导航:首页 > 净水问答 > 铝盐污染反渗透

铝盐污染反渗透

发布时间:2024-07-07 03:34:46

Ⅰ 如何提高反渗透设备的使用寿命

1、预处理系抄统设计合理。
活性炭的选择,放置炭粉泄露,防止膜被污染;
进水硬度较高的,要注意进行软化处理,防止膜被堵塞;
进水碱度较高的,要注意PH值的调节,防止膜被堵塞;
2、进水需要符合反渗透主机的进水要求,包括浊度、氯、硬度、胶体等。
3、添加阻垢剂,防止膜堵塞;
4、注意定期检查反渗透设备的压力(膜前压力,膜后压力)
5、注意纯水和浓水的调节比例,如果长期纯水比例较高,膜也容易产生堵塞。
以上希望可以帮到你!

过滤器有哪些原理和作用

要了解过滤器的原理和作用,先要了解过滤器的大概分类,因为不同种类的过滤器作用和工作原理是有差别的。常见的过滤器种类有:保安过滤器,不锈钢袋式过滤器,多介质过滤器等。工作原理和作用如下:
1.保安过滤器的工作原理
保安过滤器工作原理是待过滤液体由滤器进口压入,经滤芯自外向里透过滤层而被过滤成清澄液体,然后经出口排出。在压力的作用下,使原液通过滤材,滤渣留在滤材上,滤液透过滤材流出。水中残存的微量悬浮颗粒、胶体、微生物等,被截留或吸附在滤芯表面和孔隙中。
作用:去除水中杂质、沉淀物和悬浮物、细菌,从而达到过滤的目的
2.不锈钢袋式过滤器的工作原理
使用袋滤器过滤液体时,液体从过滤容器侧面或者下面进液口进入,由被网篮支撑的滤袋上方冲入滤袋中,滤袋因液体的冲击和均匀的压力面展开,使得液体物料在整个过滤袋内表面得到均匀分布,透过滤袋的液体沿着金属支承网篮壁,由过滤器底部出液口排出。
作用:高效截留滤出颗粒杂质在过滤袋内,完成过滤过程。
3.多介质过滤器的工作原理
常用的多介质过滤器有活性炭过滤器,其工作原理是:活性炭在其颗粒表面形成一层平衡的表面浓度,其颗粒的大小对吸附能力也有影响。活性炭颗粒越小,过滤面积就越大。颗粒状的活性炭因颗粒成形不易流动,水中有机物等杂质在活性炭过滤层中也不易阻塞,其吸附能力强,携带更换方便。活性炭的吸附能力和与水接触的时间成正比,接触时间越长,过滤后的水质越佳。
作用:吸附水中有机物等杂质。

Ⅲ ro反渗透膜工艺流程是什么

反渗抄透膜也叫RO膜,反渗袭透膜是用于水处理的分离膜,与超滤膜等滤膜一样,都是将水通过膜面积表面的孔径,然后将杂质和病毒等物质截留,水分子透过滤膜表面,达到过滤的效果。反渗透膜之所以称之为反渗透,是因为反渗透膜通过反渗透(逆渗透)的原理进行分离,以压力差为推动力,从溶液中分离出溶剂,对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。

废水的三级处理有哪些具体方法

污水三级处理是污水经二级处理后,进一步去除污水中的其他污染成分(如;氮、磷、微细悬浮物、微量有机物和无机盐等)的工艺处理过程。主要方法有生物脱氮法、凝集沉淀法、砂滤法、硅藻土过滤法、活性炭过滤法、蒸发法、冷冻法、反渗透法、离子交换法和电渗析法等。根据三级处理出水的具体去向和用途,其处理流程和组成单元有所不同。如果为防止受纳水体富营养化,则采用除磷和除氮的处理单元过程;如果为保护下游饮用水源或浴场不受污染,则应采用除磷、除氮、除毒物、除病原体等处理单元过程;如果直接作为城市饮用以外的生活用水,例如洗衣、清扫、冲洗厕所、喷洒街道和绿化地带等用水,其出水水质要求接近于饮用水标准,则要采用更多的处理单元过程。污水的三级处理厂与相应的输配水管道结合起来便形成城市的中水道系统。三级处理各个单元处理过程如下:一级处理是它通过机械处理,如格栅、沉淀或气浮,去除污水中所含的石块、砂石和脂肪、油脂等。二级处理是生物处理,污水中的污染物在微生物的作用下被降解和转化为污泥。三级处理是污水的深度处理,它包括营养物的去除和通过加氯、紫外辐射或臭氧技术对污水进行消毒。污水三级处理除磷最有效和实用的除磷方法是化学沉淀法,即投加石灰或铝盐、铁盐形成难溶性的磷酸盐沉淀。石灰与废水中的磷酸根离子发生如下反应而形成难溶的羟基磷灰石沉淀:

3HPO3-+5Ca2++4OH-=Ca5(OH)(PO4)3↓+3H2O为了保证投加石灰的沉淀除磷效果,必须将pH值提高到9.5~11.5。铝盐和磷酸根反应生成的磷酸铝在pH值为 6时沉淀效果最好,铁盐和磷酸根反应生成的磷酸铁在PH值为4时沉淀效果最好。为了确定金属盐的准确投量,须对待处理的污水进行小型试验。污水三级处理除氮生物硝化-反硝化法:是好氧生物处理过程和厌氧生物处理过程串联工作的系统。污水中的含氮有机物首先经需氧生物处理转化为硝酸盐,随后再经厌氧生物处理将硝酸盐还原为氮气析出而被去除。有多种处理流程,如三级串联的活性污泥法处理系统,其中第一级用于氧化碳水化合物,第二级用于氧化含氮有机物,而第三级是使第二级产生的硝酸盐在厌氧条件下还原析出氮气。在所有的处理流程中,都是向厌氧系统中投加一些补充的需氧源(如甲醇),以使反硝化所需的反应时间缩短而切合实用。

Ⅳ 反渗透膜中pac的后絮凝,在膜面形成的铝盐如何有效清洗出来,急求,➕vx13942266285

反渗透膜是一种模拟生物半透膜制成的具有一定特性的人工半透膜,是反渗透技术的核心回构件。反渗透答技术原理是在高于溶液渗透压的作用下,依据其他物质不能透过半透膜 而将这些物质和水分离开来。反渗透膜的膜孔径非常小,因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等。系统具有水质好、耗能低、无污染、工艺简单、操作简便等优点。

Ⅵ 现代污水处理有哪些常见的方法

1、物理处理法
物理处理法是通过物理作用, 以分离、 回收污水中不溶解的、 呈悬浮状的污染物质(包括油膜和油珠), 在处理过程中不改变其化学性质。 常用的有过滤法、 沉淀法、 浮选法等。
(1) 过滤法:利用过滤介质截流污水中的悬浮物。 过滤介质有筛网、纱布、 粒物, 常用的过滤设备有格栅、筛网、微滤机等。
1) 格栅与筛网。 在排水工程中, 废水通过下水道流人水处理厂, 首先应经过斜置在渠道内的一组金属制的呈纵向平行的框条(格栅)、 穿孔板或过滤网(筛网), 使漂浮物或悬浮物不能通过而被阻留在格栅、 细筛或滤料上。
这一步属废水的预处理, 其目的在于回收有用物质;初步漫清废水以利于以后的处理, 减轻沉淀池或其他处理设备的负荷;保护抽水机械, 以免受到颗粒物堵塞发生故障。 保护水泵和其他处理设备。格栅截留的效果主要取决于污水水质和格栅空隙的大小。 清渣方法有人工与机械两种。栅渣应及时清理和处理。
筛网主要用于截留粒度在数毫米到数十毫米的细碎悬浮态杂物, 如纤维、纸浆、藻类等,通常用金属丝、化纤编织而成,或用穿孔钢板,孔径一般小于5mm,最小可为0.2mm。 筛网过滤装置有转鼓式、 旋转式、 转盘式、 固定式振动斜筛等。 不论何种结构,既要能截留污物,又便于卸料及清理筛面 。
2)粒状介质过滤(又称彤、滤、 惊料过滤)。 废水通过粒状滤料(如石英砂)床层时,其中细小的悬浮物和肢体就被截留在滤料的表面和内部空隙中。 常用的过滤介质有石英砂、 无烟煤和石榴石等。 在过滤过程中滤料同时对悬浮物进行物理截留、 沉降和吸附等作用。 过滤的效果取决于滤料孔径的大小、 滤料层的厚度、 过滤速度及污水的性质等因素。
当废水自上而下流过粒状滤料层时,位径较大的悬浮颗粒首先被截留在表层滤料的空隙中,从而使此层滤料空隙越来越小,逐渐形成一层主要由被截留的团体颗粒构成的滤膜, 并由它起主要的过滤作用。 这种作用属于阻力截留或筛滤作用。
废水通过滤料层时,众多的滤料表面提供了巨大的可供悬浮物沉降的有效面积,形成无数的小 “沉淀池”,悬浮物极易在此沉降下来。这种作用属于重力 沉降。
由于滤料具有巨大的表面积, 它与悬浮物之间有明显的物理吸附作用。此外,砂粒在水中常常带有表面负电荷,能吸附带正电荷的铁、 铝等肢体,从而在滤料表面形成带正电荷的薄膜,并进而吸附带负电荷的胶土和多种有机物等胶体,在砂粒上发生接触絮凝。
(2)沉淀法。沉淀法是利用污水中的悬浮物和水的相对密度不同的原理, 借助重力沉降作用使悬浮物从水中分离出来。 根据水中悬浮颗粒的浓度及絮凝特性(即彼此帖结聚团的能力)可分为四种:
1) 分离沉降(或自由沉降)。在沉淀过程中,颗粒之间互不聚合,单独进行沉降。 颗位只受到本身在水中的重力和水流阻力的作用,其形状、 尺寸、 质量均不改变,下降速度也不改变。
2)混凝沉淀(或称作絮凝沉降)。 混凝沉降是指在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚为具有可分离性的絮凝体,然后采用重力沉降予以分离去除。 混凝沉淀的特点是在沉淀过程中,颗粒接触碰撞而互相聚集形成较大絮体,因此颗粒的尺寸和质量均会随深度的增加而增大,其沉速也随深度 而增加。
常用的无机混凝剂有硫酸铝、 硫酸亚铁、 三氯化铁及聚合铝;常用的有机絮凝剂有聚丙烯酷胶等,还可采用助凝剂如水玻璃、 石灰等 。
3)区域沉降(又称拥挤沉降、 成层沉降)。 当废水中悬浮物含量较高时,颗粒间的距离较小,其间的聚合力能使其集合成为一个整体,并一同下沉,而颗粒相互间的位置不发生变动,因此澄清水和混水间有一明显的分界面,逐渐向下移动,此类沉降称为区域沉降。加高浊度水的沉淀池和二次沉淀池中的沉降(在沉降中后期)多属此类。
4)压缩沉淀。当悬浮液中的悬浮固体浓度很高时,颗粒互相接触、挤压,在上层颗粒的重力作用下,下层颗粒间隙中的水被挤出,颗粒群体被压缩。压缩沉淀发生在沉淀池底部的污泥斗或污泥浓缩池中,进行得很缓慢。依据水中悬浮性物质的性质不同,设有沉砂池和沉淀池两种设备。
沉砂池用于除去水中砂粒、煤渣等相对密度较大的元机颗粒物。沉砂池一般设在污水处理装置前,以防止处理污水的其他机械设备受到磨损。
沉淀池是利用重力的作用使悬浮性杂质与水分离。它可以分离直径为20~100µ,m以上的颗粒。根据沉淀池内的水流方向,可将其分为平流式、辐流式和竖流式三种。
①平流式沉淀池。废水从池一端流人,按水平方向在池内流动,水中悬浮物逐渐沉向池底,澄清水从另一端溢出。
②辐流式沉淀池。池子多为圆形,直径较大,一般在20~30m以上,适用于大型水处理厂。原水经进水管进入中心筒后,通过筒壁上的孔口和外围的环形穿孔挡板,沿径向呈辐射状流向沉淀池周边。由于过水断面不断增大,流速逐渐变小,颗粒沉降下来,澄清水从其周围溢出汇入集水槽排出。
③竖流式沉淀池。截面多为圆形,也有方形和多角形的。水由中心管的下口流入池中,通过反射板的阻拦向四周分布于整个水平断面上,缓缓向上流动。沉速超过上升流速的颗粒则沉到污泥斗,澄清后的水由四周的埋口溢出池外。
在污水处理与利用的方法中,沉淀(或上浮)法常常作为其他处理方法前的预处理。如用生物处理法处理、污水时,一般需事先经过预沉池去除大部分悬浮物质,以减少生化处理时的负荷,而经生物处理后的出水仍要经过二次沉淀池的处理,进行泥水分离以保证出水水质。
(3)浮选法。将空气通人污水中,并以微小气泡形式从水中析出成为载体,污水中相对密度接近于水的微小颗粒状的污染物质(如乳化油等)附在气泡上,并随气泡上升到水面,然后用机械的方法撇除,从而使污水中的污染物质得以从污水中分离出来。疏水性的物质易气浮,而亲水性的物质不易气浮。因此有时为了提高气浮效率,需向污水中加入浮选剂改变污染物的表面特性,使某些亲水性物质转变为疏水性物质,然后气浮除去,这种方法称为“浮选”。
气浮时要求气泡的分散度高,量多,有利于提高气浮的效果。泡沫层的稳定性要适当,既便于浮渣稳定在水面上,又不影响浮渣的运送和脱水。产生气 泡的方法有两种:
1)机械法。使空气通过微孔管、微孔板、带孔转盘等生成微小气泡。
2)压力溶气法。将空气在一定的压力下溶于水中, 并达到饱和状态, 然后突然减压, 过饱和的空气便以微小气泡的形式从水中逸出。 目前废水处理中的气浮工艺多采用压力溶气法。
气浮法的主要优点有:设备运行能力优于沉淀池, 一般只需15~20min即可完成固液分离, 因此它占地少, 效率较高;气浮法所产生的污泥较干燥, 不易腐化, 且系表面刮取, 操作较便利;整个工作是向水中通人空气, 增加了水中的潜解氧量, 对除去水中有机物、 藻类表面活性剂及臭味等有明显效果, 其出水水质为后续处理及利用提供了有利条件。
气浮法的主要缺点是:耗电量较大;设备维修及管理工作量增加, 运转部分常有堵塞的可能;浮渣露出水面, 易受风、 雨等气候因素影响。
除了上述两种气浮方法外, 目前较为常用的方法还有电解气浮法。
(4)离心分离法。 含有悬浮污染物质的污水在高速旋转时, 利用悬浮颗粒(如乳化油)和污水受到的离心力不同, 从而达到分离目的的方法。 常用的离心设备有旋流分离器和离心
2、化学处理法
向污水中投加化学试剂, 利用化学反应来分离、 回收污水中的污染物质,或将污染物质转化为无害的物质。 该法既可使污染物与水分离, 回收某些有用物质, 也能改变污染物的性质, 如降低废水的酸碱度、 去除金属离子、 氧化某些有毒有害的物质等, 因此可达到比物理法更高的净化程度。 常用的化学方法 有化学沉淀法、 中和法、 氧化还原法和混凝法。
化学法处理的局限性如下:
由于化学处理废水常采用化学药剂(或材料), 处理费用一般较高, 操作与 管理的要求也较严格。
化学法还需与物理法配合使用。 在化学处理之前, 往往需用沉淀和过滤等手段作为前处理;在某些场合下,又需采用沉淀和过滤等物理手段作为化学处理的后处理。
( 1)化学沉淀法。
化学沉淀法是指向废水中投加某些化学药剂, 使其与废水中的溶解性污染物发生五换反应, 形成难榕于水的盐类(沉淀物)从水中沉淀出来, 从而降低或除去水中的污染物。化学沉淀法多用于在水处理中去除钙离子、 镜离子以及废水中的重金属离子, 如隶、 锅、铅、 钵等。 按使用的沉淀剂不同, 沉淀法可分为石灰法(又称为氢氧化物沉淀法)、硫化物法和银盐法等。
水中Ca 2+、 Mg2+令 含量的总和称总硬度, 可分为碳酸盐硬度和非碳酸盐硬度。碳酸盐硬度可投加石灰使水中的Ca 2+和Mg2+形成CaC03和Mg (OH) 2沉淀而降低, 如需同时去除非碳酸盐硬度, 可采用石灰-苏打软化法, 使Ca 2+和Mg2+ 形成CaC03 矛llMg ( OH) 2沉淀除去。 因此, 当原水硬度或碱度较高时, 可先用化学沉淀法作为离子交换软化的前处理, 以节省离子交换的运行费用。
去除废水中的重金属离子时, 一般采用投加碳酸盐的方法, 生成的金属离子, 碳酸盐的溶度积很小, 便于回收。 如利用碳酸销处理含镑废水。
ZnS04 + Na 2C03 一一→ZnC03 ↓+ NazS04
此法优点是经济简便, 药剂来源广, 因此在处理重金属废水时应用最广。 存在的问题是劳动卫生条件差, 管道易结垢堵塞与腐蚀;沉淀体积大, 脱水困难。
(2)中和法。
中和法处理是利用酸碱相互作用生成盐和水的化学原理, 将废水从酸性或碱性调整到中性附近的处理方法。 对于酸或碱的浓度大于3%的废水, 首先应进 行酸碱的回收。 对于低浓度的酸碱废水, 可采取中和法进行处理。
酸性污水的处理, 通常采用投加石灰、 苛性锅、 碳酸锅或以石灰石、 大理石作洁、料来中和酸性污水。 碱性污水的处理, 通常采用投加硝酸、 盐酸或利用二氧化碳气体中和碱性污水。 另外, 对于酸、 碱性污水也可以用二者相互中和的办法来处理。
(3)氧化还原法。
氧化还原法是通过化学药剂与水中污染物之间的氧化还原反应, 将污水中的有毒有害污染物转化为无毒或微毒物质的方法。 这种方法主要处理无机污染物, 如重金属和氧化物的污染。 利用高健酸御、 液氯、 臭氧等强氧化剂或电极的阳极反应, 将废水中的有害物质氧化分解为元害物质;利用铁粉等还原剂或电极的阴极反应, 将废水中的有害物质还原为无害物质;臭氧氧化法对污水进 行脱色、 杀菌和除臭处理;空气氧化法处理含硫废水;还原法处理含锦电镀废水等都是氧化还原法处理废水的实例。
水处理常用的氧化剂有氧、 臭氧、 氯、 次氯酸等。 常用的还原剂有硫酸亚铁、 亚硫酸盐、 铁屑、 铸粉等。
(4)混凝法。
混凝法是在含不易沉降的细颗粒及胶体颗粒的废水中加入电解质以破坏肢体的稳定性而使其聚沉。 常用的混凝剂有硫酸铝、 硫酸亚铁、 三氯化铁、 聚乙烯亚股或聚丙烯酷胶等。 为加速混凝常伴随加入助凝剂石灰、 活性硅胶、 骨胶等。
3、物理化学处理法
物理化学法(简称物化法), 是利用萃取、 吸附、 离子交换、 膜分离技术、气提等物理化学的原理, 处理或回收工业废水的方法。 它主要用分离废水中无机的或有机的(难以生物降解的)溶解态或胶态的污染物质, 回收有用组分,并使废水得到深度净化。 因此, 适合于处理杂质浓度很高的废水(用作回收利用的方法), 或是浓度很低的废水(用作废水深度处理)。利用物理化学法处理工业废水前, 一般要经过预处理, 以减少废水中的悬浮物、 油类、 有害气体等杂质, 或调整废水的pH值, 以提高回收效率、 减少损耗。同时, 浓缩的残渣要 经过后处理以避免二次污染。常用的方法有萃取法、 吸附法、 离子交换法、 膜析法(包括渗析法、 电渗析法、 反渗透法、 超滤法等)。
(1)萃取法。
萃取法是向污水中加人一种与水不相溶而密度小于水的有机溶剂, 充分混合接触后使污染物重新分配, 由水相转移到溶剂相中, 利用溶剂与水的密度差别, 将溶剂分离出来, 从而使污水得到净化的方法。再利用溶质与溶剂的沸点差将溶质蒸馆回收, 再生后的溶剂可循环使用。使用的溶剂叫萃取剂, 提出的物质叫萃取物。 萃取是一种液-液相间的传质过程, 是利用污染物(溶质)在水与有机溶剂两相中的溶解度不同进行分离的。
在选择萃取剂时, 应注意萃取剂对被萃取物(污染物)的选择性, 即溶解能力的大小, 通常溶解能力越大, 萃取的效果越好;萃取剂与水的密度相差越大, 萃取后与水分离就越容易。常用的萃取剂有含氧萃取剂、 含磷萃取剂、 含氮萃取剂等 。 常用的萃取设备有脉冲筛板塔、 离心萃取机等。
(2)吸附法。
吸附法处理废水是利用——种多孔性固体材料(吸附剂)的表面来吸附水中的一种或多种溶解污染物、 有机污染物等(称为熔质或吸附质), 以回收或去除它们, 使废水得以净化。例如, 利用活性炭可吸附废白水中的盼、 隶、 错、氧等剧毒物质, 且具有脱色、 除臭等作用。吸附法目前多用于污水的深度处理, 可分为静态吸附和动态吸附两种方法, 即在污水分别处于静态和流动态时进行吸 附处理。常用的吸附设备有固定床、 移动床和流动床等。
在废水处理中常用的吸附剂有活性炭、 磺化煤、 木炭、 焦炭、 硅藻土、 木屑和吸附树脂等。以活性炭和吸附树脂应用较为普遍。一般吸附剂均呈松散多 孔结构, 具有巨大的比表面积。其吸附力可分为分子引力(范德华力)、 化学键力和静电引力三种。水处理中大多数吸附是上述三种吸附力共同作用的结果。
吸附剂吸附饱和后必须经过再生, 把吸附质从吸附剂的细孔中除去, 恢复其吸附能力。再生的方法有加热再生法、 蒸汽吹脱法、 化学氧化再生法(湿式氧化、 电解氧化和臭氧氧化等)、 溶剂再生法和生物再生法等。
由于吸附剂价格较贵, 而且吸附法对进水的预处理要求高, 因此多用于给水处理中。
(3)离子交换法。
离子交换法是利用离子交换剂的离子交换作用置换污水中的离子态污染物质的方法。随着离子交换树脂的生产和离子交换技术的发展, 由于效果良好, 操作方便, 近年来在回收和处理工业污水中的有毒物质方面, 得到一定的应用。如用阳离子交换剂去除(回收) 污水中的铜、镍、镉、锌、汞、金、银、铂等重金属。
离子交换法多用于工业给水处理中的软化和除盐, 主要去除废水中的金属 离子。 离子交换软化法采用Na+交换树脂。
(4)膜析法。
1) 电渗析法。电掺析法是在直流电场的作用下, 利用阴、 阳离子交换膜对溶液中阴阳离子的选择透过性(即阳膜只允许阳离子通过, 阴膜只允许阴商子通过), 使一部分溶液中的离子迁移到另一部分溶液中去,使得溶液中的电解质与水分离, 从而达到浓缩、纯化、分离的一 种水处理方法。电渗析法是在离子交换技术基础上发展起来的新方法, 除用于污水处理外, 还可用于海水除盐、制备去离子水(纯水)等。
2)反渗透法。
反渗透法巳用于含重金属废水的处理、 污水的深度处理及海水淡化等。在世界淡水供应危机严重的今天, 反渗透法结合蒸馆法的海水淡化技术前景广阔。 它的另一重要用途是与离子交换系统联用, 作为离子交换的预处理方法以制备去离子的超纯水。在废水处理中, 反渗透法主要用于去除与回收重金属离子, 去除盐、有机物、色度以及放射性元素等。
目前在水处理领域内广泛应用的半透膜有醋酸纤维素 膜和聚酷胶膜磺化聚苯醋等高聚物。常用的反渗透装置有管式、螺旋式、中空纤维式及板框式等。渗透水可重复利用。
4、生物处理法
生物处理法是利用自然环境中微生物的生物化学作用, 氧化分解溶解于污 水中或肢体状态的有机污染物和某些无机毒物(如氟化物、硫化物), 并将其转化为稳定无害的无机物, 从而使废水得以净化的方法。 此法具有投资少、效果好、运行费用低等优点, 在城市废水和工业废水的处理中得到最广泛的应用。
现代生物处理法根据微生物在生化反应中是否需要氧气, 分为好氧生物处 理和厌氧生物处理两类。
(1)好氧生物处理法。
在有氧的条件下, 依赖好氧菌和兼氧菌的生化作用完成废水处理的工艺称为好氧生物处理法。 该法需要有氧的供应。 根据好氧微生物在处理系统中所呈现的状态, 可分为活性污泥法和生物膜法。
1)活性污泥法是目前使用最广泛的一种生物处理法。 该方法是向曝气池中富含有机污染物并有细菌的废水中不断地通人空气(曝气), 在一定的时间后就会出现悬浮态絮状的泥粒, 这实际上是由好氧菌(及兼性好氧菌)所吸附的有机物和好氧菌代谢活动的产物所组成的聚集体, 具有很强的分解有机物的能力,称之为 “活性污泥”。从曝气池流出的污水和活性污泥混合液经沉淀池沉淀分离后, 澄清的水被排放, 污泥作为种泥回流到曝气池, 继续运作。 这种以活性污泥为主体的生物处理法称为 活性污泥法” 。废水在曝气池中停留4~6h, 可除去废水中的有机物(BOD6)约90%。 活性污泥法有多种池型及运行方式, 通常有普通活性污泥法、完全混合式表面曝气法、吸附再生法等。
2)生物膜法是使污水连续流经固体填料(碎石、煤渣或塑料填料), 微生物在填料上大量繁殖, 形成污泥状的胶膜称为生物膜, 利用生物膜处理污水的方法,称为生物膜法。生物膜主要由大量的菌胶团、真菌、藻类和原生动物组成。 生物膜上的微生物起到和活性污泥同样的净化作用, 吸附并降解水中的有机污 染物, 从填料上脱落的衰老的生物膜随处理后的污水流入沉淀池, 经过沉淀池沉淀分离后, 使污水得以净化。常用的生物膜法有生物滤池、生物接触氧化池、生物转盘等。
(2)厌氧生物处理法。
在无氧的条件下, 利用厌氧微生物的作用分解、污水中的有机物, 使污水净化的方法称为厌氧生物处理法。 近年来, 世界性的能源紧张, 使污水处理向节能和实现能源化的方向发展, 从而促进了厌氧微生物处理方法的发展。 一大批高效新型厌氧生物反应器相继出现, 包括厌氧生物滤池、 升流式厌氧污泥床、 厌氧硫化床等。 它们的共同特点是反应器中生物团体浓度很高, 市泥龄很长, 因此处理能力大大提高, 从而使厌氧生物处理法所具有的能耗小、可以回收能源、 剩余的污泥量少、 生成的污泥稳定而易处理、 对高浓度有机废水处理效率高等优点得到充分体现。厌氧生物处理法经过多年的发展,已经成为污水处理的主要方法之一。
5、除磷、 脱氮
( 1) 除磷。 城市废水中磷的主要来源是粪便、 洗涤剂和某些工业废水, 以正磷酸盐、 聚磷酸盐和有机磷的形式溶解于水中。 常用的除磷方法有化学法和生物法。
1)化学法除磷。 利用磷酸盐与铁盐、 石灰、 铝盐等反应生成磷酸铁、 磷酸钙、 磷酸铝等沉淀, 将磷从废水中排除。化学法的特点是磷的去除效率较高, 处理结果稳定, 污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。
2)生物法除磷。生物法除磷是利用微生物在好氧条件下, 对废水中溶解性 磷酸盐的过量吸收,沉淀分离而除磷。 整个处理过程分为厌氧放磷和好氧吸磷 两个阶段。
含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下, 将体内积聚的聚磷分解为无机磷释放回废水中。这就是 “ 厌氧放磷”。聚磷菌在分解聚磷时产生的能量除一部分供自己生存外, 其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸) 储存于体内。
进入好氧状态后, 聚磷菌将储存于体内的PHB进行好氧分解, 并释放出大 量能量,一部分供自己增殖, 另一部分供其吸收废水中的磷酸盐, 以聚磷的形式积聚于体内。这就是 “好氧吸磷”。在此阶段, 活性污泥不断增殖。 除了一部分含磷活性活泥回流到厌氧池外, 其余的作为剩余污泥排出系统,达到除磷的目的。
(2) 脱氮。
生活废水中各种形式的氮占的比例比较恒定:有机氮 50%~60%,氨氮40%~ 50%,亚硝酸盐与硝酸盐中的氮占 0~ 5%。 它们均来源于人们食物中的蛋白质。脱氮的方法有化学法和生物法两大类。
1)化学法脱氮。包括氨吸收法和加氯法。
①氨吸收法。 先把废水的pH值调整到10以上,然后在解吸塔内解吸氨
②加氯法。在含氨氮的废水中加氯。通过适当控制加氯量, 可以完全除去水中的氨氮。为了减少氯的投加量, 此法常与生物硝化联用, 先硝化再除去微量的残余氨氮。
2)生物法脱氮。生物脱氮是在微生物作用下, 将有机氮和氨态氮转化为氮气的过程, 其中包括硝化和反硝化两个反应过程。
硝化反应是在好氧条件下, 废水中的氨态氮被硝化细菌 (亚硝酸菌和硝酸菌)转化为亚硝酸盐和硝酸盐。 反硝化反应是在无氧条件下, 反硝化菌将硝酸盐氮(N03-)和亚硝酸盐氮(NH2-)还原为氮气。因此整个脱氮过程需经历好氧和缺氧两个阶段。

Ⅶ 钢厂废水回用方法探讨


随着我国经济的快速发展以及社会的不断建设,钢铁工业得到了突飞猛进的发展,在众多钢厂不断发展的同时,生产过程中产生的各种废水的任意排放给环境带来了巨大的影响,同时钢厂的用水量不断增加,水的利用效率不断下降,在这种情况下,钢厂应该根据废水的不同类型采用相应的处理回用方法,进而使企业的用水量降到最低,使用水效率大幅增加。
近些年来,我国钢铁工业呈现出一种快速增长的趋势,并在我国的国民经济发展以及社会发展建设中发挥着重要的基础作用。对于钢厂而言,在炼钢过程中会产生大量的废水,如果随意排放这些废水,不仅会对周围环境造成污染,还会使企业产生大量的水资源浪费,因此钢厂有必要针对不同的废水采用相应的处理回用方法,进而使钢厂的水资源利用效率得到有效的提升,在保护环境的同时,不断降低钢厂的生产成本。
1 钢厂废水的主要类型
钢厂的炼钢过程实际上是铁中碳与其他元素发生氧化反应的过程,而这一过程中伴随着大量的废水产生,比方说脱盐水、软化水、浓盐水等,另外,在一些其他的工序生产中也会产生相应的废水,比方说在烧结、炼铁、炼钢、轧钢、各种炉窑和其他一些相关的辅助生产工序中。
1.1 炼钢循环冷却水系统的排污水
主要包括敞开式净循环水系统的排污水,这一部分的废水常常被应用于浊循环冷却水系统的补水。还包括敞开式浊循环水系统的排污水,这种废水通常是由浊循环水系统产生的,这一循环水系统通常被应用在炼铁、炼钢、连铸、热轧等工序的煤气清晰、冲渣、火焰切割、淬火冷却等方面。此外,还包括密闭式纯水或软化水循环水系统的渗水以及漏水。
1.2 炼钢过程中不同工序产生的废水
钢厂中烧结工序产生的废水,这类废水中通常含有较高含量的悬浮物,主要包括湿式除尘器产生的废水以及对地坪和输送皮带进行冲洗时产生的废水,这类废水中含有一定量的固体悬浮物,多为一些烧结后的混合矿料。这类废水如果不经过回收处理就直接进行排放,不仅对环境有着一定的影响,而且废水中一些可以回收的物质也会被浪费。钢厂中冷轧钢工序产生,这类废水主要由一些中性盐、铬类、酸性废水、碱类以及一些乳化液等共同组成。酸碱废水主要是在钢材轧制以及后面的涂层、退火工序中产生的,主要目的是为了除去钢材表面存在的氧化物及油脂等物质,在酸碱废水中,除了含有酸碱外,还存在着一定量的油、铁以及一些重金属离子锌、镍、铜、锡等。
2 钢厂废水处理回用常见的方法
钢厂中的炼钢过程实际上就是将生铁中含有的碳、硅、磷、锰等元素去除掉或者使其含量达到相应的范围内。通常炼钢过程主要包括烧结、焦化、炼铁、炼钢、轧钢等几个主要的工序。对于那些长流程的炼钢工艺,大多采用的是转炉,而那些短流程的炼钢工艺往往只是由简单的炼钢和轧钢工序组成,经常采用的是电炉,利用转炉炼钢的方法进行,大多采用纯氧顶吹转炉炼钢。在这一过程中,使用循环水系统中水的组分会被不断浓缩,水中会包含大量的有机物、油脂、磷、氮、硬度、悬浮物等,水中的这些物质会使管路中出现结垢、腐蚀、泡沫等现象,需要对其进行有效的控制。
2.1 炼钢过程中酸碱废水的处理回用
在炼钢过程中,除尘废水中通常含有大量的钙离子,钙离子会与水中的二氧化碳发生反应,从而导致除尘废水中的硬度升高。为了降低水的硬度,去除其中的重金属离子,钢厂中常常利用化学沉淀法来进行处理。
这种方法主要是在沉淀池中加入一定量的分散剂,利用鳌合和分散的作用,防止水中出现结垢的现象。比方说高炉煤气中的洗涤水含有非常多的碳酸氢根离子,而转炉除尘废水中则含有较高的氢氧根离子,这两种离子可以相互结合产生化学反应:Ca(OH)2+Ca(HCO3)2→2CaCO3↓+2H2O生成的碳酸钙,这样正好在沉淀池中除去。
此外,还可以采用添加碳酸氢钠(Na2CO3)的方法,这种方法也是钢厂中常见的水质稳定方法。假设在相同的处理效果的前提下,NaOH、Na2CO3、Ca(OH)2三者的反应速度分别为:NaOH>Na2CO3>Ca(OH)2;三者在用量、存储以及制备的总体花费上:NaOH<Na2CO3<Ca(OH)2。从三者反应的生成物来看,Ca(OH)2生成的反应物最容易产生脱水,而且会与NaOH反应生成一种絮稠而且不容易沉淀的污泥,Na2CO3反应会产生一定量的CO2,从而使废液中出现发泡现象。在钢厂现实生产过程中,可以利用Na2CO3与石灰乳进行反应,从而生成CaCO3沉淀,具体的反应过程为:CaO+H2O→Ca(OH)2
Na2CO3+Ca(OH)2→CaCO3↓+2NaOH,而反应中生成的NaOH会与废水中的CO2反应生成NaCO3,从而实现了整个过程的循环反应,Na2CO3起到了再生的作用。在钢厂炼钢的过程中,如果相关设备需要进行排污和渗漏,只需要在水中掺加一定量的Na2CO3就可以保证整个水环境的平衡。
2.2 炼钢工序中浓盐水的处理回用
炼钢过程中浓盐水的产生主要是由于脱盐水的源水在进入脱盐深度处理系统的原水时,内部含有一定量的油和COD造成的。相关的研究表明,这些油和COD是反渗透系统出现问题的主要原因。超滤系统可以对水中的颗粒及大分子物质进行分离,比方说水中的悬浮物、胶体、病毒、乳化液等,而且可以为反渗透系统提供稳定的进水保证,利用反渗透系统可以去除水中的溶解性物质、矿物质以及有机物等,达到去除水中盐分的目的。在钢厂中的超滤加二级反渗透的工艺中,产生的废水主要有超滤反洗水、超滤化学清洗液、反渗透冲洗水、反渗透化学清洗液等,其中二级反渗透产生的浓水可以直接流入超滤产水箱中进行回用,保证反渗透系统水资源的利用率,但一级反渗透产生的浓水较多,其中含有的氧分较少,而且存在一定的硫化氢,会导致水呈现偏酸性,直接排放会对环境产生影响。可以将这一部分浓水与其他的废水进行统一处理回用,还可以对反渗透的浓水进行蒸发干燥,回收其中的水分,并将剩余的固体物质统一收集排放。还可以利用其他专门的废水处理装置来对这一部分浓水进行处理。
2.3 炼钢中悬浮物的混凝沉淀处理回用
炼钢厂的转炉除尘废水主要表现为悬浮物的冶理、温度的平衡及水质稳定问题。对于悬浮物的混凝沉淀处理应该是在除尘废水进入沉淀池之前,可以先进入粗颗粒分离设备,如水力漩流器或螺旋分级机等,采取重力的原理去除大颗粒的悬浮杂质,然后进入沉淀池里面。在沉淀池的明沟里投入pH调整剂与投加PAC,聚合物将水中的悬浮物絮凝成小的絮团,达到在沉降池里实现悬浮物和成垢物的共同絮凝沉淀,并且当污水中加PAM时,可以采取多种键合作用,就能够使之成为结合力强的更大的絮团,沉淀下去。另一种就是可以投无机高分子絮凝剂聚合硫酸铁,聚合硫酸铁是一种高效絮凝剂,已经广泛用于我国的工业用水、工业废水、城市污水、污泥的净化方面。而无机高分子絮凝剂聚合硫酸铁具有吸附性好、脱稳能力强等方面的特点,对于悬浮物去除率可以达98%以上,并且其絮凝效果远远高于同类产品聚合氯化铝(PAC)。还可以解决铝盐的毒性问题和污泥脱水性问题。
总而言之,炼钢通常是采用燃烧法与未燃法,但在生产过程中排出的废水却也有很大的差别,而且每个环节也不一样,这就需要炼钢企业树立起高度的大局意识和责任意识,灵活处理每个环节的废水,达到解决问题的目的。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

Ⅷ 污水处理分为哪三级处理

一级处理是它通过机械处理,如格栅、沉淀或气浮,去除污水中所含的石块、砂石和脂肪、油脂等。二级处理是生物处理,污水中的污染物在微生物的作用下被降解和转化为污泥。三级处理是污水的深度处理,它包括营养物的去除和通过加氯、紫外辐射或臭氧技术对污水进行消毒
除磷
最有效和实用的除磷方法是化学沉淀法,即投加石灰或铝盐、铁盐形成难溶性的磷酸盐沉淀。石灰与废水中的磷酸根离子发生如下反应而形成难溶的羟基磷灰石沉淀:
3HPO3-+5Ca2++4OH-=Ca5(OH)(PO4)3↓+3H2O
为了保证投加石灰的沉淀除磷效果,必须将pH值提高到9.5~11.5。
铝盐和磷酸根反应生成的磷酸铝在pH值为6时沉淀效果最好,铁盐和磷酸根反应生成的磷酸铁在PH值为4时沉淀效果最好。为了确定金属盐的准确投量,须对待处理的污水进行小型试验。

除氮
生物硝化-反硝化法:是好氧生物处理过程和厌氧生物处理过程串联工作的系统。污水中的含氮有机物首先经需氧生物处理转化为硝酸盐,随后再经厌氧生物处理将硝酸盐还原为氮气析出而被去除。有多种处理流程,如三级串联的活性污泥法处理系统,其中第一级用于氧化碳水化合物,第二级用于氧化含氮有机物,而第三级是使第二级产生的硝酸盐在厌氧条件下还原析出氮气。在所有的处理流程中,都是向厌氧系统中投加一些补充的需氧源(如甲醇),以使反硝化所需的反应时间缩短而切合实用。
物理-化学法:有三种方法,即吹脱法、折点氯化法和选择性离子交换法。
①吹脱法:使污水的铵离子在高pH值的条件下大部转变成氨气:
NH4++OH-=NH3↑+H2O
在温度25℃和pH值为7、9、11的条件下,溶液中NH4+与NH3的分配比分别为180、1.8和0.018,因此吹脱法除氮最适宜的pH值在11左右。将污水调到这样高的pH值以后送入吹脱塔中,自上而下喷洒流动,与向上流动的空气逆流接触而将氨气吹出。吹脱法的除氮效率主要受到温度的影响。如在气温为20℃和10℃时,除氮率分别为95%和75%。
②折点氯化法:见水的消毒。
③选择性离子交换法:是以沸石(特别是斜发沸石)对铵离子比对钙、镁和钠等离子有优先交换吸附的性能为基础来去除氨氮的。将斜发沸石破碎筛分成20~50目的颗粒,填装于滤池中。废水大约以每小时10倍滤床体积的滤速流经沸石滤池。大约流过200倍滤床体积的正常浓度的城市污水以后,滤出水中会出现氨氮。此时便需要用浓食盐水溶液对沸石滤床进行再生。用过的浓食盐溶液可通过吹脱等方法脱氨,然后重复使用。

除有机物
活性炭能有效地除去二级处理出水中的大部分有机污染物。一些三级处理厂的粉末活性炭接触吸附装置(或粒状活性炭过滤吸附装置)去除化学需氧量(COD)和总有机碳(TOC)的代表性的效率为70~80%,每公斤活性炭吸附容量为0.25~0.87公斤COD,具体吸附容量是由进水的有机物浓度和所要求的出水有机物浓度决定的。在任何情况下,活性炭的实际吸附容量比按吸附等温线试验测定的吸附容量大得多。这主要是在活性炭上还有生物吸附和氧化作用所致。
臭氧氧化法和活性炭吸附法配合使用,往往能更有效地去除有机物并可延长活性炭的使用寿命。臭氧能将有机物氧化降解,减轻活性炭的负荷,还能将一些难以生物降解的大分子有机物分解为易于生物降解的小分子有机物,而便于被活性炭吸附和生物降解。臭氧氧化的废水流经活性炭滤池时因含有较多的氧气而会增强活性炭的生物活性,提高生物氧化能力 [3] 。

除无机物
有三种可采用的方法:即离子交换、电渗析和反渗透。在污水三级处理中用反渗透法脱除矿物质和有机污染物最受重视。使用高效除盐膜反渗透装置的结果证明,总溶解性固体可去除90~95%,磷酸盐可去除95~99%,氨氮可去除80~90%,硝酸盐氮可去除50~85%,悬浮物可去除99~100%,总有机碳可去除90~95%。可见,反渗透法能有效地去除多种污染物。缺点是设备造价和运转费用都高。另外,反渗透膜容易被污染物堵塞,需要清洗。有些三级处理系统是由超过滤和反渗透串联组成的,前者主要去除有机污染物,而后者去除溶解性无机物。

除病原体
用铝盐和铁盐混凝沉淀,可去除病原体99%以上,经滤池过滤能进一步提高去除率。但是,病原体并未被杀灭,仍在污泥中存活,而用石灰在pH值大于或等于10.5的条件下混凝沉淀则能杀灭污泥中的病毒。用臭氧杀灭病毒的效果也较好。
废水三级处理厂基建费和运行费用都很昂贵,约为相同规模二级处理厂的2~3倍,因此其发展和推广应用受到限制,只运用于严重缺水的地区或城市,回收和利用经三级处理后的出水

Ⅸ 反渗透进水水质有哪些要求

水质分析报告包括水质类型和主要成分指标,所需指标包括溶解离子,硅,胶体,有机物(TOC) .
典型溶解阴离子
碳酸氢根(HCO3-),碳酸根(CO32-),氢氧根(OH-),硫酸根(SO42-),氯离子(Cl-),氟离子(F-),硝酸根离子
(NO3-),硫离子(S2-),磷酸根(PO44-).
典型溶解阳离子
钙离子(Ca2+),镁离子(Mg2+),钠离子(Na+),钾离子(K+),铁离子(Fe2+ 或 Fe3+),锰离子(Mn2+),
铝离子(Al3+),钡离子(Ba2+),锶离子(Sr2+),铜离子(Cu2+)和 锌离子(Zn2+).
碱度
包括负离子中的碳酸根、碳酸氢根、氢氧根,自然水体中的碱度主要由HCO3-形成.pH在8.3以下的水中,
碳酸氢根和二氧化碳平衡存在.当pH高于8.3时,HCO3-将转变为CO32-存在.如果原水PH达到11.3以上,
将存在OH- 形式.Ca(HCO3)2的溶解度大于CaCO3.如果原水在 RO系统中被浓缩,CaCO3容易沉淀在
系统中.所以投加阻垢剂或加酸调低PH值会经常在RO系统中使用.
铁和锰
通常在水中以二价溶解状态存在或以三价非溶解氢氧化物形成存在.Fe2+ 可能来源自井水本身或来自泵、
管路、水箱的腐蚀,尤其上游系统中投加了酸.如果原水中铁、锰浓度大于0.05mg/l并且被空气或氧化剂
氧化为Fe(OH)3 和 Mn(OH)2 ,当 pH 值偏高时会在系统中形成沉淀.分析表明铁锰的存在会加速氧化剂
对膜的氧化降解,因此在预处理中必须去除铁锰.

一般不存在于自然水体中.三价铝会像三价铁一样在RO系统中形成难溶的Al(OH)3,当pH 在5.3 至8.5 范围
内时候,因为铝高价正电特性,所以Al2(SO4)3 和NaAlO2可以用于地表水的预处理去除水中负电性胶体.
千万小心铝盐不要过多投加,残留的铝离子对膜有污染.
铜和锌
在自然水体中很少存在.有时水中微量的铜和锌来自管道材料.在pH值5.3至8.5范围内,Cu(OH)2
和Zn(OH)2 不溶于水,因为它们一般在水中的含量较低,所以只有当系统长时间不清洗,它们积累到
一定程度时,才会对膜系统造成污染.可是如果铜锌与氧化剂(比如过氧化氢)同时存在于原水中,
那么会造成膜材质的严重降解.
硫化物
以H2S气体形式溶于水中,去除硫化氢可以用脱气装置或氯氧化或空气接触变为不溶性硫磺,用多介质过滤
去除.
磷酸盐
具有较强负电性,容易和多价离子形成难溶盐.磷酸钙在PH中性时溶解度很有限,PH值高时溶解度也不高.
进水中投加阻垢剂或调低PH(小于7)可以防止磷酸盐沉淀.

存在大多数自然水体中,浓度从1至100㎎/L.而且PH低于9.0时主要以Si(OH)4 存在.当PH低时,硅酸可以
聚合形成硅胶体.当PH高于9.0时,它会分离成SiO32- 离子而且会和钙、镁、铁或铅形成沉淀.硅和硅酸盐
沉淀很难溶解.氟化氢胺溶液清洗硅垢比较有效,可是氟化氢胺溶液排放会造成环境污染.当进水中硅含量
超过20㎎/L时,要注意硅结垢的潜在危险.
胶体(悬浮物颗粒)分析
污染指数,是衡量RO进水中胶体(颗粒物)潜在污染性的重要指标.RO进水中的胶体是各种各样的,经常
包括细菌、黏土、硅胶体和铁腐蚀产物.预处理中的澄清器中会用一些化学品,例如明矾、三氯化铁或阳
离子型聚合剂来去除胶体污染或通过后续介质过滤器去除.
浊度
也是影响RO膜污染的一个重要指标.浊度仪工作原理是测量水样中悬浮物对光的散射.水样的浊度大于
1.0的原水可能对RO膜有污染,浊度仪测量数值的单位是NTU.象SDI 值一样,浊度也是表征膜污染潜在
风险的一个参数.高浊度并不表示悬浮物会沉淀在膜表面.
如果原水的SDI大于5而且浊度大于1.0,就必须在预处理单元的澄清工艺中加入混凝剂而且后面要使用
多介质过滤器.如果原水中SDI小于5,而且浊度小于1,那么预处理可以考虑介质过滤器和保安过滤器
而不一定投加混凝剂.预处理混凝剂的投加量也是有控制指标的,过量使用会对膜有污染.
原水中还有两个重要指标需要分析.细菌总数和有机物含量.有两种方法测定水中细菌数,一种是培养法,
另一种是荧光染色法,后者更常用因为很方便快捷.原水中的有机物一般是油类-表面活性剂、水溶性聚合物
和腐质酸.检测指标有总有机炭(TOC),生物耗氧量(BOD)和化学耗氧量(COD).要想更精确地分析有
机物成份,需要使用液相色谱和气质联用仪器分析.如果原水中的TOC含量大于3mg/l,预处理单元要考虑去
除有机物工艺.

阅读全文

与铝盐污染反渗透相关的资料

热点内容
超滤膜膜丝怎样防止爬胶 浏览:364
污水处理漂白粉加多少 浏览:467
净水机有水碱是什么原因 浏览:233
东莞污水厂废气治理多少钱 浏览:708
污水泡沫对人体有什么危害 浏览:250
日本排入废水最新消息 浏览:238
社区紧急联系抢修污水外流怎么办 浏览:239
不锈钢蜂蜜化晶过滤器 浏览:278
香港蒸馏水广告古天乐 浏览:489
三聚异氰胺树脂 浏览:396
超滤膜正冲洗 浏览:914
qq音乐播放器音质会提升吗 浏览:761
河北污水排水管多少钱 浏览:37
污水水池要做什么实验 浏览:487
小米净水废水怎么排 浏览:430
什么水不会起水垢 浏览:577
纯净水比普通水有什么好处 浏览:766
温度降低半透膜 浏览:762
我国园区污水处理厂 浏览:753
聚三氟氯乙烯树脂f2314 浏览:803