导航:首页 > 净水问答 > 协同过滤环境

协同过滤环境

发布时间:2024-06-03 03:41:20

❶ 协同过滤与分类

[TOC]

本文是《写给程序员的数据挖掘实践指南》的一周性笔记总结。主要涵盖了以下内容:

所谓推荐系统就是系统根据你的行为操作为你推荐你可能想要的其他物品。这在电商平台、音乐平台、资讯推送平台等多有见到。而协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息。其推荐基础是用户评分。这里可以分为两种用户评分,即显式评分与隐式评分。显式评分即日常见到的为物品打分,如对喜好音乐评级等;隐式评分是通过对用户行为的持续性观察,进而发现用户偏好的一种方法,如新闻网页中的推送你经常阅读过的相关内容等。两种评分方法都有自己的问题。

总体来说,协同过滤其运作机制也可以分为两种:

基于用户的推荐是指通过用户的行为偏好,划分相似用户。在相似用户群体之间互相推送一方喜欢而另一方未有过的物品。核心在于相似用户群体的划分。这种推荐方法有自己的局限:

基于用户的过滤其核心是用户群体的划分,其实也就是分类。

这里的距离函数包括三种:曼哈顿距离和欧氏距离。这里以二维举例,更多维情况下类推即可。

两距离函数可以一般化为:

其中,当r=1时,函数为曼哈顿距离;当r=2时,函数为欧氏距离。

算法实现:

在算出距离函数后,通过比对目标用户与所有用户群体的偏好,找到最近邻的用户并给予推荐。

基于用户距离的推荐有一个明显的问题,就是用户评分体系的差异。比如评分极端的用户给喜欢的评最高分,给不喜欢的评最低分;而有些用户倾向于不出现极端评分。即所谓“分数贬值”( Grade Inflation )问题。这种问题的存在可能让基于距离的评分产生偏差。皮尔逊相关系数可以缓解这种问题。

原皮尔逊相关系数公式在实际运用的时候会出现多次迭代的问题,影响计算效率,这里给出了近似公式:

皮尔逊相关系数的用户判断依据不是单纯的用户距离,而是用户的评分一致性:取值在[-1, 1]之间,越接近1则表示两用户的评分一致性越好;反之则反。
python实现:

基于用户推荐的过程中,另一个存在的问题就是由于大部分人的喜爱物品集合的交集过少,存在大量计算值为0的feature的情况。即所谓 稀疏性 问题。一个较容易理解的例子是对书本内容的挖掘。余弦相似度会忽略这种0-0匹配。
余弦相似度:

python实现:

如此多的评估系数,如何进行抉择呢?根据数据特征:

另外值得考虑的一点是,目前为止的推荐都是基于单用户的。即对一个用户的推荐系统只是基于另一个用户。这会存在一些问题。比如虽然虽然两者相似度很高,但是另外一个人有一些怪癖,怪癖的推荐就是不合理的;又比如,在相似度极高的情况下,你不能确定统一账户下的操作是同一个人做出的或者说操作行为是为了用户自身。比如用户考虑购买某件商品作为礼物送给别人,这就是基于别人喜好的购买行为,这种推荐也是不合适的。
对这种问题的解决可以使用群体划分的方法。原理与单用户类似,但是用户的匹配是k个。在这k位最优匹配的用户之间,以相似度的大小为依据设定权重作为物品推荐的条件。此即协同过滤的k近邻。

正如前面提到的基于用户的推荐有复杂度、稀疏性的问题,而基于物品的过滤则可以缓解这些问题。所谓基于物品的过滤是指,我们事先找到最相似的物品,并结合用户对物品的评级结果来生成推荐。前提是要对物品进行相似度匹配,找到一种算法。

这里的调整是指为了减轻用户评分体系的不一致情况(抵消分数贬值),从每个评级结果中减去该用户所有物品的平均分的评级结果。

其中,U表示所有同时对i, j进行评级过的用户的集合。 表示用户u给物品i的评分减去用户u对所有物品的评分的平均值。

在得到所有物品的余弦相似度后,我们就可以通过该指数预测用户对某件物品的偏好程度。方法就是所有相似物品的相似度乘以得分的总和。

其中p(u, i)指的是用户u对物品i评分的预测值。N是用户u的所有评级物品中每个和i得分相似的物品。这里的相似指的是矩阵中存在N和i的一个相似度得分。 是i和N之间的相似度得分。 是u给N的评级结果。公式较好运行的条件是 取值在(-1, 1)之间,这里就要使用归一化概念。

另一种常用的基于物品过滤的算法就是 slope one 算法。它的大概原理是预测用户u对产品j的评分时,预先计算包含所有物品的两物品偏差表;根据u的已评价的所有物品评分与该物品和产品j的偏差( )之和并乘以所有对此两类物品有过评分的用户个数,一一加总,除以所有同时对产品i与u评价过的所有物品有过评分的用户的人数,得到得分。公式如下:

其中, ; 是利用加权s1算法给出的用户u对物品j的预测值。 指的是对所有除j之外u打过分的物品。

python实现:

在前面两节中,基于物品和基于用户的过滤其前提都是用户需要对已有的item进行评分。而实际上,如果一个新的item出现,由于缺乏别人的偏好,他永远不会被推荐。这就是推荐系统中所谓的—— 冷启动 问题。基于用户评价的系统就会出现这种问题。
冷启动 问题的解决方案之一就是 基于物品属性的过滤 来进行推荐:对物品自身的属性进行归纳总结,并以此进行物品推荐。基于物品属性的过滤存在一个问题同样是量纲的不统一。如果量纲不统一极端值将会对推荐系统造成大麻烦。解决方法也很简单:归一化。此章使用的是z-评分。
使用z得分也存在问题,就是极易受到离群值的影响。这里可以使用 改进的标准分数 来缓解这个问题:

什么时候可以进行归一化呢?

这里用曼哈顿距离举例基于物品属性的过滤:

在上一章最后一节对于用户是否喜欢某件item的判别中,实际上包含了分类器的思想:分类器就是利用对象属性判定对象属于哪个组或类别的程序。这里简单用另一个小项目来说明。

简单来说就是根据运动员的某些指标来判断这位运动员属于什么类别的运动员。

准确率有0.8。

❷ 协同过滤

协同过滤(Collaborative Filtering,CF)——经典/老牌
只用户行为数据得到。对于 个用户, 个物品,则有共现矩阵 :
对于有正负反馈的情况,如“赞”是1和“踩”是-1,无操作是0:

对于只有显示反馈,如点击是1,无操作是0:

算法步骤:
1)得到共现矩阵 ;
2)计算 任意两行 用户相似度,得到用户相似度矩阵 ;
3)针对某个用户 选出与其最相似的 个用户, 是超参数;——召回阶段
4)基于这 个用户,计算 对每个物品的得分;
5)按照用户 的物品得分进行排序,过滤已推荐的物品,推荐剩下得分最高的 个。——排序阶段

第2步中,怎么计算用户相似度?——使用共现矩阵的行
以余弦相似度为标准,计算 和 之间的相似度:


第4步中,怎么每个用户对每个物品的得分?
假如和用户 最相似的2个为 和 :


对物品 的评分为1,用户 对物品 的评分也为1,那么用户 对 的评分为:

也就是说:利用用户相似度对用户评分进行加权平均:

其中, 为用户 和用户 之间的相似度, 为用户 和物品 之间的相似度。

UserCF的缺点
1、现实中用户数远远大于物品数,所以维护用户相似度矩阵代价很大;
2、共现矩阵是很稀疏的,那么计算计算用户相似度的准确度很低。

算法步骤:
1)得到共现矩阵 ;
2)计算 任意两列 物品相似度,得到物品相似度矩阵 ;
3)对于有正负反馈的,获得用户 正反馈的物品;
4)找出用户 正反馈的物品最相似的 个物品,组成相似物品集合;——召回阶段
5)利用相似度分值对相似物品集合进行排序,生产推荐列表。——排序阶段
最简单情况下一个物品(用户未接触的)只出现在另一个物品(用户已反馈的)的最相似集合中,那么每个用户对每个物品的得分就是相似度。如果一个物品和多个物品最相似怎么办?
如用户正反馈的是 和 ,对于物品 其最相似的是 ,相似度为0.7,对于物品 其最相似的也是 ,相似度为0.6,那么 相似度为:

也就是说:如果一个物品出现在多个物品的 个最相似的物品集合中,那么该物品的相似度为多个相似度乘以对应评分的累加。

其中, 是物品p与物品h的相似度, 是用户u对物品p的评分。

第2步中,怎么计算物品相似度?——使用共现矩阵的列
以余弦相似度为标准,计算 和 之间的相似度:


余弦相似度
皮尔逊相关系数
基于皮尔逊相关系数的改进

UserCF适用于用户兴趣比较分散变换较快的场景,如新闻推荐。
IteamCF适用于用户情趣不叫稳定的场景,如电商推荐。

优点:直观,可解释性强。
缺点:

❸ 推荐算法的基于协同过滤的推荐

基于协同过滤的推荐算法理论上可以推荐世界上的任何一种东西。图片、音乐、样样可以。 协同过滤算法主要是通过对未评分项进行评分 预测来实现的。不同的协同过滤之间也有很大的不同。
基于用户的协同过滤算法: 基于一个这样的假设“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”所以基于用户的协同过滤主要的任务就是找出用户的最近邻居,从而根据最近邻 居的喜好做出未知项的评分预测。这种算法主要分为3个步骤:
一,用户评分。可以分为显性评分和隐形评分两种。显性评分就是直接给项目评分(例如给网络里的用户评分),隐形评分就是通过评价或是购买的行为给项目评分 (例如在有啊购买了什么东西)。
二,寻找最近邻居。这一步就是寻找与你距离最近的用户,测算距离一般采用以下三种算法:1.皮尔森相关系数。2.余弦相似性。3调整余弦相似性。调整余弦 相似性似乎效果会好一些。
三,推荐。产生了最近邻居集合后,就根据这个集合对未知项进行评分预测。把评分最高的N个项推荐给用户。 这种算法存在性能上的瓶颈,当用户数越来越多的时候,寻找最近邻居的复杂度也会大幅度的增长。
因而这种算法无法满足及时推荐的要求。基于项的协同过滤解决了这个问题。 基于项的协同过滤算法 根基于用户的算法相似,只不过第二步改为计算项之间的相似度。由于项之间的相似度比较稳定可以在线下进行,所以解决了基于用户的协同过滤算法存在的性能瓶颈。

❹ 协同过滤,基于内容推荐有什么区别

举个简单的小例子,我们已知道
用户u1喜欢的电影是A,B,C
用户u2喜欢的电影是A, C, E, F
用户u3喜欢的电影是B,D
我们需要解决的问题是:决定对u1是不是应该推荐F这部电影
基于内容的做法:要分析F的特征和u1所喜欢的A、B、C的特征,需要知道的信息是A(战争片),B(战争片),C(剧情片),如果F(战争片),那么F很大程度上可以推荐给u1,这是基于内容的做法,你需要对item进行特征建立和建模。
协同过滤的办法:那么你完全可以忽略item的建模,因为这种办法的决策是依赖user和item之间的关系,也就是这里的用户和电影之间的关系。我们不再需要知道ABCF哪些是战争片,哪些是剧情片,我们只需要知道用户u1和u2按照item向量表示,他们的相似度比较高,那么我们可以把u2所喜欢的F这部影片推荐给u1。
根据数据源的不同推荐引擎可以分为三类
1、基于人口的统计学推荐(Demographic-based Recommendation)
2、基于内容的推荐(Content-based Recommendation)
3、基于协同过滤的推荐(Collaborative Filtering-based Recommendation)
基于内容的推荐:
根据物品或内容的元数据,发现物品或内容的相关性,然后基于用户以前的喜好记录推荐给用户相似的物品
基于内容推荐的一个典型的例子,电影推荐系统,首先我们需要对电影的元数据有一个建模,这里只简单的描述了一下电影的类型;然后通过电影的元数据发现电影间的相似度,因为类型都是“爱情,浪漫”电影 A 和 C 被认为是相似的电影(当然,只根据类型是不够的,要得到更好的推荐,我们还可以考虑电影的导演,演员等等);最后实现推荐,对于用户 A,他喜欢看电影 A,那么系统就可以给他推荐类似的电影 C。

阅读全文

与协同过滤环境相关的资料

热点内容
乐山污水处理设备批发多少钱 浏览:43
如何维修污水浸泡的墙 浏览:164
中国净水服务网平台怎么样 浏览:891
怎样去滴定硫酸根离子浓度 浏览:194
树脂释迦佛小的 浏览:638
废水处理怎么学 浏览:465
17款思域空调滤芯怎么换 浏览:282
净水器排水孔是干什么用的 浏览:657
AS树脂高温分解生成什么 浏览:454
怎么处理饮水机水桶里的水垢 浏览:255
如何处理浓氟废水 浏览:32
GE和bwt即热净水机哪个好 浏览:738
一个车间每天产生多少废水 浏览:541
宝鸡市十里铺污水招标 浏览:740
飞利浦净水器怎么拆除 浏览:448
过滤管壁上的孔数计算 浏览:360
嘉定新城金茂府净水器是什么牌子 浏览:948
一米二鱼缸底滤加装双重过滤 浏览:502
城市污水处理厂如何运行 浏览:43
生活污水处理后形成再生水 浏览:613