导航:首页 > 净水问答 > 离子交换树脂流程图

离子交换树脂流程图

发布时间:2024-07-11 22:09:39

⑴ 这张图片是用韩文写的关于离子交换树脂吸附铼的流程图,请翻译为中文,谢谢

开始
s101 过滤 阶段
s103 抽取洗脱 阶段
s105 蒸发浓缩 阶段 洗脱液回收阶段
s107 提炼阶段
s109 干燥阶段
终了

⑵ 工业纯水机的工作原理

本纯水系统设计结合化工行业用纯水的要求,制定出标准型适合在本行业使用的纯水系统。以下对系统的介绍:
离子交换纯水系统
本系统设计采用多介质过滤器、活性炭过滤器作及保安过滤器作为前级处理,有效除去原水中的悬浮物、泥砂、微粒、有机硅胶体、有机物、异味、余氯等杂质,使经过离子交换处理后的水质符合工业生产要求。在经过后端进行精处理系统(混床系统),使其产水水质满足生产用水的要求。离子交换设备-离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。国内外生产的树脂品种达数百种,年产量数十万吨。
工业超纯水设备原理描述
离子交换是一种特殊的固体吸附过程,它是由离子交换剂的电解质溶液中进行的。一般的离子交换剂是一种不溶于水的固体颗粒状物质,即离子交换树脂。它能够从电解质溶液中吸取某种阳离子或者阴离子,而把自身所含的另外一种带相同电荷符号的离子等量地换出来,并释放到溶液中去,这就是所谓的离子交换。按照所交换离子的种类,离子交换剂可分为阳离子交换剂和阴离子交换剂两大类。
离子交换的基本工作原理是
1、首先电解质离子(钙、镁、铁、钠等离子)穿过液膜进入树脂表面;
2、离子进入树脂内部;
3、离子交换;
4、H离子或OH根离子向树脂外部扩散;
5、H离子或OH根离子进入水中形成H2O。双床又称复床,复床是用阳、阴两种不同的离子交换的交换器的串联方式,如强酸性阳离子交换树脂和强碱性阴离子交换树脂串联的方式。这种阳床和阴床串联组成的设备称为复床,水先经过阳床除去带正电的离子(如Ca2+、Mg2+、K+、Na+),并且置换出H+离子到水中;然后除去水中的阴性离子(如SO2-4、Cl-、HCO- 3),并且置换出OH-离子到水中。同时,H+离子和OH-离子结合形成水H2O,从而达到去离子的作用。
混床工作原理
在同一个交换器中,将阴、阳离子交换树脂按照一定的体积比例进行填装,在均匀混合状态下,进行阴、阳离子交换,从而除去水中的盐分,称为混合床除盐处理。混合床的阴、阳离子交换树脂在交换过程中,由于是处于均匀混合状态,交错排列,互相接触,可以看作是由许许多多的阴、阳离子交换树脂而组成的多级式复床,可相当于1000~2000级。因为是均匀混合,所以,阴、阳离子的交换反应几乎是同时进行的,所产生的H+和OH-随即合成H2O,交换反应进行得很彻底,出水水质高。
系统结构流程前处理设备(多介质过滤设备、活性炭过滤设备)+离子交换设备=纯水
应用范围
发电厂、热电厂.给水循环冷却(凝结).水化工、石化工艺用水.化工反应冷却用水
预处理
包括砂滤、多介质过滤、软化、加氯、调节pH、活性碳过滤、脱气等。过滤可除去 1~20微米大小的颗粒,软化和调节pH可防止反渗透膜结垢,加氯是杀菌。活性碳过滤是除去有机物和自由氯,脱气是清除溶于水中的CO2等。
脱盐
包括电渗析、反渗透、离子交换。电渗析的原理是在外加直流电场作用下利用阳离子和阴离子交换膜对离子选择性透过,脱盐率可达95%以上。反渗透是渗透现象的逆过程,在浓溶液上加压力,使溶剂从浓溶液一侧通过半透膜向稀溶液一侧反向渗透,脱盐可达98%,并能除去99%的细菌颗粒和溶解在水中的有机物。离子交换的原理是当水通过阳离子交换树脂时,水中的阳离子被阳离子交换树脂吸附,树脂上可交换的阳离子如H离子被置换到水中,并和水中的阴离子结合成相应的无机酸,如 超纯水这种含有无机酸的水,当下一步通过阴离子交换树脂层时,水中的阴离子被阴离子交换树脂吸附。树脂上可交换的阴离子如OH离子被置换到水中,并与水中的H离子结合成水,即 超纯水 。

精处理
包括紫外线杀菌、终端膜过滤和超滤。紫外线杀菌是因生物体的核酸吸收紫外线光的能量而改变核酸自身结构,破坏核酸功能而使细菌死亡。杀菌最强的光谱波长为2600埃。各种膜过滤能除掉直径大于 0.2微米的颗粒,但对于清除有机物则不如反渗透和超滤有效。超滤是把各种选择性的分子分离。在超滤过程中,水在压力下流过一个卷式或中空纤维膜棒。膜孔径在10~200埃范围内,薄膜厚度为0.1~0.5微米,附在一个中孔的纤维棒内壁上,超滤能除去细菌和0.05微米的粒子。

⑶ 离子交换树脂工作工艺流程图

工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的.

⑷ 闄ょ洂姘村伐鑹烘祦绋嬪浘

闄ょ洂姘村伐鑹烘祦绋嬪浘鍖呮嫭鍘熸按棰勫勭悊銆佺诲瓙浜ゆ崲銆佸啀鐢熷拰浜ф按绛夋ラゃ
璇︾粏瑙i噴锛
闄ょ洂姘村伐鑹烘祦绋嬪浘灞曠ず浜嗕粠鍘熸按杞鍖栦负闄ょ洂姘寸殑鏁翠釜杩囩▼銆傞栧厛锛屽師姘寸粡杩囬勫勭悊锛屽幓闄ゅぇ鍨嬮楃矑鍜屾偓娴鐗╋紝鐒跺悗閫氳繃杩囨护鍣ㄨ繘涓姝ュ噣鍖栥傝繖涓姝ラゆ槸涓轰簡纭淇濆悗缁鐨勭诲瓙浜ゆ崲杩囩▼鑳藉熸湁鏁堣繘琛屻
鎺ヤ笅鏉ワ紝棰勫勭悊鍚庣殑姘磋繘鍏ョ诲瓙浜ゆ崲鍣ㄣ傝繖閲岋紝姘翠腑鐨勯槾绂诲瓙鍜岄槼绂诲瓙涓庣诲瓙浜ゆ崲鏍戣剛涓婄殑绂诲瓙杩涜屼氦鎹锛屽幓闄ゆ按涓鐨勬憾瑙g洂绫汇傝繖涓杩囩▼鏄鍏抽敭锛屽洜涓哄畠鑳藉熷幓闄ゅ奖鍝嶈惧囪繍琛屽拰鐢熶骇杩囩▼鐨勬按涓鐩愬垎銆
绂诲瓙浜ゆ崲鏍戣剛鍦ㄤ娇鐢ㄤ竴娈垫椂闂村悗闇瑕佽繘琛屽啀鐢熴傚啀鐢熻繃绋嬫槸閫氳繃鍚戠诲瓙浜ゆ崲鍣ㄤ腑鍔犲叆閰稿拰纰辨潵鎭㈠嶆爲鑴傜殑浜ゆ崲鑳藉姏锛屼娇鍏惰兘澶熷啀娆$敤浜庡幓闄ょ洂鍒嗐
鏈鍚庯紝缁忚繃绂诲瓙浜ゆ崲澶勭悊鐨勯櫎鐩愭按杩涘叆浜ф按绯荤粺锛屼緵鐢ㄦ埛浣跨敤銆傝繖涓杩囩▼纭淇濅簡鐢ㄦ埛鑳藉熻幏寰楁弧瓒崇壒瀹氶渶姹傜殑绾鍑姘淬
渚嬪瓙锛氬湪鏌愮數鍔涘巶涓锛岄櫎鐩愭按宸ヨ壓娴佺▼鍥捐鐢ㄤ簬鎸囧肩敓浜ц繃绋嬩腑鐨勬按澶勭悊銆傞氳繃绂诲瓙浜ゆ崲鍜屽啀鐢熸ラわ紝鐢靛姏鍘傝兘澶熻幏寰楁弧瓒抽攨鐐夌瓑璁惧囪繍琛岄渶姹傜殑闄ょ洂姘达紝浠庤屼繚闅滃彂鐢佃繃绋嬬殑椤哄埄杩涜屻傚悓鏃讹紝娴佺▼鍥捐繕甯鍔╂搷浣滀汉鍛樻洿濂藉湴浜嗚В鏁翠釜宸ヨ壓杩囩▼锛岀‘淇濆悇涓姝ラょ殑姝g‘鎵ц屻

⑸ 如何除去饮用水中杂质

~一、水的来源及含杂质情况
水对很多物质都有良好的溶解能力,这就造成水中容易混入杂质的缺点。
从自然界得到的水中往往含有许多杂质,这些杂质或者溶解或者悬浮在水中。悬浮在水中的无机物包括少量砂土和煤灰;有机悬浮物包括有机物的残渣及各种微生物。溶解在水中的气体包括来自空气中的氧气、二氧化碳、氮气和工业排放的气体污染物如氨、硫氧化物、氮氧化物、硫化氢、氯气等;溶解在水中的无机盐类主要有碳酸钙、碳酸氢钙、硫酸钙、氯化钙以及相应的镁盐、钠盐、钾盐、铁盐、锰盐和其他金属离子的盐,溶解的有机物,主要是动植物分解的产物。
由于天然水的来源不同,其中溶解的杂质也不尽相同。下面分别加以介绍。
(1)雨水 雨水是天空中水蒸气凝聚而成,总的来说雨水中含杂质较少,是含钙、镁离子较少的软水。但也溶解有一部分来自空气的少量氧气、二氧化碳和十定量的尘埃。还可能含有由雷电作用产生的含氮化合物。在城市上空受工业废气污染可能含有二氧化硫,这种雨水有酸性,俗称酸雨,有较强的腐蚀性。
(2)江河水 河流是降水经过地面流动汇集而成的。它在发源地可能受高山冰雪或冰川的补给,沿途可能与地下水相互交流。由于江河流域面积十分广阔,又是敞开流动的水体,所以江河水的水质成分与地区和气候条件关系密切i而且受生物活动寻口人类社会活动的影响最大。
(3)湖泊水 湖泊是由河流及地下水补给而在低洼地带形成的。湖泊的水质与它来源的水质有一定关系,但又不完全相同。日照及蒸发的强度也强烈影响湖泊的水质。如果蒸发强烈水中溶解物浓度就会逐渐增加,特别是水中含有的硝酸盐、磷酸盐的浓度增加时,会带来水质富营养化的倾向,造成水生植物过度生长,水中含氧量降低,会使水腐败变质。
(4)地下水 地下水是降水或地表水经过土壤地层渗流而形成的。十般地下水经过土壤地层的过滤,所含悬浮杂质较少,常为清澈透明;受地面污染蠖少因而含有机,物及细菌相对较少;但一般溶解的无机盐含量较高,硬度和含矿物质高;有的地区地下水含可溶性二价铁盐异常高,由于二价铁离子不稳定易氧化成三价铁离子并生成不溶性三价铁盐或氢氧化铁沉淀,所以在利用这种地下水之前,需要经过曝气处理以分离去除所含的铁离子。
(5)自来水 经过水厂处理得到的自来水,应该达到适合饮用水的标准,但其中仍有少量杂质。
表5—4 天然水中的杂质

来源
悬浮物
胶体
气体
非离子固体
阳离子
阴离子

从矿物,土壤和岩石中来的
粘土、砂砾、
其他无机的土壤污物
粘土
SiO2
Fe2O3
Al2O2
MnO2

CO2

Ca2+、Mg2+
Na+、K+
Fe2+、Mn2+
Zn2+、Cu2+

HCO3-、Cl-
SO42-、NO3-
CO32-、HSiO3-
H2BO3-、HPO42-
H2PO4-、OH-、F-

从大气中来

NH3、N2、
O2、CO2、
SO2

HCO3-、
SO42-

从有机物分解现时来

有机污物、有机废水

蔬菜的色素物质,有机废水

O2、NH3
CO2、N2
H2S、CH4
H2
蔬菜色素物质,有机废水

Na+
NH4+
H+

Cl-
HCO3-
NO2-、NO3-
OH-、HS-
其他有机阴离子

活的微生物
鱼、藻、微生物、硅藻
细菌、藻类、病毒、硅藻

从表5—4可看出,天然水中杂质主要分为两大类,即悬浮杂质和溶解杂质。悬浮杂质包括悬浮物和胶体;溶解杂质包括气体’、司巨电解质和电解质固.体,其中电解质杂质以离子状态存
在于水中。天然水中杂质来自于四个方面:即从矿物、土壤和岩石中溶入的;从空气中带入的;有机物分解带人的和活的微生物产生的。
二、杂质对水质的不良影响
1.水中溶解的气体
水中熔解的气体主要有氮气、氧气、二氧化碳、氨二氧化硫和硫化氢等。对水质影响较大的氧气、二氧化碳、氨、二氧化硫和硫化氢;
(1)氧气 水中溶解的氧气常是造成工业生产中锅炉等金属设备腐蚀的原因d:溶解氧不仅可以引起金属的化学腐蚀,而且由于水中氧浓度分布不均匀还会导致危害更大的电化学腐蚀。水中氧浓度分布不均的区域称为氧浓差区域l氧浓度较高的区域称为高氧区广氧浓度较低的区域称为贫氧区;由于氧浓度的不伺在金属表面形成浓差电池发生电化学腐蚀时i牛富氧区是腐蚀电池的阴极,贫氧区是电池的阳极;由于气体在水中扩散十分缓、慢十因此水的深度不同会产生氧浓差。离水面较深的区域,一旦氧气被消耗不能及时得到补充成为贫氧区,而在水面附近与空气接触、易溶入氧气形成富氧区;而在搅动邢流动的水中虽然象水的流动,氧的浓度比较均匀卜但在水中某些部位厂水流动受阻,会成为水的滞流区,因此也会形成贫氧区和浓度差而造成电化学腐蚀。
在化工生产的动力锅炉用水中士溶解氧浓度是一项重要监测指标,锅炉水中微量溶解氧存在时会使钢铁表面钝化膜破裂而导致严重的点蚀或局部腐蚀主因此必须除去水中;的溶解氧,而且锅炉压力越高,÷允许残留在水中的氧浓度就越低。通常的作法是先用蒸气加热的方法脱 氧再加入联氨;亚硫酸钠之类的还原剂:与氧反应使氧浓度进扒步下降,当含氧量小于0.005mg/L时,一般不会引起锅炉腐蚀。
(2)二氧化碳 溶于水中二氧化碳一方面对水的pH值产生影响,含CO2多的水显酸性,会导致金属设备的腐蚀,为此工业生产中在水中加入环己胺或吗福啉等挥发性碱来调节水的pH值以防止二氧化碳腐蚀。
另一方面在水溶液中二氧化碳、碳酸氢根和碳酸根离子浓度之间存在一个平衡关系:溶于水的二氧化碳(H2CO:)在水中发生两级电离,
一级电离为:
一级电离平衡常数 (5—2)
二级电离为:
二级电离平衡常数 (5—3)
计算表明,当pH<8.3即氢离子浓度cH+=4.7X10-9mol/L时,溶液中主要以H2CO3,和HCOi-3离子形式存在,COi2-3离子浓度低。而水中COi—离子和Ca2+离子浓度过高是造成水垢产生的原因,因此要把水溶液控制在一个近中性(pH=7)的合适范围,既不引起金属腐蚀,也防止碳酸盐水垢的产生。
(3)氨气 氨气是易溶于水的碱性物质,通常水中含氨量很少,不会对水质造成影响,但是当水中含蛋白质等含氮有机物较高时,在微生物作用下可分解产生氨。氨在潮湿空气中或含氧水中会引起铜和铜合金腐蚀。氨与铜离子能形成稳定络合物而降低了铜的氧化还原电极电位使铜易被氧化腐蚀,导致铜质工业设备损坏。
(4)硫化氢和二氧化硫 溶于水中的二氧化硫和硫化氢都使水显酸性,其中硫化氢的危害更大些,这是因为硫离子有强烈的促进金属腐蚀的作用。工业生产设备中与水接触的碳钢表面出现“鼓泡”等腐蚀现象,主要是硫化氢作用的结果。硫化氢有强还原性,会与水中的氧化性杀菌剂或铬酸盐等强氧化性缓蚀剂反应而使它们失效。另外许多金属硫化物在水中溶解度很低,所以硫化氢是一种金属离子沉淀剂,会使含锌等金属离子缓蚀剂形成硫化物沉淀而失效。因此要尽力减少水中硫化氢的含量。
2。水中溶解的无机盐类
(1)无机盐在水中的溶解性规律 无机盐在水中溶解度受温度影响的变化规律分为三类:绝大多数盐的溶解度都是随温度升高而增加的;有些盐溶解度受温度变化的影响不显著(如食盐);也有些盐类溶解度是随温度升高而下降的,属于这一类的有碳酸钙、硫酸钙、碳酸镁等微溶和难溶盐,因此在受热过程中,这些盐特别容易形成水垢。
(2)溶盐含量的表示方法 常用mg/L(ppm)表示溶解盐(或离子)的含量。如lm水中含有钙离子40g相当于40mg/L(Ca2+),有时用mg/L(CaC03)表示,即折合成每升水中含碳酸钙多少毫克。由于Ca的相对原子质量为40,而CaCO3的相对分子质量为100,所以40mg/L(Ca2+)相当于100mg/L(CaC03)。目前通常用mg/L(CaC03)作为水硬度的单位, lmg/L(CaC02)叫1度。
(3)总溶固含量和电导率 总溶固含量(TDS)是水质控制的第一个重要指标。溶于水的总固体物质包括盐类和可溶性有机物,但后者在水中含量一般很低:实际上总溶固量就是水中溶解盐的数量,根据水中的总溶固量的不同而将水质分为淡水、咸水、高盐水三类。
测定水中总固含量需把水蒸至干,很费时间。由于水中溶解的盐有导电能力,含盐量高导电力强,因此直接测定溶液的导电率即可换算出总溶固含量。电导率是一定体积溶液的电导,是溶液电阻率的倒数。对于同一类型淡水,在pH=5~9范围,电导率是与总溶固含量大 致成线性关系。电导率测定通常在25℃恒温下进行,温度变化l℃,电导率可有2%变化量锅炉压力越高,要求控制电导率越低,即总溶固含量越低。
(4)钙镁离子与硬度 一般从自然界得到的水都溶有一定的可溶性钙盐和镁盐,这种含可溶性钙盐、镁盐较多的水称为硬水。又根据钙盐、镁盐具体种类的不同,又分为暂时硬水和永久硬水。含有碳酸氢钙和碳酸氢镁的硬水在煮沸过程中会变成碳酸盐沉淀析出,所 以把这种硬水叫做暂时硬水;而把含钙、镁的硫酸盐、氯化物的硬水称为永久硬水,因为它们在煮沸时也不会析出。而把含钙、镁离子少的水称为软水。
水中含钙;镁离子这种杂质时对洗涤危害是较大的。钙、镁离子会使肥皂和一些合成洗涤剂的洗涤效力大为降低。肥皂中含有的高碳脂肪酸根(如硬脂肪酸根)会与钙、镁离子生成不溶性的硬脂酸钙(俗称钙皂)或硬脂酸镁,而使肥皂失去洗涤去污的作用。同时生成的钙皂沉淀物会牢固地附着在洗涤对象的表面,不易去除,严重影响洗涤质量:
2C17H35COONa+Ca2+=====(C17H35COO)2Ca↓+2Na+
同样,合成洗涤剂、烷基苯磺酸钠虽有一定的耐硬水能力,但也会与钙、镁离子发生反应:

原来十二烷基苯磺酸钠是易溶于水的,当形成十二烷基苯磺酸钙之后则不易溶于水,只能在一定程度上分散在水中。因此洗涤时最好使用含钙、镁离子少的软水。
水的硬度是反映水中含钙、镁盐特性的一种质量指标。把水中含有的碳酸氢钙、碳酸氢镁的量叫碳酸盐硬度。由于将水煮沸时,这些盐可分解成碳酸盐沉淀析出,故又称之为暂时硬度。把水中含有的钙、镁硫酸盐及氯化物的量叫非碳酸盐硬度,因为用煮沸方法不能除掉这些盐,故又称为永久硬度。把上述两类硬度的总和称为总硬度。
世界各国虽都规定有自己的硬度单位标准,但通常把一百万份水中含一份碳酸钙作为硬度单位(即lkg水中含有lmg碳酸钙)。
水的硬度与水质的关系如表5—5所示。
表5-5 水的硬度分级

水质
硬度/(CaCO3mg/kg)

水技
硬度/(CaCO3mg/kg

很软的水
软水
较软的水
0~40
40~80
80~120

较硬功夫的水
硬水
很硬的水
120~180
180~300
300以上

[page]
硬水对肥皂的洗涤性能影响很大。有实验结果表明,用硬脂酸钠制成的肥皂,以硬度为、100的水配成质量分数为0.2%的溶液时,大约有1/4的硬脂酸钠转变成没有涤涤作用硬脂酸钙,而且它们会沾附在洗涤对象表面造成污染。假如用硬度为200的水配制上述溶液时,肥皂的起泡性和洗涤效果都受到很大影响,甚至用眼看,手摸都能感觉到钙皂沉淀的存在。
硬水不仅不适合做洗涤用水,也不适合作锅炉用水,它容易产生水垢,使锅炉热效率降低,甚至引起锅炉爆炸。因此必须把硬水进行软化处理。
(5)铁离子的危害 水中含铁量过高时,饮用时有发腥发涩的感觉,用于洗涤衣物和瓷器会染上黄色。水牛铁离子包括Fe2+、Fe3+两种形式。由于Fe(OH)3溶度积很小,所以在中性水中Fe3+都是以胶体状态的氢氧化铁形式悬浮于水中,会相互作用凝聚沉积在锅炉房金属表面形成难以去除的锈垢,并弓[发金属进一步腐蚀。而溶在水中的FeZ+的危害作用在于它是水中铁细菌的营养源,Fe2+含量过多会引起铁细菌的滋生。Fe2+与磷酸根离子结合形成的磷酸亚铁是粘着性很强的污垢。而且Fe2+能在碳酸钙过饱和溶液中起到晶核作用,能加快碳酸钙沉淀的结晶速度。因此在水中要严格控制含铁量。
(6)铜离子的危害 虽然铜离子在水中含量一般不高,但它对金属腐蚀有明显影响。由于铜离子易被铁、锌、铝等活泼金属还原成金属铜,而在金属表面形成以铜为阴极的微电池,引发金属电化学腐蚀,造成金属的点蚀而穿孔,因此要严格控制水中含铜量。
(7)水中的阴离子与碱度 水中含有的阴离子有OH-、C02-、PO3-4、Si02-3、C1-和SO24离子等,其中能引起金属腐蚀是通常在水中含量较高的C1-离子。研究表明,C1-离子虽然并没有直接参加电极反应,但能明显加速腐蚀速度,这可能是与C1-离子容易变形发生离子极化,极化后的Cl-离子具有较高极性和穿透性有关。由于它的高极性和穿透性使Cl-离子易于吸附在金属表面,并渗入到金属表面氧化膜保护层内部,造成破坏而导致腐蚀发生。
碱度是指水中能与H+发生反应的物质总量。水中能与H+发生反应的物质包括OH-、CO2-3、HCO-3、HP02-4、H2PO-4、HSi0-3等阴离子和NH3,测量碱度时,加入酚酞指示剂,用强酸滴定到红色褪去所消耗酸的数量叫酚酞碱度。加入甲基橙指示剂用强酸滴定至溶液显红色所消耗的酸的总量叫甲基橙碱度或总碱度。甲基橙碱度总是大于酚酞碱度的。根据两者的关系可判断水中OH-、C02-3、HCO-3离子的相对含量。
滴至酚酞变色发生的反应是:
而进一步滴定至甲基橙变色发生的反应是:
由于将C02-3滴定至HCO-3,与将HCO-3滴定至H2CO3所消耗的酸量相等,而OH-与HC0-3不能同时共存于溶液,因此当酚酞碱度等于甲基橙碱度时,说明溶液中只有OH-,没有HC0-3、CO2-3离子,当甲基橙碱度等于酚酞碱度二倍时,说明溶液中只有C02-3离子。而当甲基橙碱度小于酚酞碱度二倍时,说明溶液中有OH-、C02-3,没有HCO-3(因为OH-与HCO-3不能同时存在于同一溶液中)。
由于OH-、C02-3、HC0-3离子与钙镁离子一样都是成垢离子的来源,为了防止结垢就必须控制溶液的硬度和碱度。因此碱度也是水质控制的重要指标。
3.水中其他杂质的危害
(1)油污 水中含有油污,一方面它会粘附在金属表面上影响金属的传热效率,还会阻止缓蚀剂与金属表面充分接触,使金属不能受到很好的保护而腐蚀。还会对水中各种污垢起粘结剂作用加速污垢的形成和聚积。油污还是微生物的营养源会加快微生物的滋生和形成微生物粘泥,因此水中含油量必须严格控制。
(2)二氧化硅 水中溶解少量以硅酸或可溶性硅酸盐形式存在的二氧化硅对金属的腐蚀有一定的缓蚀作用。但含量过高时会形成钙镁的硅酸盐水垢或二氧化硅水垢。这种水垢热阻大、难以去除对锅炉危害特别大,因此要严格加以控制。
三、水的净化与纯化
1.硬水软化
把硬水转变成软水的过程叫硬水软化。软化硬水的方法较多,有加热法、化学沉淀法和离子交换法。目前广泛采用的是离子交换法,即用离子交换剂来软化硬水的方法。过去曾用过磺化煤、泡沸石来软化硬水,目前普遍使用的离子交换剂是高分子离子交换树月旨,它是有交换离子能力的高分子化合物。它是由不溶于水的交换剂本体及能在水中解离的活性交换基团两个基本部分组成。根据可交换的离子是阳离子或阴离子而分别称为陌离子交换树脂和阴离子交换树脂,如通常使用的苯乙烯型离子交换树脂,它的交换剂本体是由苯乙烯与部分对苯二乙烯共聚而成的不溶性高聚物。当本体上连有磺酸基(一SO-3Na+)或季铵基[一N+ (CH3)3Cl-]后则分别具有交换阳离子或阴离子的能力。
用离子交换树脂软化硬水分为两步:处理工程和再生工程。
当硬水通过阳离子交换树脂时,水中的钙、镁离子与阳离子交换树脂上的活性基团钠离 —B子发生交换并被吸附,使水软化:
口一(S03Na)2+Ca2+——>口一(SO3)2·Ca+2Na+ (处理工程)
当阳离子交换树脂上的钠离子几乎全部被钙、镁离子所交换时就失去了交换离子的能力;必须通过再生恢复它的交换能力。通常使用食盐为再生剂,再生过程中先用清水洗涤离子交换树脂,然后通人质量分数为10%的食盐水浸泡而使离子交换树脂吸附的钙、镁离子解吸下来,然后随废液排出。
口一(S03)2Ca+2Na+——>口一(S03Na)2+a2+ (再生工程)
在离子交换过程中,不仅钙、镁离子会被交换,水中含有的铁、锰、铝等金属离子也可同旧寸被交换去除。当硬水先后通过阳、阴离子交换树脂后;水中的电解质阳、阴离子基本均可被去除,这种方法得到的软水叫去离子水。见图5—3。
图5—3 离子交换树脂软化硬水示意图

一般锅炉中使用的软水,精密工业清洗领域使用的洗涤及冲洗用水,大都是采用离子交换树脂法制得的。这种方法简便、成本低,水中的离子性杂质基本被去除,在许多场合去离子水被用来代替成本较高的蒸馏水使用。
目前中国大型工矿软化水大都仍采用石灰法。其他软化方法成本较高只适用于少量水系统。用石灰可以去除水中的二氧化碳和碳酸氢钙、碳酸氢镁。
Ca(OH)2+C02====CaCO3↓+H20
Ca(HCO3)2+Ca(OH)2====2CaCO3↓+2H20
Mg(HCO3)2+2Ca(OH)2====Mg(OH)2↓+2CaCO3↓+2H20
有时为了去除非碳酸盐硬度(如CaSO+,CaCl。等)要配合加入适量Na2CO汁
CaSO4+Na2C03=CaCO3+Na2S04
MgSO4+Na2CO3+Ca(OH)2====Mg(OH)2+CaCO↓+Na2SO4
2.混凝剂去除悬浮胶体
为了去除水中悬浮粘土和胶体要加入混凝剂。分散很细的粘土胶体,单靠重力沉降很难从水中分离。混凝剂的作用在于通过吸附作用使细小粘土颗粒聚集在一起首先形成直径在1μm的聚集体,再通过化学粘结、共同沉淀等作用使聚集体进一步聚集成羊毛绒状的絮状体。絮状体在重力作用下可以发生沉降而被去除。
工业上常用的无机混凝剂有硫酸铝[A12(SO4)·18H20l铝铵矾[Al2(SO4)·(NH4)2SO4·24H20]孔氯化铝(A1C13);—铝钾矾[A12(SO4)3·K2SO4· 24H20]三氯化铁(FeCl3),绿矾(FeSO4·H20),硫酸高铁等。
有机絮凝剂有聚丙烯酰胺等。
无机混凝剂的作用机理是铝、铁离子在水中发生水解,形成单核或多核的羟基络离子:
这些永解产物有混凝作用,它们可以把表面带负电荷的粘土颗粒的双电层压缩,使所节净负电荷减少。当铝、铁离子形成氢氧化铁或氢氧化铝等絮状沉淀物时会把粘土颗粒卷扫携同沉淀。它们也可以通过吸附架桥作用把粘土颗粒连在一起形成聚集体。
聚丙烯酰胺等有机高分子絮凝剂主要通过架桥作用使粘土颗粒絮凝沉淀,当聚合物分子与胶体粒子接触时,聚合物分子的一些基团吸附到胶体粒子表面,而聚合物分子的剩余部分仍留在溶液中。一个聚合物分子有多个位置可与胶体粒子发生吸附,当聚合物分子同时与多个胶体粒子发生吸附作用时就会发生架桥作用,把胶体粒子聚集在一起,并在重力作用下形成沉淀,如图5—4所示。
经过混凝处理之后的水再通过细砂、活性炭组成的过滤池就可把水中悬浮颗粒基本去除。
3.纯水和超纯水
由于现代工业技术的发展,对水质提出日益严格的要求,因而直接采用批水作原料、工艺用水或生产过程用水的部门逐渐增多,制造纯水的技术也相应得到迅速发展。
所谓纯水并非指化学纯的水,而是指在千定程度上去除了各种杂质的水。用离子交换法主要去除的是水的硬度(Ca2+、Mg2+),而并没有把水中包括非硬度盐在内的所有强电解质者陆除,而且水中还存在硅酸等弱电解质以及气体、胶体、有机物、细菌等杂质,根据这些杂质的去除程度把纯水又分为除盐水、纯水和超纯水几个等级。
按生产工艺的实际需要,许多部门都提出了对纯水的。要求。如在医药、精.制糖、高级纸制造、合成纤维、电影胶片、电子工业、高压锅炉用水以及其他部门都要求使用除盐水或纯水。而在超高压锅炉、高绝缘材料、精密电子元件、原子能工业等则要求使用超纯水。在精密工业清洗的许多领域,水中含有微量杂质都会影响制品的精度,如属于最先进的精密工业的光学仪器、电子机械、半导体元件等领域,洗涤后冲洗用水中存在的微量杂质在干燥之后会在被洗物表面形成污点或斑迹,这是造成元件表面覆盖膜会存在气孔的原因,也是造成其导电性变差,机械性能变坏的原因。电子工业中一些精密元件的制造和清洗都要求使用高纯水心口果电子管阴极涂面混入杂质则会影响电子发射;在电视摄像管和电视机荧光屏制造过程中混入微量铜、铁等金属就会使画面变色。在半导体晶体管制造、集成电路蚀刻过程中对水质要求更高。
测量水的纯度有多种指标,而电·阻率是通常衡量水纯度的重要指标。水的电阻率早与水中含有的离子性杂质多少直接有关的。因为水中溶解的各种盐都是以离子状态存在而具有导电能力的。水的导电能力越强<电阻率越低)说胡含有离子性杂质越多,而电阻率越高则说明水越纯。理论上不含离子性杂质的纯水可达到电阻率的极限为18.3M∏·cm(25℃)。只有经过蒸馏的纯水的电阻率才能达到这个标准。读者可根据表5—6了解各种水的电阻率与所含离子性杂质的关系。
下面列出天然水经处理后其中含盐量。
除盐水是指水中包括非硬度盐类的各种电解质都去除到一定程度的水,其含盐量在1~5mg/L范围。
纯水又称深度除盐水,其中不仅除去了强电解质,而且大部分硅酸和二氧化碳等弱电解质也已除去,含盐量降至1.0mg儿以下。
超纯水要求把水中的气体、胶体、有机物、…细菌等各种杂质都去除到最低限度,达到工业上可达到的最高纯度,此时水中的含盐量降低到0.tmg/i以下。见表5—?。
表5-7 超纯水水质标准(电子工业甲)

项目
ASTM①
SEMI②

项目
ASTM①
SEMI②

电阴率/M∏·cm(25℃)
微粒数/(个/cm3)

细菌数/(个/L)
SiO2(μg/L)
TOC(总有机碳)/(μg/L)
18
2(粒径<
1μm)
10
75
200
17
1000(粒径<
0.8μm)
2(菌族)
5(胶体)
75

铜/(μg/L)
氯离子/(μg/L)
钾郭子/(μg/L)
钠离子/(μg/L)
锌/(μg/L)
TDS③/(μg/L)
2
10
2
2
10
10
2
20
1
1
1
15

①ASTM:美国材料试验标准。
②SEMI:电子材料工业标准。
⑧TDS:可溶性固体总含量·
超纯水的制造系统通常由以下几个步骤组成。
(1)前处理 目的为减少后续处理步骤的负荷,包括凝聚沉淀、精密过滤、活性炭吸附层过滤等步骤,使水中含有的较粗大颗粒杂质得以去除。
(2)离子交换处理 通过离子交换树脂脱除各种可溶的离子性杂质,为了去除钙、镁离子以外的其他非硬度强电解质离子;·有时要增加高性能的离子交换装置;
(3)超滤膜处理 目的在于去除悬浮在水中的各种微小杂质(包括细菌、有机物残渣)。
(4)反渗透处理 将超滤膜无法去除的更微小的可溶性杂质(如可溶性蛋白质)加以去除。应词注意,反渗透处理工艺使用的半透膜耐压寿命较短+应当尽量减少此种半透膜的负荷:
(5)紫外灯处理 利用紫外线的杀菌作用对水牛微生物进行杀灭。
其整个处理流程如图5—5所示。
图5—5 超纯水制连流程图

制造超纯水时,应考虑到不锈钢和玻璃器材虽然耐水腐蚀性很好,但仍会在水中溶解邱微量离子性杂质.,因此制造超纯水生产路线的管道以及各种反应容器应该使用对水更加稳定
的氟树脂和其他塑料来制造。 同时在保存、使用超纯水的过程中,会因种种原因使水的纯度降低,比如由于静电弓I力而附着在容器上的污垢落入水中,微量的食盐或其他电解质溶解到水中,二氧化碳气体溶解到水中,都会使纯水的纯度下降导:电性增加,所以在保存过程中要十分小心。
上面是我帮你找的..
希望对你有用噢 .
写的够详细了吧

⑹ [急]求超详细工业制碘流程!

实际生产中碘的提纯与我们的想象相差甚远,最精彩之处是不用CCl4,这是工业生产中综合考虑成本、速率、环保等因素的结果,其相关的知识和能力高于高中学生,教材中用虚标的方法极为成功,既避免知识的过分扩展,又为学生的发展留下了空间,苏教版《化学1(必修)》用比实际流程更简明的流程呈现,则是很成功的。
回答者: ZBG张保国 - 秀才 二级 12-26 08:39
海水提镁,基本的工艺技术是:先把石灰乳注入到盛有海水容器中,使海水中的氯化镁变为氢氧化镁沉淀,从海水中滤出的氢氧化镁再加盐酸,使之生成氯化镁,并将其溶液煮沸、浓缩、烘干成无水氯化镁,经过电解氯化镁,便得到金属镁和氧气。

⑺ 宸ヤ笟姘村勭悊棰嗗煙甯歌佺殑26涓澶勭悊宸ヨ壓娴佺▼鍥

宸ヤ笟姘村勭悊宸ヨ壓澶у叏锛26涓娴佺▼鍥捐﹁В


鍦ㄥ伐涓氱敓浜т腑锛屾按璐ㄥ勭悊鏄鑷冲叧閲嶈佺殑鐜鑺傘備互涓嬫槸26绉嶅父瑙佺殑宸ヤ笟姘村勭悊宸ヨ壓娴佺▼锛屽畠浠鍚勫叿鐗硅壊锛岄拡瀵逛笉鍚岀殑姹℃煋婧愬拰鐩鏍囷紝閲囩敤閽堝规х殑鎶鏈鍘婚櫎姹℃煋鐗╋紝纭淇濇按璧勬簮鐨勯珮鏁堝埄鐢ㄤ笌鐜澧冧繚鎶ゃ


1. 鐭挎硥姘撮櫎婧撮吀鐩愬伐鑹


鍒╃敤瀛h兒1鍨嬪畼鑳藉洟锛屾湁鏁堝幓闄ょ~閰哥洂銆佹隘绂诲瓙锛岄拡瀵规捍鍖栫墿鐨勫勭悊灏や负鏄捐憲銆


2. 瓒呯函姘村埗澶囧伐鑹


鐢靛巶鍐呭喎姘寸郴缁熼厤澶囬檷鐢靛艰呯疆锛岄氳繃绂诲瓙浜ゆ崲鎶鏈锛岀‘淇濈數瀵肩巼浣庤嚦1渭s/cm锛岃揪鍒拌秴绾姘磋川瑕佹眰銆


3. 閿扮熆闄ゆ皑姘娴佺▼


閲囩敤涓や覆涓澶囩殑杩愯屾ā寮忥紝纾洪吀鍩哄畼鑳藉洟楂樻晥鎹曟崏閾垫牴绂诲瓙锛岄檷浣庢皑姘鍚閲忋


鍨冨溇娓楁护娑插勭悊

4. 椤靛博姘斿弽鎺掓恫澶勭悊


娌夋穩宸ヨ壓閰嶅悎杞鍖栫郴缁熴佽啘绯荤粺鍜岀诲瓙浜ゆ崲鑴辨皑绯荤粺锛岀郴缁熸у己锛屾皑姘鍘婚櫎鏁堟灉鏄捐憲銆


5. 鏈夋満鑳烘憾娑茶劚纭鑴辨盁


姘熼夋嫨鎬у畼鑳藉洟缁撳悎纭閰搁摑鍐嶇敓锛岀‘淇濊劚纭鑴辨盁鐨勯珮鏁堟у拰鍐嶇敓鎬с


6. 楗鐢ㄦ按姘熷寲鐗╁勭悊


鐭宠嫳鐮傝繃婊ゅ櫒閰嶅悎闄ゆ盁鏍戣剛锛岄夋嫨鎬у幓闄ゆ盁鍖栫墿锛屽噺灏戝共鎵扮诲瓙褰卞搷銆


7. 閽㈤搧搴熸按闄ゆ盁


缁忚繃娌夋穩銆佸急閰搁槼搴娿佸弽娓楅忋侀櫎姘熸爲鑴傜郴缁燂紝浠ュ強DE鍜岃捀鍙戝櫒澶氭ラゅ勭悊锛岀‘淇濇盁鐨勯珮鏁堝幓闄ゃ


8. 椋熷搧琛屼笟閽欓晛鍘婚櫎


澶氫粙璐ㄨ繃婊ゅ櫒銆佺簿瀵嗚繃婊ゅ櫒鍜岃蒋鍖栫郴缁燂紝纾洪吀鍩哄畼鑳藉洟閫氳繃閽犵诲瓙浜ゆ崲鍘婚櫎閽欓晛绂诲瓙銆


9. 鍦颁笅姘村叚浠烽摤鍘婚櫎


閲囩敤涓ょ骇涓茶仈锛屽i摰1鍨嬫爲鑴傞夋嫨鎬у惛闄勯摤閰告牴锛屼繚闅滄按璐ㄥ畨鍏ㄣ


鈥︹


26. 鐓ゅ寲宸ュ簾姘撮櫎姘


閽堝圭壒瀹氱殑鍖栧伐搴熸按锛屾湁閽堝规х殑澶勭悊鏂规堢‘淇濇盁鍖栫墿鏈夋晥鍘婚櫎锛屼繚鎶ょ幆澧冦


姣忎竴绉嶅伐鑹烘祦绋嬮兘閽堝圭壒瀹氱殑姹℃煋婧愶紝绮惧績璁捐★紝纭淇濅簡姘村勭悊鏁堟灉鐨勯珮鏁堟у拰鍙鎸佺画鎬с傞氳繃杩欎簺娴佺▼锛屽伐涓氱敓浜т腑鐨勬按璐ㄧ$悊寰椾互鎻愬崌锛屼负鐜淇濆拰鐢熶骇鏁堢巼鐨勫弻閲嶇洰鏍囦繚椹炬姢鑸銆

⑻ 方钍石分析

方钍石(Th、U)O2是钍(铀)的氧化矿物,其ThO2含量为59%~93%,UO2含量小于11.19%,UO3含量小于18.88%。此外还可能含有一定量的CeO2,和少量的Pb、Fe、Sn等元素。

方钍石可溶于HNO3和H2SO4中,也能用Na2O2或LiBO2熔融分解。

71.2.1.1 微量化学分析法

毫克量的带则单矿物用化学方法测定Th、Pb、全铀和U6+。其分析流程见图71.2。

图71.2 方钍石微量分析法分析流程图

试剂

阴离子交换柱27cm×2.2cm,717阴离子交换树脂,经6mol/LHCl、2mol/LNaOH溶液和水淋洗,使用前用6mol/LHCl平衡。

分析步骤

(1)分析溶液(A)的制备及钍的测定

称取3mg(精确至0.001mg)试样,置于铂坩埚中,用0.2gNa2O2在500℃半熔15min,水提取,HCl酸化并制成6mol/LHCl溶液,以6滴/min流速通过交换柱,然后用90mL6mol/LHCl淋洗,淋洗液与流出液用200mL烧杯承接,将溶液加热蒸发至小体积,转移至50mL容量瓶中,用水稀释至刻度,摇匀。此即为溶液(A)。

移取10.0mL溶液(A)于50mL烧杯中,加热蒸发至近干,加2mL6mol/LHCl溶解盐类,移入50mL容量瓶中,加2mL100g/L抗坏血酸溶液,1mL500g/L酒石酸溶液和4mL1.5g/L钍试剂溶液,用水稀释至刻度,摇匀。放置20min,用1cm或2cm比色皿,于波长535nm处测量吸光度。

校准曲线20~600μgThO2

(2)铅的测定

移取25.0mL溶液(A)于50mL烧杯中,蒸发至近干。在盐酸-酒石酸-碘化钾底液中用极谱法测定。

(3)全铀的测定

交换柱用70mL0.6mol/LHCl淋洗,流速为10滴/min,流出液收集在100mL烧杯中,蒸发至小体积,移入50mL容量瓶中,用水稀释至刻度,摇匀。移取此溶液5.0~10.0mL于50mL烧杯中,蒸干,加入5.0mL0.5mol/LHCl溶解盐类,移入50mL容量瓶中,加2mL500g/L酒石酸溶液,2mL100g/L抗坏血酸溶液和2mL2g/L偶氮胂III溶液,用水稀释至刻度,摇匀。15min后用1cm或2cm比色皿,在波长620nm处测量吸光度。

校准曲线0~60μgU。

(4)六价铀的测定

称取1mg(精确至0.001mg)试样,置于铂坩埚中,加5mLHF,加盖后于水浴上加热30min,放置4h。用水稀释,用塑料漏斗过滤于另一个铂坩埚中,用(2+98)HF洗涤沉淀数次,滤液蒸发至干,用1~2mLHCl反复赶HF3次,用20mL6mol/LHCl溶解盐类后倒入交换柱中,以下步骤同全铀的测定。测得的铀即为六价铀。

全铀减去六价铀即为羡桥四价铀。

71.2.1.2 C1-5208萃淋树脂分离-电感耦合等离子体发射光谱法

中性膦类树脂C1-5208萃淋树脂对钍和铀的吸附容量大,可与Pb、Si、Ca、Mg、Fe、Al、Mn和Ti等定量分离,用LiBO2分解试样,制成3mol/LHNO3溶液,经C1-5208萃淋树脂分离后,用电感耦合等离子体发射光谱法测定Th、U、Pb、Fe、Al、Ca、Mg、Ti、Mn和Si。

仪器

电感耦合等离子体发射光谱仪。

试剂

铀标准溶液ρ(U)=1.00mg/mL。

钍标准溶液ρ(Th)=1.00mg/mL。

其他元素的标准储备溶液ρ(B)=1.00mg/mL。

离子交换柱(0.8cm×10cm)2gC1-5208萃淋树脂(60~80目)装柱,用200mL(1+1)HCl和20mL水淋洗,用3mol/LHNO3平衡备用。

校准曲线

按表71.2配制校准系列。

表71.2 校准系列

分析步骤

称取5mg(精确至0.01mg)试样于铂坩埚中,加15mgLiBO2,搅匀。置于高温炉中,从低温逐渐升至1000℃熔融。以熔兄行猛融态立即倒入装有5mL3mol/LHNO3的小烧杯,置于超声波水浴中溶解至清亮。将提取液倾入已平衡过的C1-5208萃淋树脂交换柱中,流出液用25mL容量瓶承接,用15mL3mol/LHNO3分多次淋洗,用水稀释至刻度,摇匀。在流出液中用ICP-AES法测定Pb、Si、Fe、Al、Ca、Mg、Mn和Ti共8个元素。

用25mL4mol/LHCl分多次淋洗Th,用50mL容量瓶承接,用水稀释至刻度,摇匀。ICP-AES法测定Th。

用40mL水淋洗U,用50mL容量瓶承接,加2.5mLHCl,用水稀释至刻度,摇匀。ICP-AES法测定U。

注意事项

在测定Pb、Si等元素的溶液中还可用原子吸收光谱法测定钾、钠。

阅读全文

与离子交换树脂流程图相关的资料

热点内容
钠离子交换器树脂厂家 浏览:584
四川纯水机设备怎么选 浏览:578
纸厂废水污泥成分 浏览:707
碳酸氢钠水垢 浏览:546
净水器与纯水器有什么区别别 浏览:190
波浪式罐式污水提升设备 浏览:901
钻豹机油滤芯怎么样 浏览:672
带电的净水器有什么不好 浏览:775
泰州中水回用维修工程 浏览:791
饮水机水桶有个洞怎么办 浏览:864
ro膜tw2012 浏览:402
净化器怎么去除甲醛 浏览:384
玻璃水瓶怎么去水垢 浏览:633
树脂影响ph值 浏览:817
开润超滤膜机型不出水 浏览:460
燕窝为什么用纯净水 浏览:518
反渗透净水机的废水多怎么回事 浏览:620
超滤膜流速 浏览:16
净化器的指示灯怎么换 浏览:957
中国古代蒸馏酒普遍性 浏览:86