1.超滤膜(UF):过滤精度在0.001-0.1微米。是一种利用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保留对人体有益的一些矿物质元素。是矿泉水、山泉水生产工艺中的核心部件。超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。
2.微滤(MF):过滤精度一般在0.1-50微米,常见的各种PP滤芯,活性碳滤芯,陶瓷滤芯等都属于微滤范畴,用于简单的粗过滤,过滤水中的泥沙、铁锈等大颗粒杂质,但不能去除水中的细菌等有害物质。滤芯通常不能清洗,为一次性过滤材料,需要经常更换。① PP棉芯:一般只用于要求不高的粗滤,去除水中泥沙、铁锈等大颗粒物质。② 活性碳:可以消除水中的异色和异味,但是不能去除水中的细菌,对泥沙、铁锈的去除效果也很差。③ 陶瓷滤芯:最小过滤精度也只0.1微米,通常流量小,不易清洗。
3.纳滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法分离技术,水的回收率较低。也就是说用纳滤膜制水的过程中,一定会浪费将近30%的自来水。这是一般家庭不能接受的。一般用于工业纯水制造。
4.反渗透(RO):过滤精度为0.0001微米左右,可滤除水中的几乎一切的杂质(包括有害的和有益的),只能允许水分子通过。一般用于纯净水、工业超纯水、医药超纯水的制造。反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。
B. 锅炉软化水和反渗透使用方法!
题目有点大
锅炉软化水和脱盐水是根据高中低压运行压力而定的
反渗透作为常用的脱盐工艺经验用在锅炉水处理项目上
C. 请问RO膜、纳滤膜、超滤膜、微滤膜有什么样的区别与联系解释一定要通俗易懂,谢谢!
1、制作材料不同
RO膜是一项新的膜分离技术,是依靠反渗透膜在压力下使溶液中的溶剂与溶质进行分离的过程。
纳滤膜:孔径在1nm以上,一般1-2nm。是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。
超滤膜用于超滤过程中的人工透膜。一般由高分子材料如:醋酸纤维素类、醋酸纤维素酯类、聚乙烯类、聚砜类及聚酰胺类等制成。
微滤膜一般指过滤孔径在0.1-1微米之间的过滤膜。
2、针对使用的对象不同
由于RO膜的孔径是头发丝的一百万分之一,因此,只有水分子及部分矿物离子能够通过,其它杂质及重金属均由废水管排出。所有海水淡化的过程,以及太空人废水回收处理均采用此方法。
纳滤膜被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。
超滤膜以压力为驱动力,膜孔径为1~100nm,属非对称性膜类型。孔密度约10/cm,操作压力差为100~1000kPa,适用于脱除胶体级微粒和大分子,能分离浓度小于10%的溶液。
微滤膜能截留0.1-1微米之间的颗粒。微滤膜允许大分子和溶解性固体(无机盐)等通过,但会截留悬浮物,细菌,及大分子量胶体等物质。
3、主要联系就是运用了相似的原理,一般水的流动方式是由低浓度流向高浓度,水一旦加压之后,将由高浓度流向低浓度,亦即所谓逆渗透原理。
(3)脱盐水超滤的压力是多少扩展阅读
工作原理:渗透是一种物理现象。当两种含有不同盐类的水,如用一张半渗透性的薄膜分开就会发现,含盐量少的一边的水分会透过膜渗到含盐量高的水中,而所含的盐分并不渗透,这样,逐渐把两边的含盐浓度融合到均等为止,这一过程称为渗透。
然而,要完成这一过程需要很长时间。但如果在含盐量高的水侧,施加一个压力,其结果也可以使上述渗透停止,这时的压力称为渗透压力。如果压力再加大,可以使方向向反方向渗透,而盐分剩下。
因此,反渗透除盐原理,就是在有盐分的水中(如原水),施以比自然渗透压力更大的压力,使渗透向相反方向进行,把原水中的水分子压力到膜的另一边,变成洁净的水,从而达到除去水中杂质、盐分的目的。
参考资料来源:网络—RO膜
参考资料来源:网络—纳滤膜
参考资料来源:网络—超滤膜
参考资料来源:网络—微滤膜
D. 热电站脱盐水制水工艺
反渗透是一种借助于选择透过(半透过)性膜的工力能以压力为推动力的膜分离技术,当系统中所加的压力大于进水溶液渗透压时,水分子不断地透过膜,经过产水流道流入中心管,然后在一端流出水中的杂质,如离子、有机物、细菌、病毒等,被截留在膜的进水侧,然后在浓水出水端流出,从而达到分离净化目的。
反渗透设备应用膜分离技术,能有效地去除水中的带电离子、无机物、胶体微粒、细菌及有机物质等。是高纯水制备、苦咸水脱盐和废水处理工艺中的最佳设备。广泛用于电子、医药、食品、轻纺、化工、发电等领域。
反渗透超纯水设备典型工艺流程为:
1: 预处理-反渗透-纯化水箱-离子交换器-紫外灯-纯水泵-用水点
2: 预处理-一级反渗透-二级反渗透(正电荷反渗膜)-纯化水箱-纯水泵-紫外灯-用水点
3: 预处理-反渗透-中间水箱-中间水泵-EDI装置-纯化水箱-纯水泵-紫外灯-用水点
4: 预处理→紫外线杀菌装置→一级RO装置→二级RO装置→中间水箱→EDI装置→脱氧装置→氮封纯水箱→除TOC UV装置→抛光混床→超滤装置→用水点
水质符合美国ASTM标准,电子部超纯水水质标准(18MΩ*cm,15MΩ*cm,2MΩ*cm和0.5MΩ*cm四级)
一般包括预处理系统、反渗透装置、后处理系统、清洗系统和电气控制系统等。
预处理系统一般包括原水泵、加药装置、石英砂过滤器、活性炭过滤器、精密过滤器等。其主要作用是降低原水的污染指数和余氯等其他杂质,达到反渗透的进水要求。预处理系统的设备配置应该根据原水的具体情况而定。
反渗透装置主要包括多级高压泵、反渗透膜元件、膜壳(压力容器)、支架等组成。其主要作用是去除水中的杂质,使出水满足使用要求。
后处理系统是在反渗透不能满足出水要求的情况下增加的配置。主要包括阴床、阳床、混床、杀菌、超滤、EDI等其中的一种或者多种设备。后处理系统能把反渗透的出水水质更好的提高,使之满足使用要求。
清洗系统主要有清洗水箱、清洗水泵、精密过滤器组成。当反渗透系统受到污染出水指标不能满足要求时,需要对反渗透进行清洗使之恢复功效。
电气控制系统是用来控制整个反渗透系统正常运行的。包括仪表盘、控制盘、各种电器保护、电气控制柜等。
超滤设备,是利用多孔材料的拦截能力,以物理截留的方式去除水中一定大小的杂质颗粒。在压力驱动下,溶液中水、有机低分子、无机离子等尺寸小的物质可通过纤维壁上的微孔到达膜的另一侧,溶液中菌体、胶体、颗粒物、有机大分子等大尺寸物质则不能透过纤维壁而被截留,从而达到筛分溶液中不同组分的目的。该过程为常温操作,无相态变化,不产生二次污染。超滤设备就是以超滤膜为核心产品对水质进行过滤。产出来的水就是我们通常所说的矿泉水。
以压力为推动力,利用超滤膜不同孔径对液体进行分离的物理筛分过程。其分子切割量(CWCO)一般为6000到50万,孔径为100nm(纳米)。超滤所用的膜为非对称膜,其表面活性分离层平均孔径约为10-200,能够截留分子量为500以上的大分子与胶体微粒,所用操作压差在0.1—0.5MPa。
在水处理领域中,超滤设备可以除去水中的细菌、病毒、热源和其它胶体物质,因此用于制取电子工业超纯水、医药工业中的注射剂、各种工业用水的净化以及饮用水的净化。
超滤设备广泛用于物质的分离、浓缩和提纯,还承接其他环保水处理工程. 超滤技术是一种广泛用于水的净化,溶液分离、浓缩,以及从废水中提取有用物质,废水净化再利用领域的高新技术。特点是使用过程简单,不需加热,能源节约,低压运行,装置占地面积小。
中空纤维超滤膜是超滤技术中最为成熟与先进的一种形式。中空纤维外径
E. 有关超滤膜设计的问题~
一、超滤和反渗透的情况不一样;其中主要的原因有两点:
1、超滤的反洗频率非常内高,正常的设计容(还要根据水质情况)反洗频率在60分钟左右吧,回收率较高的时候产生的膜污堵可以通过反洗来恢复膜通量;
2、超滤膜构造和反渗透也不一样,一般使用的超滤都是中空纤维膜,膜管内的流速较高(内压式),外压式虽然要差点,但一般都会选择气洗;
二、如何了解超滤膜产品以及寻求超滤膜厂家的技术支持是设计合理的关键。
从你提的问题上看,你对超滤可能还是不太熟悉,因此,当你正在选择膜产品型号或者你的超滤膜型号、厂家已经确定的时候,你需要仔细地了解膜产品的说明书以及相关的设计资料,最好是让膜厂商提供一些技术支持(非常重要)。这样你在设计膜的反洗、清洗、排列、回收率等参数的时候就不会出现原则性的错误。
希望对你有用!
谢谢!
F. 超滤净水器的水的知识
1 优质水:在市政供水的基础上(或达标水)采用粗滤、精滤、超滤、杀菌等工序。进行深加工而 得 到的优质饮用水。
2 矿泉水:大自然中的宝贵水资源,经过杀菌过滤简单处理后,作为商品饮用水供应给广大消费者。
3 纯净水:采用脱盐率较高的水处理设备而得到的几乎无任何杂质的干净水,电导率一般为1.0~0.1μS/cm,
4 矿化水:在较为纯净的原水中采用特殊工艺,加入矿岩石以期得到的含有微量元素的纯净矿化水。
5 软化水:是指将水中硬度(主要指水中钙、镁离子)去除或降低一定程度的水。水在软化过程中,仅硬度降低,而总含盐量不变。
6 、脱盐水:是指水中盐类(主要是溶于水的强电解质)除去或降低到一定程度的水。1.0-10.0μS/cm,电阻率(25℃)0.1-1.0*106cm含盐量为1-5mg/L.
7、纯水:是指水中的强电解质和弱电解质(如SiO2、CO2等)去除或降低到一定程度水。其电导率一般为:1.0-0.1μS/cm,电阻率1.0-10.0*106Ω·cm。含盐量<1mg/L。
8、超纯水:是指水中的电介质几乎完全去除,同时将不分解的气体,胶体以及有机物质(包括细菌等)也去除至很低程度的水。其电导率一般为0.1-0.55µS/cm,电阻率(25℃)10.0*106Ω·cm。含盐量<0.1mg/L。理想纯水(理论上)电导率0.05µS/cm,电阻率(25℃)18.3*106Ω?cm。
9、地下水:是雨水经过土壤及地层的渗透流动而形成的水,在其漫长的流程和广泛的接触中,溶入较多的盐类,硬度极高,但同时地下水经过层层过滤,悬浮物很少,水质清,浊度低。
10、地表水:指雨雪、江河、湖泊及海洋的水,除海洋含盐量极高以外,其他地表水的重要特点就是含盐量低,硬度低,但污染杂质却很高。市政供水(自来水)主要是指经过自来水厂处理过的市政供水。这是较为普遍的一种饮水方式。由于各区源水的巨大差异,故国家标准也响应的比较宽松。自来水厂经过沉淀、过滤、加氯消毒处理后。输送到千家万户。此种方式水质相对稳定,一般不会有太大的起落,但该水可谓粗加工,用途十分广泛,不可能将工业、生活及饮用水分开,根本不能满足人口饮水的高标准、高要求,而且在漫长的输送或储存过程中造成的二次污染也十分严重。人们不得不煮沸后再用,而煮沸除能杀菌外,却无法去除其它污物,有些物质甚至越煮越浓,危害人体。
G. 纳滤膜为什么可以在较低的操作压力条件下实现较高的脱盐率
应用纳滤膜对溶液中的溶质进行分离时,它的截留率会受到一些因素回的影响,从而呈现出不同的变化答规律,对这个规律进行详细的了解有利于更好的应用纳滤膜的分离性能。
这里我们将主要针对纳滤膜在对溶液进行分离的过程中,其根据处理溶质的不同所呈现的一些变化规律做以下详细介绍:
一、若保持系统的压力恒定,那么纳滤膜的截留率将会随着溶液浓度的增加而降低。
二、这种膜的截留率与溶质的摩尔质量变化成正比,当摩尔质量减少时,那么截留率也将随之降低。
三、如果溶液的浓度保持恒定时,那么膜的截留率将同其两侧压差变化形成正比,压差降低将导致截留率也随之下降。
四、对于溶液中一些常见的阴离子,膜的截留率将按照硝酸根离子、氯离子、氢氧离子、硫酸离子的顺序依次升高。
五、对于溶液中一些常见的阳离子,膜的截留率将按照氢离子、钠离子、钾离子、钙离子、镁离子、铜离子的顺序依次升高。
H. 热电站脱盐水制水工艺
反渗透是一种借助于选择透过(半透过)性膜的工力能以压力为推动力的膜分离技术,当系统中所加的压力大于进水溶液渗透压时,水分子不断地透过膜,经过产水流道流入中心管,然后在一端流出水中的杂质,如离子、有机物、细菌、病毒等,被截留在膜的进水侧,然后在浓水出水端流出,从而达到分离净化目的。
反渗透设备应用膜分离技术,能有效地去除水中的带电离子、无机物、胶体微粒、细菌及有机物质等。是高纯水制备、苦咸水脱盐和废水处理工艺中的最佳设备。广泛用于电子、医药、食品、轻纺、化工、发电等领域。
反渗透超纯水设备典型工艺流程为:
1: 预处理-反渗透-纯化水箱-离子交换器-紫外灯-纯水泵-用水点
2: 预处理-一级反渗透-二级反渗透(正电荷反渗膜)-纯化水箱-纯水泵-紫外灯-用水点
3: 预处理-反渗透-中间水箱-中间水泵-EDI装置-纯化水箱-纯水泵-紫外灯-用水点
4: 预处理→紫外线杀菌装置→一级RO装置→二级RO装置→中间水箱→EDI装置→脱氧装置→氮封纯水箱→除TOC UV装置→抛光混床→超滤装置→用水点
水质符合美国ASTM标准,电子部超纯水水质标准(18MΩ*cm,15MΩ*cm,2MΩ*cm和0.5MΩ*cm四级)
一般包括预处理系统、反渗透装置、后处理系统、清洗系统和电气控制系统等。
预处理系统一般包括原水泵、加药装置、石英砂过滤器、活性炭过滤器、精密过滤器等。其主要作用是降低原水的污染指数和余氯等其他杂质,达到反渗透的进水要求。预处理系统的设备配置应该根据原水的具体情况而定。
反渗透装置主要包括多级高压泵、反渗透膜元件、膜壳(压力容器)、支架等组成。其主要作用是去除水中的杂质,使出水满足使用要求。
后处理系统是在反渗透不能满足出水要求的情况下增加的配置。主要包括阴床、阳床、混床、杀菌、超滤、EDI等其中的一种或者多种设备。后处理系统能把反渗透的出水水质更好的提高,使之满足使用要求。
清洗系统主要有清洗水箱、清洗水泵、精密过滤器组成。当反渗透系统受到污染出水指标不能满足要求时,需要对反渗透进行清洗使之恢复功效。
电气控制系统是用来控制整个反渗透系统正常运行的。包括仪表盘、控制盘、各种电器保护、电气控制柜等。
超滤设备,是利用多孔材料的拦截能力,以物理截留的方式去除水中一定大小的杂质颗粒。在压力驱动下,溶液中水、有机低分子、无机离子等尺寸小的物质可通过纤维壁上的微孔到达膜的另一侧,溶液中菌体、胶体、颗粒物、有机大分子等大尺寸物质则不能透过纤维壁而被截留,从而达到筛分溶液中不同组分的目的。该过程为常温操作,无相态变化,不产生二次污染。超滤设备就是以超滤膜为核心产品对水质进行过滤。产出来的水就是我们通常所说的矿泉水。
以压力为推动力,利用超滤膜不同孔径对液体进行分离的物理筛分过程。其分子切割量(CWCO)一般为6000到50万,孔径为100nm(纳米)。超滤所用的膜为非对称膜,其表面活性分离层平均孔径约为10-200,能够截留分子量为500以上的大分子与胶体微粒,所用操作压差在0.1—0.5MPa。
在水处理领域中,超滤设备可以除去水中的细菌、病毒、热源和其它胶体物质,因此用于制取电子工业超纯水、医药工业中的注射剂、各种工业用水的净化以及饮用水的净化。
超滤设备广泛用于物质的分离、浓缩和提纯,还承接其他环保水处理工程. 超滤技术是一种广泛用于水的净化,溶液分离、浓缩,以及从废水中提取有用物质,废水净化再利用领域的高新技术。特点是使用过程简单,不需加热,能源节约,低压运行,装置占地面积小。
中空纤维超滤膜是超滤技术中最为成熟与先进的一种形式。中空纤维外径�0�10.5-2.0mm,内径�0�10.3-1.4mm,中空纤维管壁上布满微孔,孔径以能截留物质的分子量表达,截留分子量可达几千至几十万。原水在中空纤维外侧或内腔加压流动,分别构成外压式与内压式。超滤是动态过滤过程,被截留物质可随浓缩小排除,不致堵塞膜表面,可长期连续运行。
用途:纯水与超纯水设备;医用无菌无热原水设备,工业用饮料、饮用水、矿泉水净化,工业分离、浓缩、提纯,工业废水处理,电泳漆,电镀含油废水处理。 典型工艺流程:原液-储罐-加压泵-精密过滤器-中空超滤设备-储液罐-反洗水箱-反洗泵
I. edi膜块结垢的清洗方法
EDI设备的化学清洗及再生
膜块堵塞的原因主要有下面几种式:
o 颗粒/胶体污堵
o 无机物污堵
o 有机物污堵
o 微生物污堵
清洗方法时间(分) 备注
酸洗30-50
碱洗30-50
盐水清洗35-60
消毒25-40
冲洗≥50
再生≥120 根据系统的工艺要求直至达到出水电阻率要求指标
单个膜块清洗时药液配用量
型号药液配用量(升) 备注
MX-50 50 1. 酸洗温度15-25℃
2. 碱洗温度25-30℃
3. 配药液用水必须是RO产水
或高于RO产水的去离子水
MX-100 80
MX-200 110
MX-300 150
• 对于膜块数量大于1块时,按表中配液的数量乘以膜块数量
EDI膜块的再生
o 确认EDI膜块内没有任何的化学药品残留存在。
o 使系统构建成一个闭路自循环管路。
o 按照正常运行的模式调节好所有的流量和压力。
o 给EDI送电,调节电流从2A开始分步缓慢向EDI加载电流(最大不能超
过4A)。
o 直至产水电阻率达工艺要求到或者≥12MΩ.cm
o 提示:膜块的再生是一个比较长的时间,有时可能会长达10-24小时甚
至更长的时间。
EDI运行维护注意事项
注意:试车、操作及维护前,请详阅EDI厂家所提供操作维护手册. 本注意事项仅提醒使用者於试车、操作及维护时需要特别注意之事项,详细操作维护内容请详阅EDI厂家所提供操作维护手册.
一、 进流水质要求与必要之附属设备
(一)进流水质要求: 前处理系统一定要有 RO 系统,且要确保 RO 系统操作正常. 进流水质最低要求如下:
1 导电度(包括 SiO2 及CO2) μs/cm < 40
2 温度 ℃ 5 - 45
3 压力 Psi 20-100
4 自由余氯(Cl2) ppm < 0.02
5 铁(Fe)、锰(Mn) ppm < 0.01
6 硫化物(S- ) ppm < 0.01
7 pH 4-11
8 总硬度(as CaCO3) ppm < 1.0
9 二氧化硅(SiO2) ppm < 1.0
10 总有机碳(TOC) ppm < 0.5
备注: 1. 导电度计算方式=导电度计测量之导电度+2.66xCO2 浓度(ppm as CO2)+1.94xSiO2(ppm as SiO2)
2. 启动初期应特别注意进流硬度、二氧化硅浓度,应避免超过1.0ppm.
(二)附属设备: 为了保护模块及便利后续系统监测,强烈建议 EDI 系统应至少包括下列附属设备:
1. 稳定的电源供应设备:为了维持系统操作稳定,电源供应系统应供给稳定的直流电源给模块,且系统能在定电流模式下操作(V=IR, 亦即设定电流(I)后,电流并不会随进流水质改变,进流水质改变 仅会影响电阻(R)及电压(V)).
2. 流量开关或流量控制设备:为了保护模块,当没有水进入模块时, 模块电源必须马上被关闭,流量开关需与电源供应连动.
3. 压力计:应至少於进流端与产水、浓缩水出水端设置压力计,以监 测进出水压力.
4. 进出水流量计:方便调整产水率.可使用附控制点之流量计(可作为流量开关使用).
5. 系统控制(PLC 控制):系统除了控制没水进入时之断电装置外,亦应控制在进流水进入一段时间后,若电源仍无供应,应停止进流(例 如泵启动30 秒后(视泵至EDI 距离调整时间),若电源仍无供应, 则应关闭泵,并发出警报),以避免EDI 膜堆内树脂饱和,影响后续产水水质。
二、 试车注意事项:
(一)试车前检查
1. 试车前应检查管路、配件及控制系统是否安装完成,各项检查前应先关闭电源,以维护人员安全.
2. 模块扭矩检查:依照操作手册 3.2 节检查并锁紧. 联接螺栓 扭矩 1-8 25 ft.lbs. 11-14 12.5 ft.lbs. 9, 10 10 ft.lbs. 工具:扭矩扳手(19mm)+活动扳手
3. 管路检查:检查配管路线及阀门开关.
4. 电源控制检查(以Ionpure 原厂电源控制为例):
1.)检查整流器及显示板 Jumper 的选择是否正确:
甲、 ACV:例如 LX30,需要 660V,则选择 660V(共有 440,550, 660 三个选项).
乙、 DC :选择最高电流限制,例如:LX 选择10A(共有 2.5, 4, 6.5, 10A 四个选项).选择之电流需与显示板上之选择相同.
丙、 频率:选择 60Hz 或50Hz.
2.)检查变压器至控制版接线(T1, T2)及至模块接线.
3.)检查接地线(DC-).
4.)选择控制模式:选择定电流控制(A)或定电压(V)(建议选择定电流控制).
5.)检查流量开关.
5. 确认进流泵容量:进流泵之汲水流量需满足系统所需之流量,同时其扬程需能克服各项设备及管路压损(LX 模块压损约 1.5-2bar(与处理量相关)).
Ionpure 原厂显示板背面 Jumper 调整 Ionpure 原厂控制板背面 Jumper 调整及接线
(二)试车所需注意事项
1. 确认 RO 系统操作是否正常?建议 RO 系统操作稳定后,才将进流水 切换至 EDI 系统,以避免 RO 启动初期水质较差,影响模块性能.
2. 检测进流水水质:检测进流水水质,以确认进流水质符合要求,检测项目至少包括导电度、总硬度、二氧化硅、总氯及 CO2.若水质有任一项不符前述进流水质要求,即不可将水汲入 EDI 模块,并需检查 前处理是否有问题. 若进流水 CO2 浓度太高(超过 5ppm),即不建议将浓缩水回流至 RO 系统前贮槽(除非先将 CO2 去除),以避免造成 CO2 累积,影响产水水质.
3. 清洗管路:注意:为避免管路中残留管屑等污染物进入模块造成堵塞,建议在未试车前(包括架台配管时),先不要将原厂所附进出口之红色套头取出(但试车前一定要将该物取出). 在水进入模块前,需先确定其前处理管路中已无管屑等污染物.建议 於启动前先将模块进水接头拆开,并以 RO 水冲洗管路.
4. 测试各项安全保护装置:
1.)测试进流水泵浦与EDI 连动装置:测试进流水泵浦与 EDI 连动装置,使得 EDI 只有在进流泵浦启 动时才开启电源,且当 EDI 电源没有开启一段时间后要关闭进流 水泵浦.
2.)流量开关测试:启动前需先测试流量开关是否会动作,亦即没水时电源关闭,通水启动流量开关后(回路连通),直流电源才供应至模块.
5. 系统启动注意事项
1.)当上述安全保护测试完成后,再一次检查管路阀门开关,确定阀门开关正确后,才启动进流泵浦.
2.)进流泵浦启动后,检查电源供应是否正常启动.例如,以Ionpure 原厂显示板为例,显示板上灯号会由 Standby 跳至 On,若无,先关闭进流泵浦,并检查流量开关及各接线是否正常.
3.)进流泵浦启动后,以手动阀(最好是用膜片阀,以方便调整)调整产水及浓缩水流量,初期产水率先调整为 90%.
4.)刚启动时,先将电流调小(例如 0.5A),确定水流及电源没问题后, 再将电流慢慢调整到软体计算所需之电流值(与进流水质、水量相关),观察电压及出水水质. 启动初期水质可能较差,切勿因水质不佳,即贸然调高电流至远超 过软体所计算之值. 例如:进流水质导电度– 10μs/cm, CO2 – 8mg/l, SiO2 – 0.2mg/l 时, 以计算软体计算所需之电流为 2.43 安培,则设定电流在约 2.5 安培 即可(以水质最差时计算),切勿一开始即将电流调整超过该值(例如4.0 安培),以避免损坏模块.
5.)观察进出水压力,并以手动阀调整,使产水水压略高於浓缩水压约 2-5psi(若产水出口压力低於浓缩水压力,会影响产水水质).
6.)为避免 EDI 启动初期产水水质不佳,建议於产水端设置二只自动控制阀,并以 PLC 控制:当产水水质低於要求时,将EDI 产水回流至 EDI 前贮槽,当水质高过设定水质时,才切换至下一处理设 备.
7.)当系统在稳定状态(水质符合要求且操作稳定)时,应依据操作手册4.0 章最后所附的资料表上记录操作资料(检测项目至少需包括进水温度、导电度、总硬度、CO2,产水电阻值,进出口流量及压力(含浓缩端),操作电压、电流),以利后续设备检修.
三、 操作维护注意事项
1. 应每天填写IP-LX 系统记录表,以便及早发现是否有可能会使保修失效或对膜堆造成破坏的问题.
2. 应至少每六个月对膜堆进行一次膜块外观检测,检查是否有漏水或盐类沈积;并定期旋紧所有电气连接头及按照 3.2 章节的规定,检查膜堆螺栓的扭矩.
3. 在下述情况下,膜堆可能需要清洗:
温度和流量不变,产水压降增加50%;
温度和流量不变,浓水压降增加50%;
温度、流量、或进水电导率不变,产水水质下降;
温度不变,膜堆的电阻增加25%. 清洗方法请参考操作维护手册.
4. 若模块发生故障可参考原厂所附操作维护手册内之膜堆故障检测流程或联络当地en-link服务商.
四、 有助於 EDI 系统稳定及水质提升的前处理设计为增加EDI系统稳定度及提升产水水质,可於前处理增加下列设备
1. 去除 CO2 设备:一般 RO 产水皆含有一定量之CO2,若能将进流水CO2 浓度降低,将有助於产水水质提升及减少结垢可能性;
2. UV:於EDI 前增设紫外线杀菌器(UV)可减少模块长菌可能;
3. 精密过滤器:於EDI 前增设精密过滤器可避免微细颗粒物进入模块,造成堵塞;
4. Two pass RO:当原水硬度及二氧化矽浓度相对较高或变化较大时, 为避免原水水质变化大或软化系统出问题时,RO 产水硬度、二氧化硅浓度超过EDI 进流水标准,或减少EDI 模块结垢可能性,建议前处理采用 Two pass RO 系统。
J. 钢铁工业废水如何除盐
钢铁工业作为我国工业发展的基础产业, 既是用水大户也是排污大户。随着现代化工业的迅速发展, 用水量剧增,水资源短缺,已成为钢铁工业发展的瓶颈。要解决这一问题, 钢铁企业仅靠节水是不够的, 必须要寻求新的供水来源,而最直接、 最经济、 最有效的途径就是将综合排放的废水处理后循环利用。钢铁工业废水回收利用技术及设备研究工作是一项极具有社会效益和经济效益的工作。但是在钢铁企业的废水处理过程中, 如果不涉及脱盐工艺,处理后的水的含盐量会很高,仍不能满足工业循环水系统补充水的要求。循环水经高倍浓缩后, 水中各种离子浓度增加, 会产生一系列物理、化学变化, 导致管道系统腐蚀、 结垢严重, 影响设备正常运行,甚至缩短设备的使用寿命。因此,在钢铁工业废水处理技术中,研发高效低耗的新型除盐技术具有积极意义。目前钢铁厂废水脱盐技术主要有3 种: 即离子交换工艺(阳床+ 阴床+ 混床)、 膜法除盐工艺(超滤和反渗透)和电吸附除盐工艺。长期实践已证明,离子交换是一种成熟有效的水处理工艺,脱盐效果好。但该工艺存在设备占地面积大、 系统操作维护频繁复杂、 出水水质呈周期性波动的缺陷,并且需要投加絮凝剂和耗费大量的酸碱,不利于环境保护;膜法除盐工艺和电吸附除盐工艺集技术性、 可靠性、 环保性、 经济性为一体,比离子交换工艺更具有综合优势,目前得到广泛重视,下面对这两种工艺分别进行介绍。1、膜法除盐工艺的应用双膜法工艺主要指超滤+ 反渗透( RO) 的处理工艺,该工艺主要采用膜分离技术制取脱盐水。超滤原理是一种膜分离过程原理, 是利用一种有机或无机超滤膜,在外界推动力(压力) 作用下截留水中胶体、 颗粒和大分子量的的物质,而水和小的溶质颗粒透过膜的分离过程。当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。超滤的采用大大提升了预处理的效果,增强了对反渗透系统的产水率,并且延长了膜的使用寿命。反渗透是用足够的压力使溶液中的溶剂(一般是水)通过反渗透膜而分离出来,这个过程和自然渗透的方向相反,因此称为反渗透。经过反渗透处理, 使水中杂质的含量降低, 提高水的纯度,其脱盐率可以达到99%以上, 并能将水中大部分的细菌、 胶体、 大部分盐类和有机物去除。反渗透法能适应各类含盐量的原水, 尤其是在高含盐量的水处理工程中,能获得很好的经济效益。目前, 超滤及反渗透装置已经实现模块化设计,可任意拆卸、 组装,配置灵活,安装调试方便;且设备结构紧凑,占地少,重量轻,便于运输和安装调试。采用反渗透脱盐工艺,以超滤作为反渗透的预处理,设计出一套试验装置。并且考察了用该装置处理某钢铁企业总排口污水的效果,确定了水通量、 回收率、 清洗周期及清洗药剂配方和药剂最佳浓度。实验证明, 双膜法在钢铁工业综合污水处理回收应用中是可行的。此外,还对太原钢铁集团, 邯郸钢铁集团和首钢集团采用的膜法脱盐技术的优缺点进行了分析,提出了用超滤代替传统的多介质过滤器、 活性炭过滤器等作为反渗透的预处理方法, 可为反渗透系统提供更优良的进水水质, 并可以减轻膜污染,延长膜的使用寿命。就全通量陶瓷膜在国内钢铁企业污水深度脱盐处理中,作为超滤的应用前景做了初步的分析和探讨, 指出了全通量陶瓷膜具有合适的机械强度和高渗透通量,对理想的渗透组分具有选择性, 在工业污水预处理方面,具有很好的应用前景。涟钢中心软水站改扩建工程采用了反渗透系统,其工艺设计、 设备选型及材料的选用, 均能够保证工艺流程的前后协调和脱盐水制备过程的正常运行, 产水水质、水量稳定。该工艺运行平稳可靠, 实现了整套工艺自动化控制, 具有产水质量高、 自动控制程度高、 易于操作控制等特点。整套工艺处理中膜分离不发生相变化,与其它分离方法相比能耗低,没有三废排放(浓盐水回收集中处理) , 不会对周围反渗透造成二次污染。超滤加反渗透的脱盐工艺已经逐步应用于钢铁企业污水的深度处理中,为企业减少新水消耗开辟了新途径。与传统法处理工艺相比,有着很大的经济、 技术和环保优势。鉴于钢铁企业高含盐量水质特点以及回收利用要求, 许多钢铁企业采用膜法处理技术及相应的配套设施, 对回收利用水进行脱盐处理, 以保持企业循环系统的水质、水量能满足要求, 膜法工艺已经被实践证明是一种合适的钢铁工业废水脱盐方法。但需要指出的是, 膜法工艺也有其不足之处: 对进水水样要求高,抗冲击能力小,膜损伤不易修复等缺点,同时膜法出水在使用过程中需要使用大量阻垢剂等化学药剂。
甘**度**环**境