

E.依地酸钠

26.制备易氧化药物注射剂应加入的金属离子螯合剂是

A.碳酸氢钠B.氯化钠

C.焦亚硫酸钠D.枸橼酸钠

E.依地酸钠

27.下述不能增加药物溶解度的方法是

A.加入助溶剂

B.加入非离子表面活性剂

C.制成盐类

D.应用潜溶剂

E.加入助悬剂

28.溶剂的极性直接影响药物的

A.溶解度B.稳定性

C.润湿性D.溶解速度

E.保湿性

29.有关溶解度的正确表述是

A.溶解度系指在一定压力下,在一定量溶剂中溶解药物的最大量

B.溶解度系指在一定温度下,在一定量溶剂中溶解药物的最大量

C.溶解度指在一定温度下,在水中溶解药物的.量

D.溶解度系指在一定温度下,在溶剂中溶解药物的量

E.溶解度系指在一定压力下,在溶剂中溶解药物的量

30.影响药物溶解度的因素不包括

A.药物的极性B.溶剂

C.温度D.药物的颜色

E.药物的晶型

31.配制药物溶液时,将溶媒加热,搅拌的目的是增加药物的

A.溶解度B.稳定性

C.润湿性D.溶解速度

E.保湿性

32.咖啡因在苯甲酸钠的存在下溶解度由1: 50增至1:1是由于

A.增溶B.防腐

C.乳化D.助悬

E.助溶

33.苯巴比妥在90%的乙醇溶液中溶解度最大,90%的乙醇溶液是

A.助溶剂B.增溶剂

C.消毒剂D.极性溶剂

E.潜溶剂

34.制备难溶性药物溶液时,加入吐温的作用是

A.助溶剂B.增溶剂

C.乳化剂D.分散剂

E.潜溶剂

35.制备5%碘的水溶液,通常可采用的方法是

A.制成盐类B.制成酯类

C.加增溶剂D.加助溶剂

E.采用复合溶剂

36.关于注射剂特点的说法,错误的是

A.药效迅速B.剂量准确

C.使用方便D.作用可靠

E.适用于不宜口服的药物

37.下列给药途径中,一次注射量应在0.2ml以下的是

A.静脉注射B.脊椎腔注射

C.肌内注射D.皮内注射

E.皮下注射

38.注射剂的优点不包括

A.药效迅速、剂量准确、作用可靠

B.适用于不能口服给药的病人

C.适用于不宜口服的药物

D.可迅速终止药物作用

E.可产生定向作用

39.注射剂的质量要求不包括

A.无菌

B.无热原

C.无色

D.渗透压与血浆的渗透压相等或接近

E.pH与血液相等或接近

40.只能肌内注射给药的是

A.低分子溶液型注射剂

B.高分子溶液型注射剂

C.乳剂型注射剂

D.混悬型注射剂

E.注射用冻于粉针剂

41.可用于静脉注射脂肪乳的乳化剂是

A.阿拉伯胶

B.西黄蓍胶

C.豆磷脂

D.脂肪酸山梨坦

E.十二烷基硫酸钠

42.不存在吸收过程的给药途径是

A.静脉注射B.腹腔注射

C.肌内注射D.口服给药

E.肺部给药

43.关于纯化水的说法,错误的是

A.可作为制备中药注射剂时所用饮片的提取溶剂

B.可作为制备中药滴眼剂时所用饮片的提取溶剂

C.可作为配制口服制剂的溶剂

D.可作为配制外用制剂的溶剂

E.可作为配制注射剂的溶剂

44.在维生素C注射液处方中,不可加入的辅料是

A.依地酸二钠B.碳酸氢钠

C.亚硫酸氢钠D.羟苯乙酯

E.注射用水

45.制备VC注射液时应通入气体驱氧,最佳选择的气体为

A.氢气B.氮气

C.二氧化碳D.环氧乙烷

E.氯气

46.对维生素C注射液错误的表述是

A.可采用亚硫酸氢钠作抗氧剂

B.处方中加入碳酸氢钠调节pH使成偏碱性,避免肌内注射时疼痛

C.可采用依地酸二钠络合金属离子,增加维生素C稳定性

D.配制时使用的注射用水需用二氧化碳饱和

E.采用l00℃流通蒸气15min灭菌

47.关于输液叙述不正确的是

A.输液中不得添加任何抑菌剂

B.输液对无菌、无热原及澄明度这三项,更应特别注意

C.渗透压可为等渗或低渗

D.输液的滤过,精滤目前多采用微孔滤膜

E.输液pH在4~9范围

48.关于输液的叙述,错误的是

A.输液是指由静脉滴注输入体内的大剂量注射液

B.除无菌外还必须无热原

C.渗透压应为等渗或偏高渗

D.为保证无菌,需添加抑菌剂

E.澄明度应符合要求

49.关于血浆代用液叙述错误的是

A.血浆代用液在有机体内有代替全血的作用

B.代血浆应不妨碍血型试验

C.不妨碍红血球的携氧功能

D.在血液循环系统内,可保留较长时间,易被机体吸收

E.不得在脏器组织中蓄积

50.凡是对热敏感在水溶液中不稳定的药物适合采用哪种制法制备注射剂

A.灭菌溶剂结晶法制成注射用无菌分装产品

B.冷冻干燥制成的注射用冷冻干燥制品

C.喷雾干燥法制得的注射用无菌分装产品

D.无菌操作制备的溶液型注射剂

E.低温灭菌制备的溶液型注射剂

51.滴眼剂的质量要求中,与注射剂的质量要求不同的是

A.有一定的pH B.与泪液等渗

C.无菌D.澄明度符合要求

E.无热原

52.有关滴眼剂叙述不正确的是

A.滴眼剂是直接用于眼部的外用液体制剂

B.正常眼可耐受的pH为5.0~9.0


⑦ 反渗透脱盐水设备国家规定的除盐率标准如何计算的呢

透水率=单位时间内渗透的水量,/H÷单位膜面积,M2

脱盐率=(反渗透处理进水中的含盐量,MG/L-反渗透处理出水中的含盐量,MG/L) ÷反渗透处理进水中的含盐量,MG/L
反渗透膜,陶氏膜,世韩膜

回收水率=渗透出水水量,L÷进水量,L

低压锅炉小于2.45MPA(小于25KGF/CM2)

中压锅炉3.82-5.78(39-59)

高压锅炉5.88-12.65(60-129)

锅炉排污率=(锅炉给水中的含盐量,含钠量或含硅量,MG/L-锅炉蒸汽中的含盐量)÷(排污水中的含盐量,MG/L-锅炉给水中的含盐量)

对于软化水,

锅炉排污率=锅炉给水中的含盐量,含钠量或硅量÷(排污水中的含盐量-锅炉给水中的含盐量)

确定循环水垢样组成的简便定性方法:

常见水垢主要成分 水垢经酸溶解的的现象

碳酸盐垢 加酸之后有大量气泡产生

硅酸盐垢 在热盐酸和硝酸中缓慢溶解,产生白色不溶物.

氧化铁垢 加硝酸溶解,产生黄色溶液

铜垢 加硝酸溶解,产生蓝色和黄绿色溶液

磷酸盐垢 加钼酸铵试液再加硝酸,产生黄色沉淀,然后再加氨水会使沉淀物溶解,说明是磷酸盐垢

判断水样分析结垢和腐蚀的标准: 反渗透膜,陶氏膜,世韩膜

2PHS-PH:指碳酸钙的稳定指数

1:2PHS-PH<3.7 严重结垢

2:3.7<2PHS-PH<6结垢

3:2PHS-PH=6稳定

4:6<2PHS-PH<7.5腐蚀

5:2PHS-PH>7.5严重腐蚀

PHS=(9.3+A+B)-(C+D)

⑧ 碧水源 的mbr项目是什么意思

MBR又称膜生物反应器(Membrane Bio-Reactor),是一种由膜分离单元与生物处理单元相结合的新型水处理技术。膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜) ;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。
一、 MBR 工艺的组成
膜- 生物反应器主要由膜分离组件及生物反应器两部分组成。通常提到的膜 - 生物反应器实际上是三类反应器的总称: ① 曝气膜 - 生物反应器(Aeration Membrane Bioreactor, AMBR) ; ② 萃取膜 - 生物反应器( ExtractiveMembrane Bioreactor, EMBR ); ③ 固液分离型膜 - 生物反应器( Solid/Liquid SeparationMembrane Bioreactor, SLSMBR, 简称 MBR )。
二、曝气膜 - 生物反应器
曝气膜 -生物反应器最早见于 Cote.P 等 1988年报道,采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( Bubble Point)情况下,可实现向生物反应器的无泡曝气。该工艺的特点是提高了接触时间和传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响。如图 [1] 所示。
图 [1]
三、萃取膜 - 生物反应器
萃取膜 - 生物反应器 又称为 EMBR (Extractive Membrane Bioreactor)。因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染。为了解决这些技术难题,英国学者 Livingston研究开发了 EMB 。其工艺流程见图 2。废水与活性污泥被膜隔开来,废水在膜内流动,而含某种专性细菌的活性污泥在膜外流动,废水与微生物不直接接触,有机污染物可以选择性透过膜被另一侧的微生物降解。由于萃取膜两侧的生物反应器单元和废水循环单元是各自独立,各单元水流相互影响不大,生物反应器中营养物质和微生物生存条件不受废水水质的影响,使水处理效果稳定。系统的运行条件如 HRT 和 SRT 可分别控制在最优的范围,维持最大的污染物降解速率。
四、固液分离型膜 - 生物反应器
固液分离型膜 - 生物反应器是在水处理领域中研究得最为广泛深入的一类膜 -生物反应器,是一种用膜分离过程取代传统活性污泥法中二次沉淀池的水处理技术。在传统的废水生物处理技术中,泥水分离是在二沉池中靠重力作用完成的,其分离效率依赖于活性污泥的沉降性能,沉降性越好,泥水分离效率越高。而污泥的沉降性取决于曝气池的运行状况,改善污泥沉降性必须严格控制曝气池的操作条件,这限制了该方法的适用范围。由于二沉池固液分离的要求,曝气池的污泥不能维持较高浓度,一般在 1.5~3.5g/L左右,从而限制了生化反应速率。水力停留时间( HRT )与污泥龄( SRT)相互依赖,提高容积负荷与降低污泥负荷往往形成矛盾。系统在运行过程中还产生了大量的剩余污泥,其处置费用占污水处理厂运行费用的 25% ~40% 。传统活性污泥处理系统还容易出现污泥膨胀现象,出水中含有悬浮固体,出水水质恶化。针对上述问题, MBR将分离工程中的膜分离技术与传统废水生物处理技术有机结合,大大提高了固液分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌 (特别是优势菌群 ) 的出现,提高了生化反应速率。同时,通过降低 F/M比减少剩余污泥产生量(甚至为零),从而基本解决了传统活性污泥法存在的许多突出问题。
五、 MBR 工艺类型
以下讨论的均为固液分离型膜 - 生物反应器。 根据膜组件和生物反应器的组合方式,可将 膜 - 生物反应器 分为分置式、一体式以及复合式三种基本类型。分置式和一体式的 MBR 请参见图 3 。
分置式膜 - 生物反应器把膜组件和生物反应器分开设置,如图 3所示。生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内。分置式膜 -生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大。但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高 (Yamamoto, 1989),并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象 ( Brockmann and Seyfried, 1997 ) 。
一体式膜 - 生物反应器是把膜组件置于生物反应器内部,如图 4 所示。进水进入膜 -生物反应器,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水。这种形式的膜 -生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,近年来在水处理领域受到了特别关注。但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换。
复合式膜 - 生物反应器在形式上也属于一体式膜 - 生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜 - 生物反应器,改变了反应器的某些性状,如图 5 所示:
MBR 工艺的特点
与许多传统的生物水处理工艺相比, MBR 具有以下主要特点:
一、出水水质优质稳定
由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈, 悬浮物和浊度接近于零,细菌和病毒被大幅去除 ,出水水质优于建设部颁发的生活杂用水水质标准( CJ25.1-89 ),可以直接作为非饮用市政杂用水进行回用。
同时,膜分离也使 微生物被完全被截流在生物反应器内, 使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。
二、剩余污泥产量少
该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低(理论上可以实现零污泥排放),降低了污泥处理费用。
三、占地面积小,不受设置场合限制
生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省; 该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式。
四、可去除氨氮及难降解有机物
由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高。
五、操作管理方便,易于实现自动控制
该工艺实现了水力停留时间( HRT )与污泥停留时间( SRT )的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便。
六、易于从传统工艺进行改造
该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理(从而实现城市污水的大量回用)等领域有着广阔的应用前景。
膜 - 生物反应器也存在一些不足。主要表现在以下几个方面:
o 膜造价高,使膜 - 生物反应器的基建投资高于传统污水处理工艺;
o 膜污染容易出现,给操作管理带来不便;
o 能耗高:首先 MBR 泥水分离过程必须保持一定的膜驱动压力,其次是 MBR 池中 MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成 MBR 的能耗要比传统的生物处理工艺高。
MBR 工艺用膜
膜可以由很多种材料制备,可以是液相、固相甚至是气相的。目前使用的分离膜绝大多数是固相膜。根据孔径不同可分为:微滤膜、超滤膜、纳滤膜和反渗透膜;根据材料不同,可分为无机膜和有机膜,无机膜主要是微滤级别膜。膜可以是均质或非均质的,可以是荷电的或电中性的。广泛用于废水处理的膜主要是由有机高分子材料制备的固相非对称膜。
膜的分类如图所示:
一、 MBR 膜材质
1、高分子有机膜材料: 聚烯烃类、聚乙烯类、聚丙烯腈、聚砜类、芳香族聚酰胺、含氟聚合物等。
有机膜成本相对较低,造价便宜,膜的制造工艺较为成熟,膜孔径和形式也较为多样,应用广泛,但运行过程易污染、强度低、使用寿命短。
2、无机膜 :是固态膜的一种,是由无机材料,如金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料等制成的半透膜
目前在 MBR 中使用的无机膜多为陶瓷膜,优点是:它可以在 pH = 0~14 、压力 P<10MPa 、温度 <350 ℃的环境中使用,其通量高、能耗相对较低,在高浓度工业废水处理中具有很大竞争力;缺点是:造价昂贵、不耐碱、弹性小、膜的加工制备有一定困难。
二、 MBR 膜孔径
MBR 工艺中用膜一般为微滤膜( MF )和超滤膜( UF ),大都采用 0.1 ~ 0.4 μ m 膜孔径,这对于固液分离型的膜反应器来说已经足够。
微滤膜常用的聚合物材料有:聚碳酸酯、纤维素酯、聚偏二氟乙烯、聚砜、聚四氟乙烯、聚氯乙烯、聚醚酰亚胺、聚丙烯、聚醚醚酮、聚酰胺等。
超滤常用聚合物材料有:聚砜、聚醚砜、聚酰胺、聚丙烯腈( PAN )、聚偏氟乙烯、纤维素酯、聚醚醚酮、聚亚酰胺、聚醚酰胺等。
三、 MBR 膜组件
为了便于工业化生产和安装,提高膜的工作效率,在单位体积内实现最大的膜面积,通常将膜以某种形式组装在一个基本单元设备内,在一定的驱动力下,完成混合液中各组分的分离,这类装置称为膜组件( Mole )。
工业上常用的膜组件形式有五种:
板框式( Plate and Frame Mole )、螺旋卷式 (Spiral Wound Mole) 、圆管式 (TubularMole) 、中空纤维式 (Hollow Fiber Mole) 和毛细管式 (Capillary Mole)。前两种使用平板膜,后三者使用管式膜。圆管式膜直径 >10mm; 毛细管式- 0.5~10.0mm ;中空纤维式<0.5mm> 。
表:各种膜组件特性
名称/项目 中空纤维式 毛细管式 螺旋卷式 平板式 圆管式
价格(元 /m 3 ) 40~150 150~800 250~800 800~2500 400~1500
冲填密度 高 中 中 低 低
清洗 难 易 中 易 易
压力降 高 中 中 中 低
可否高压操作 可 否 可 较难 较难
膜形式限制 有 有 无 无 无
MBR 工艺中常用的膜组件形式有:板框式、圆管式、中空纤维式。
板框式:
是 MBR 工艺最早应用的一种膜组件形式,外形类似于普通的板框式压滤机。优点是:制造组装简单,操作方便,易于维护、清洗、更换。缺点是:密封较复杂,压力损失大,装填密度小。
圆管式:
是由膜和膜的支撑体构成,有内压型和外压型两种运行方式。实际中多采用内压型,即进水从管内流入,渗透液从管外流出。膜直径在 6~24mm 之间。圆管式膜优点是:料液可以控制湍流流动,不易堵塞,易清洗,压力损失小。缺点是:装填密度小。
中空纤维式:
组装形式如下图所示:
[ 图 ]
外径一般为 40 ~ 250 μm ,内径为 25 ~ 42μm 。优点是:耐压强度高,不易变形。在 MBR中,常把组件直接放入反应器中,不需耐压容器,构成浸没式膜 -生物反应器。一般为外压式膜组件。优点是:装填密度高;造价相对较低;寿命较长,可以采用物化性能稳定,透水率低的尼龙中空纤维膜;膜耐压性能好,不需支撑材料。缺点是:对堵塞敏感,污染和浓差极化对膜的分离性能有很大影响。
MBR 膜组件设计的一般要求:
o 对膜提供足够的机械支撑,流道通畅,没有流动死角和静水区;
o 能耗较低,尽量减少浓差极化,提高分离效率,减轻膜污染;
o 尽可能高的装填密度,安装,清洗、更换方便;
o 具有足够的机械强度、化学和热稳定性。
膜组件的选用要综合考虑其成本,装填密度、应用场合、系统流程、膜污染及清洗、使用寿命等。
MBR 的应用领域
进入 90 年代中后期,膜 - 生物反应器在国外已进入了实际应用阶段。加拿大 Zenon 公司首先推出了超滤管式膜 -生物反应器,并将其应用于城市污水处理。为了节约能耗,该公司又开发了浸入式中空纤维膜组件,其开发出的膜 -生物反应器已应用于美国、德国、法国和埃及等十多个地方,规模从 380m 3 /d 至 7600m 3 /d。日本三菱人造丝公司也是世界上浸入式中空纤维膜的知名提供商,其在 MBR 的应用方面也积累了多年的经验,在日本以及其他国家建有多项实际 MBR工程。日本 Kubota 公司是另一个在膜 -生物反应器实际应用中具有竞争力的公司,它所生产的板式膜具有流通量大、耐污染和工艺简单等特点。国内一些研究者及企业也在 MBR实用化方面进行着尝试。
现在,膜 - 生物反应器已应用于以下领域:
一、 城市污水处理及建筑中水回用
1967年第一个采用 MBR 工艺的废水处理厂由美国的 Dorr-Oliver 公司建成,这个处理厂处理 14m 3 /d 废水。 1977年,一套污水回用系统在日本的一幢高层建筑中得到实际应用。 1980 年,日本建成了两座处理能力分别为 10m 3 /d 和 50m 3 /d的 MBR 处理厂。 90 年代中期,日本就有 39 座这样的厂在运行,最大处理能力可达 500m 3 /d ,并且有 100 多处的高楼采用MBR 将污水处理后回用于中水道。 1997 年,英国 Wessex 公司在英国 Porlock 建立了当时世界上最大的 MBR系统,日处理量达 2 , 000 m 3 , 1999 年又在 Dorset 的 Swanage 建成了 13 , 000m 3 /d 的MBR 工厂 [14] 。
1998 年 5 月,清华大学进行的一体式膜 - 生物反应器中试系统通过了国家鉴定。 2000年初,清华大学在北京市海淀乡医院建起了一套实用的 MBR 系统,用以处理医院废水,该工程于 2000 年 6 月建成并投入使用,目前运转正常。2000 年 9 月,天津大学杨造燕教授及其领导的科研小组在天津新技术产业园区普辰大厦建成了一个 MBR 示范工程,该系统日处理污水 25吨,处理后的污水全部用于卫生间的冲洗及绿地浇洒,占地面积为 10 平方米,处理每吨污水的能耗为 0.7kW · h 。
二、. 工业废水处理
90年代以来, MBR 的处理对象不断拓宽,除中水回用、粪便污水处理以外, MBR在工业废水处理中的应用也得到了广泛关注,如处理食品工业废水、水产加工废水、养殖废水、化妆品生产废水、染料废水、石油化工废水,均获得了良好的处理效果。 90 年代初,美国在 Ohio 建造了一套用于处理某汽车制造厂的工业废水的 MBR 系统,处理规模为 151m 3 /d,该系统的有机负荷达 6.3kgCOD/m 3 · d , COD 去除率为 94%,绝大部分的油与油脂被降解。在荷兰,一脂肪提取加工厂采用传统的氧化沟污水处理技术处理其生产废水,由于生产规模的扩大,结果导致污泥膨胀,污泥难以分离,最后采用 Zenon 的膜组件代替沉淀池,运行效果良好。
三、. 微污染饮用水净化
随着氮肥与杀虫剂在农业中的广泛应用,饮用水也不同程度受到污染。 LyonnaisedesEaux 公司在 90 年代中期开发出同时具有生物脱氮、吸附杀虫剂、去除浊度功能的 MBR工艺, 1995 年该公司在法国的 Douchy 建成了日产饮用水 400m 3 的工厂。出水中氮浓度低于 0.1mgNO 2 /L,杀虫剂浓度低于 0.02 μ g/L 。
四、. 粪便污水处理
粪便污水中有机物含量很高,传统的反硝化处理方法要求有很高污泥浓度,固液分离不稳定,影响了三级处理效果。 MBR 的出现很好地解决了这一问题,并且使粪便污水不经稀释而直接处理成为可能。
日本已开发出被称之为 NS 系统的屎尿处理技术,最核心部分是平板膜装置与好氧高浓度活性污泥生物反应器组合的系统。 NS 系统于 1985年在日本琦玉县越谷市建成,生产规模为 10kL/d , 1989 年又先后在长崎县、熊本县建成新的屎尿处理设施。 NS 系统中的平板膜每组约0.4m 2 共几十组并列安装,做成能自动打开的框架装置,并能自动冲洗。膜材料为截流分子量 20000 的聚砜超滤膜。反应器内污泥浓度保持在15000~18000mg/L 范围内。到 1994 年,日本已有 1200 多套 MBR 系统用于处理 4000 多万人的粪便污水。

阅读全文

与反渗透膜使用ph39相关的资料

热点内容
厕所污水ph如何测 浏览:975
用隔奶垫会回奶吗 浏览:193
污水酸碱度检测的重要性 浏览:686
净水机为什么要加消毒液 浏览:436
pcb电镀哪些设备需要排污水 浏览:987
三合一过滤要24小时开 浏览:702
玻璃钢树脂瓦防火吗 浏览:352
净水器反渗透 浏览:776
村里饮水机的水怎么感觉苦呢 浏览:956
某污水处理厂葡萄糖投加试验 浏览:388
和森活净化器远程控制怎么设置 浏览:793
不饱和聚酯树脂延时加固化 浏览:91
日本核污水对中国哪些城市有影响 浏览:964
渗透汽化膜技术处理废水 浏览:867
农村每人每天用水量和污水量 浏览:935
柠檬酸除垢剂清除管道 浏览:385
反渗透入口铁含量 浏览:501
上海水质超滤膜 浏览:626
柠檬酸除垢剂可以洗银壶 浏览:644
银川第五污水处理厂规模 浏览:571