导航:首页 > 净水问答 > 电控离子交换技术应用

电控离子交换技术应用

发布时间:2024-05-28 11:14:45

A. 电去离子的工业应用和市场需求

最近几年电去离子在各个工业领域都越来越受重视,许多工业系统开始采用电去离子作为其水处理系统的更新换代技术,如电力工业、制药工业、微电子工业、电镀与金属表面处理等。 虽然药用水的特点是并不要求很高的去离子程度,但电去离子系统具有同时去盐和控制微生物指标的特点,因此已有多家企业采用RO/EDI集成系统。据称该类系统性能稳定,全流程计算机连续监控,全自动操作无人值守。
电去离子法(Electro deio?nization),简称EDI,是一种将电渗析与离子交换有机地结合在一起的膜分离脱盐工艺,属高科技绿色环保技术。它利用电渗析过程中的极化现象对离子交换填充床进行电化学再生,集中了电渗析和离子交换法的优点,克服了两者的弊端。 EDI技术结合了两种成熟的水处理技术-电渗析技术和离子交换技术,我国称此为填充床电渗析或电去离子技术。它主要替代传统的离子交换混床来生产高纯水,环保特性好,操作使用简便,愈来愈多地被人们所认可,也愈来愈多广泛地在医药、电子、电力、化工等行业得到推广,至今,国际上已有3千多套EDI装置在运行,总容量已超过3万m3/h。
连续电除盐(EDI,Electro deio nization或CDI,continuous electrode ionization),是利用混和离子交换树脂吸附给水中的阴阳离子,同时这些被吸附的离子又在直流电压的作用下,分别透过阴阳离子交换膜而被除去的过程。这一过程离子交换树脂是电连续再生的,因此不需要使用酸和碱对之再生。这种新技术可以替代传统的离子交换装置,生产出高达18.2MΩ .cm(25℃)的超纯水。EDI是利用阴、阳离子膜,采用对称堆放的形式,在阴、阳离子膜中间夹着阴、阳离子树脂,分别在直流电压的作用下,进行阴、阳离子交换。而同时在电压梯度的作用下,水会发生电解产生大量H+和OH-,这些H+和OH-对离子膜中间的阴、阳离子不断地进行了再生。由于EDI不停进行交换--再生,使得纯水度越来越高,所以,轻而易举的产生了高纯度的超纯水。
EDI(电除盐系统)工作原理
高纯度水对许多工商业工程非常重要,比如:半导体制造业和制药业。以前这些工业用的纯净水是用离子交换获得的。然而,膜系统和膜处理过程作为预处理过程或离子交换系统的替代品越来越流行。如电除盐过程(EDI)之类的膜系统可以很干净地去除矿物质并可以连续工作。而且,膜处理过程在机械上比离子交换系统简单得多,并不需要酸、碱再生及废水中和。EDI处理过程是膜处理过程中增长最快的业务之一。EDI是带有特殊水槽的非反向电渗析(ED),这个水槽里的液流通道中填充了混床离子交换树脂。EDI主要用于把总固体溶解量(TDS)为1-20mg/L的水源制成8-17兆欧纯净水。
EDI系统装置关于进水的注意事项:
进水必须符合反渗透直接透过水的水质,
·需要避免物理、化学和生物污染;
·物理污染PVC碎片、金属碎屑;污垢,尘土;焊渣;树脂颗粒等,
·化学污染、氧化剂,如氯气;多价阳离子,如铁、锰等;环氧树脂及玻璃钢容器制作过程中所用的硬化剂。
·污染物的来源:敞开式储罐,脱气塔;
没有在EDI前配过滤器的软化器等。
EDI系统装置出水水质标准
采用RO装置出水作为EDI给水,在一般情况下,EDI装置的出水水质其电阻率都能达到16 MΩ·cm,有的甚至接近18 MΩ·cm。采取一些特殊的措施,还可使EDI装置的出水电阻率接近于18.2 MΩ·cm的理论纯水标准。然而,对EDI装置出水电阻率指标的追求,应根据需要,要有经济观点,要从实际出发,不是愈高愈好。对于电子行业来说,用EDI装置直接获得18.2 MΩ·cm高纯水,可不必再在EDI装置后采用抛光混床处理,比较方便;对于发电行业,为用EDI装置处理锅炉补给水系统来说,只需获得5 MΩ·cm的纯水就可以了。从占EDI装置所处理的总水量的多少来看,像电子行业这种对水质要求高的用户,只占20% 左右;而对水质要求不高如发电行业作为锅炉补充水来说,要占60% 以上;对其它用户,它们对水质要求也不高,大致与发电行业相仿,也占20%。因此从满足大多数的80% 用户来考虑,只需EDI装置出水在5 MΩ·cm以上就可以了。
国产的EDI装置,可能由于制造技术和材料方面的原因,也可能由于用户对EDI技术不熟悉或其他方面的种种原因,运行中的EDI装置出水从15 MΩ·cm以上逐渐下降,直到出水不能满足用户要求,不能长期稳定在10 MΩ·cm,以上。针对国内离子交换膜的性能不如国外,对EDI工艺的掌握不如国外,以及对其他一些因素的考虑,提出新型结构的EDI装置出水电阻率以稳定在10 MΩ.cm为宜:稳定在10 MΩ·cm为优质品,稳定在5 MΩ·cm为合格品。采用这样的定位就可以满足80% 绝大多数用户的需求。 EDI装置是应用在反渗透系统之后,取代传统的混合离子交换技术(MB-DI)生产稳定的去离子水。EDI技术与混合离子交换技术相比有如下优点:
1、占地空间小,省略了混床和再生装置;
2.产水连续稳定,出水质量高,而混床在树脂临近失效时水质会变差;
EDI装置是一个连续净水过程,因此其产品水水质稳定,电阻率一般为15MΩ·cm,最高可达18MΩ·cm,达到超纯水的指标。混床离子交换设施的净水过程是间断式的,在刚刚被再生后,其产品水水质较高,而在下次再生之前,其产品水水质较差。
3.运行费用低,再生只耗电,不用酸碱,节省材料费用;
EDI装置运行费用包括电耗、水耗、药剂费及设备折旧等费用,省去了酸碱消耗、再生用水、废水处理和污水排放等费用。
在电耗方面,EDI装置约0.5kWh/t水,混床工艺约0.35kWh/t水,电耗的成本在电厂来说是比较经济的,可以用厂用电的价格核算。
在水耗方面,EDI装置产水率高,不用再生用水,因此在此方面运行费用低于混床。
至于药剂费和设备折旧费两者相差不大。
总的来说,在运行费用中,EDI装置吨水运行成本在2.4元左右,常规混床吨水运行成本在2.7元左右,高于EDI装置。因此,EDI装置多投资的费用在几年内完全可以回收。
4.环保效益显著,增加了操作的安全性;
EDI属于环保型技术,离子交换树脂不需酸、碱化学再生,节约大量酸、碱和清洗用水,大大降低了劳动强度。更重要的是无废酸、废碱液排放,属于非化学式的水处理系统,它无需酸、碱的贮存、处理及无废水的排放,因而它对新用户具有特别的吸引力。
三、技术性能
EDI组件运行结果取决于各种各样的运行条件。以下是保证EDI正常运行的最低条件。为了使系统运行效果更佳,系统设计时应适当提高这些条件。
EDI进水指标
为防止装置出现污堵,减少其运行寿命,EDI对进水水质有一定的要求,一般采用RO的渗透水作为进水。

B. edi姘村勭悊

闅忕潃绉戞妧鐨勪笉鏂鍙戝睍锛屾按澶勭悊鎶鏈涔熷湪涓嶆柇鍒涙柊銆傚叾涓锛孍DI姘村勭悊鎶鏈浠ュ叾楂樻晥銆佺幆淇濄佽妭鑳界瓑鐗圭偣锛屽彈鍒颁簡瓒婃潵瓒婂氫汉鐨勫叧娉ㄥ拰闈掔潗銆傞偅涔堬紝浠涔堟槸EDI姘村勭悊锛熷畠鍙堟槸濡備綍杩涜屾搷浣滅殑鍛锛

涓銆丒DI姘村勭悊鎶鏈浠嬬粛

EDI鍏ㄧО涓篍lectrodeionization锛屽嵆鐢垫瀬绂诲瓙浜ゆ崲鎶鏈銆傚畠鏄涓绉嶉珮鏁堛佺幆淇濄佽妭鑳界殑姘村勭悊鎶鏈锛岄氳繃鐢靛満浣滅敤鍜岀诲瓙浜ゆ崲浣滅敤锛屽幓闄ゆ按涓鐨勭诲瓙锛屼粠鑰岃揪鍒版彁楂樻按璐ㄧ殑鐩鐨勩備笌浼犵粺鐨勬按澶勭悊鎶鏈鐩告瘮锛孍DI姘村勭悊鎶鏈鍏锋湁浠ヤ笅鍑犱釜浼樼偣锛

1.楂樻晥锛欵DI姘村勭悊鎶鏈鍙浠ュ幓闄ゆ按涓鐨勭诲瓙锛屼粠鑰屾彁楂樻按璐ㄣ傚悓鏃讹紝EDI姘村勭悊鎶鏈涔熷彲浠ュ揩閫熷勭悊澶ч噺鐨勬按锛屾彁楂樻按澶勭悊鐨勬晥鐜囥

2.鐜淇濓細EDI姘村勭悊鎶鏈涓嶉渶瑕佷娇鐢ㄥ寲瀛﹁嵂鍓傦紝涓嶄細浜х敓搴熸按鍜屽簾姘旓紝瀵圭幆澧冩病鏈夋薄鏌撱

3.鑺傝兘锛欵DI姘村勭悊鎶鏈浣跨敤鐢靛満浣滅敤鍜岀诲瓙浜ゆ崲浣滅敤锛屼笉闇瑕佷娇鐢ㄥ寲瀛﹁嵂鍓傦紝浠庤岃妭鐪佷簡鑳芥簮鍜屾垚鏈銆

浜屻丒DI姘村勭悊鎶鏈鐨勬搷浣滄ラ

1.棰勫勭悊锛氬皢姘磋繘琛岄勫勭悊锛屽幓闄ゆ按涓鐨勬偓娴鐗┿佹偿娌欍佹湁鏈虹墿绛夋潅璐ㄣ傞勫勭悊鍙浠ラ噰鐢ㄨ繃婊ゃ佹矇娣銆佸惛闄勭瓑鏂规硶銆

2.EDI澶勭悊锛氬皢棰勫勭悊鍚庣殑姘撮氳繃EDI璁惧囪繘琛屽勭悊銆侲DI璁惧囩敱闃崇诲瓙浜ゆ崲鑶溿侀槾绂诲瓙浜ゆ崲鑶滃拰鐢垫瀬鏉跨粍鎴愩傛按閫氳繃闃崇诲瓙浜ゆ崲鑶滃拰闃寸诲瓙浜ゆ崲鑶滄椂锛岀诲瓙浼氳鍚搁檮鍦ㄨ啘涓娿傜劧鍚庯紝閫氳繃鐢垫瀬鏉跨殑鐢靛満浣滅敤锛屽皢绂诲瓙浠庤啘涓婄Щ闄ゃ傝繖鏍凤紝灏卞彲浠ュ幓闄ゆ按涓鐨勭诲瓙锛屾彁楂樻按璐ㄣ

3.鍚庡勭悊锛氬皢EDI澶勭悊鍚庣殑姘磋繘琛屽悗澶勭悊銆傚悗澶勭悊鍙浠ラ噰鐢ㄦ秷姣掋佽嚟姘с佺传澶栫嚎绛夋柟娉曪紝鏉鐏姘翠腑鐨勭粏鑿屽拰鐥呮瘨锛屼繚闅滄按璐ㄥ畨鍏ㄣ

涓夈丒DI姘村勭悊鎶鏈鐨勫簲鐢ㄩ嗗煙

EDI姘村勭悊鎶鏈骞挎硾搴旂敤浜庣數瀛愩佸寲宸ャ佸埗鑽銆侀熷搧銆侀ギ鏂欑瓑琛屼笟銆傚叾涓锛孍DI姘村勭悊鎶鏈鍦ㄧ數瀛愯屼笟鐨勫簲鐢ㄦ渶涓哄箍娉涖傜數瀛愯屼笟瀵规按璐ㄨ佹眰闈炲父楂橈紝EDI姘村勭悊鎶鏈鍙浠ュ幓闄ゆ按涓鐨勭诲瓙鍜屽井鐢熺墿锛屼繚闅滅數瀛愪骇鍝佺殑璐ㄩ噺鍜岀ǔ瀹氭с

鍥涖丒DI姘村勭悊鎶鏈鐨勬湭鏉ュ彂灞

闅忕潃浜轰滑瀵规按璐ㄨ佹眰鐨勪笉鏂鎻愰珮锛孍DI姘村勭悊鎶鏈鐨勫簲鐢ㄥ墠鏅闈炲父骞块様銆傛湭鏉ワ紝EDI姘村勭悊鎶鏈灏嗕細鏇村姞鏅鸿兘鍖栧拰鑷鍔ㄥ寲锛屾彁楂樻按澶勭悊鐨勬晥鐜囧拰绮惧害銆傚悓鏃讹紝EDI姘村勭悊鎶鏈涔熷皢浼氭洿鍔犺妭鑳姐佺幆淇濓紝涓轰汉浠鎻愪緵鏇村姞鍋ュ悍銆佸畨鍏ㄧ殑楗鐢ㄦ按銆

C. 离子交换的水处理中的应用

EDI(Electro-de-ionization)是一种将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离产生H和OH离子实现树脂自再生来克服树脂失效后通过化学药剂再生的缺陷,是20世纪80年代以来逐渐兴起的新技术。经过十几年的发展,EDI技术已经在北美及欧洲占据了相当部分的超纯水市场。
EDI装置包括阴/阳离子交换膜、离子交换树脂、直流电源等设备。其中阴离子交换膜只允许阴离子透过,不允许阳离子通过,而阳离子交换膜只允许阳离子透过,不允许阴离子通过。离子交换树脂充夹在阴阳离子交换膜之间形成单个处理单元,并构成淡水室。单元与单元之间用网状物隔开,形成浓水室。在单元组两端的直流电源阴阳电极形成电场。来水水流流经淡水室,水中的阴阳离子在电场作用下通过阴阳离子交换膜被清除,进入浓水室。在离子交换膜之间充填的离子交换树脂大大地提高了离子被清除的速度。同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。EDI装置将给水分成三股独立的水流:纯水、浓水、和极水。纯水(90%-95%)为最终得到水,浓水(5%-10%)可以再循环处理,极水(1%)排放掉。图2表示了EDI的净水基本过程。
EDI装置属于精处理水系统,一般多与反渗透(RO)配合使用,组成预处理、反渗透、EDI装置的超纯水处理系统,取代了传统水处理工艺的混合离子交换设备。EDI装置进水要求为电阻率为0.025-0.5MΩ·cm,反渗透装置完全可以满足要求。EDI装置可生产电阻率高达15MΩ·cm以上的超纯水。 EDI装置不需要化学再生,可连续运行,进而不需要传统水处理工艺的混合离子交换设备再生所需的酸碱液,以及再生所排放的废水。其主要特点如下:
EDI的净水基本过程
·连续运行,产品水水质稳定
·容易实现全自动控制
·无须用酸碱再生
·不会因再生而停机
·节省了再生用水及再生污水处理设施
·产水率高(可达95%)
·无须酸碱储备和酸碱稀释运送设施
·占地面积小
·使用安全可靠,避免工人接触酸碱
·降低运行及维护成本
·设备单元模块化,可灵活的组合各种流量的净水设施
·安装简单、费用低廉
·设备初投资大 EDI装置与混床离子交换设备属于水处理系统中的精处理设备,下面将两种设备在产水水质、投资量及运行成本方面进行比较,来说明EDI装置在水处理中应用的优越性。
(1)产品水水质比较
EDI装置是一个连续净水过程,因此其产品水水质稳定,电阻率一般为15MΩ·cm,最高可达18MΩ·cm,达到超纯水的指标。混床离子交换设施的净水过程是间断式的,在刚刚被再生后,其产品水水质较高,而在下次再生之前,其产品水水质较差。
(2)投资量比较
与混床离子交换设施相比EDI装置投资量要高约20%左右,但从混床需要酸碱储存、酸碱添加和废水处理设施及后期维护、树脂更换来看,两者费用相差在10%左右。随着技术的提高与批量生产,EDI装置所需的投资量会大大的降低。另外,EDI装置设备小巧,所需厂房远远小于混床。
(3)运行成本比较
EDI装置运行费用包括电耗、水耗、药剂费及设备折旧等费用,省去了酸碱消耗、再生用水、废水处理和污水排放等费用。
在电耗方面,EDI装置约0.5kWh/t水,混床工艺约0.35kWh/t水,电耗的成本在电厂来说是比较经济的,可以用厂用电的价格核算。
在水耗方面,EDI装置产水率高,不用再生用水,因此在此方面运行费用低于混床。
至于药剂费和设备折旧费两者相差不大。
总的来说,在运行费用中,EDI装置吨水运行成本在2.4元左右,常规混床吨水运行成本在2.7元左右,高于EDI装置。因此,EDI装置多投资的费用在几年内完全可以回收。 EDI装置属于水精处理设备, 具有连续产水、水质高、易控制、占地少、不需酸碱、利于环保等优点, 具有广泛的应用前景。随着设备改进与技术完善以及针对不同行业进行优化, 初投资费用会大大降低。可以相信在不久的将来会完全取代传统的水处理工艺中的混合 。
控制氮含量的方法(4种):生物硝化-反硝化(无机氮延时曝气氧化成硝酸盐,再厌氧反硝化转化成氮气);折点氯化(二级出水投加氯,到残余的全部溶解性氯达到最低点,水中氨氮全部氧化);选择性离子交换;氨的气提(二级出水pH提高到11以上,使铵离子转化为氨,对出水激烈曝气,以气体方式将氨从水中去除,再调节pH到合适值)。每种方法氮的去除率均可超过90%。

D. 请问离子交换技术和色谱分离技术是什么,在果汁加工中的应用

离子交换技术:nbsp;nbsp;Sobernbsp;和nbsp;Peterson于1956年首次将离子交换基团结合到纤维素上,制成了离子交换纤维素,成功地应用于蛋白质的分离。从此使生物大分子的分级分离方法取得了迅速的发展。离子交换基团不但可结合到纤维上,nbsp;还可结合到交联葡聚糖(S-ephadex)和琼脂糖凝胶(Sepharose)上。nbsp;近年来离子交换色谱技术已经广泛应用于蛋白质、酶、核酸、肽、寡核苷酸、病毒、噬菌体和多糖的分离和纯化。它们的优点是:⑴具有开放性支持骨架,大分子可以自由进入和迅速扩散,故吸附容量大。⑵具有亲水性,对大分子的吸附不大牢固,用温和条件使可以洗脱,不致引起蛋白质变性或酶的失活。⑶多孔性,表面积大、交换容量大,回收率高,可用于分离和制备。一、基本理论nbsp;nbsp;离子交换剂通常是一种不溶性高分子化合物,如树脂,纤维素,葡聚糖,醇脂糖等,它的分子中含有可解离的基团,这些基因在水溶液中能与溶液中的其它阳离子或阴离子起交换作用。虽然交换反应都是平衡反应,但在层析柱上进行时,由于连续添加新的交换溶液,平衡不断按正方向进行,直至完全。因此可以把离子交换剂上的原子离子全部洗脱下来,同理,当一定量的溶液通过交换柱时,由于溶液中的离子不断被交换而波度逐减少,因此也可以全部被交换并吸附在树脂上。如果有两种以上的成分被交换吸着在离子交换剂上,用洗脱液洗脱时,在被洗脱的能力则决定于各自洗反应的平衡常数。蛋白质的离子交换过程有两个阶段——吸附和解吸附。吸附在离子交换剂上的蛋白质可以通过改变pH使吸附的蛋白质失去电荷而达到解离但更多的是通过增加离子强度,使加入的离子与蛋白质竞争离子交换剂上的电荷位置,使吸附的蛋白质与离子交换剂解开。不同蛋白质与离子交换剂之间形成电键数目不同,即亲和力大小有差异nbsp;,因此只要选择适当的洗脱条件便可将混合物中的组分逐个洗脱下来,达到分离纯化的目的。二、离子交换的分类及常见种类(一)分类离子交换剂分为两大类,即阳离子交换剂和阴离子交换剂。各类交换剂根据其解离性大小,还可分为强、弱两种,即nbsp;强酸剂nbsp;阳离子交换剂nbsp;nbsp;弱酸剂nbsp;强碱型nbsp;阴离子交换剂nbsp;弱碱型nbsp;。1.阳离子交换剂nbsp;nbsp;阳离子交换剂中的可解离基因是磺酸(-SO3H)、磷酸(-PO3H2)、nbsp;羧酸(COOH)和酚羟基(-OH)等酸性基。某些交换剂在交换时反应如下:强酸性:R-SO3nbsp;-H+nbsp;+nbsp;Na+nbsp;R-SO3-nbsp;Na+H+弱酸性:R-COOH+Na+nbsp;R-COONanbsp;+H+国产树脂中强酸1×7(上海树脂#732)和国外产品Dowexnbsp;50、Zerolitnbsp;225等都于强酸型离子交换剂。2.阴离子交换剂nbsp;nbsp;阴离子交换剂中的可解离基因是伯胺、(-NH2)、仲胺(-NHCH3)、叔胺[N-(CH3)2]和季胺[-N(CH3)2]等碱性基团。某些交换反应如下:强碱性:R-N+(CH3)2nbsp;H·OH-nbsp;+Clnbsp;R-N+(CH3)2nbsp;Cl+OH-弱碱性:R-N+(CH3)2nbsp;H·OH-nbsp;+Clnbsp;R-N+(CH3)2nbsp;HCl+OH-强碱性#201号国产树脂和国外Dowex1、Dowex2、ZerolitFF等都属于强碱型阴离子交换剂。(二)种类1.纤维素离子交换剂:阳离子交换剂有羟甲基纤维素(CM-纤维素),nbsp;阴离子交换剂有氯代三乙胺纤维纱(DESE-纤维素)。2.交联葡聚糖离子交换剂:是将交换基因连接到交联葡聚糖上制成的一类交换剂,因而既具有离子交换作用,又具有分子筛效应,是一类广泛应用的色谱分离物质。常用的Sephadex离子交换剂也有阴离子和阳离子交换剂两类。阴离子交换剂有DEAE-Sephadexnbsp;A-25,A-50和QAE-nbsp;Sephadexnbsp;A25nbsp;,nbsp;A50nbsp;;nbsp;阳离子交换剂有CM-Sephaetxnbsp;C-50,C-50和Sephadexnbsp;C-25,C-50。阴离子交换剂用英文字头A,阳离子交换剂的英文字头是C。英文字后面的数字表示Sephadex型号。3.琼脂糖离子离交换剂:是将DESE-或CM-基团附着在Sepharosenbsp;CL-6Bnbsp;上形成,DEAE-Sephades(阴离子)和CM-Sepharose(阳离子),具有硬度大,nbsp;性质稳定,凝胶后的流速好,分离能力强等优点。三、实验操作(一)交换剂的处理,再生与转型nbsp;nbsp;新出厂的树脂是

E. 鍏ㄦ槸骞茶揣涓ㄧ诲瓙浜ゆ崲鑹茶氨锛圛EC锛夊師鐞嗐佹搷浣滆佺偣鍙婂簲鐢

绂诲瓙浜ゆ崲鑹茶氨锛圛EC锛夛紝杩欎釜寮哄ぇ鐨勫垎绂绘妧鏈锛屼互鍏剁嫭鐗圭殑鍘熺悊鍜屽箍娉涘簲鐢ㄥ惛寮曠潃绉戝﹀朵滑鐨勭洰鍏夈傚叾鏍稿績鍦ㄤ簬鍒╃敤绂诲瓙浜ゆ崲鍓傜殑绂诲瓙浜ゆ崲鐗规э紝閫氳繃绂诲瓙闂寸殑鐢佃嵎浣滅敤鍔涘樊寮傝繘琛岄珮鏁堝垎绂汇傜诲瓙浜ゆ崲鍓傜敱鍩鸿川銆佺數鑽峰熀鍥㈠拰鍙嶇诲瓙鏋勬垚锛屽垎涓洪槼绂诲瓙鍜岄槾绂诲瓙涓ょ嶇被鍨嬶紝姣忎釜绉嶇被鐨勯夋嫨鎬ч兘鐢卞钩琛″父鏁癒鍜屼翰鍜屽姏鍙傛暟濡傜诲瓙鐢佃嵎銆佺數浠峰拰鍘熷瓙搴忔暟鍐冲畾銆

绂诲瓙浜ゆ崲杩囩▼鏄涓涓鍙閫嗙殑鍔ㄦ佽繃绋嬶紝鍏剁粨鍚堝姏鍙楀埌pK鍊煎拰绛夌數鐐圭殑褰卞搷銆傚湪铔嬬櫧璐ㄥ垎绂讳腑锛岀瓑鐢电偣鍘熺悊涓庣洂姊搴︽垨pH姊搴︾粨鍚堬紝浣垮緱娲楄劚鎴愪负鍏抽敭姝ラゃ傜诲瓙浜ゆ崲鏍戣剛鐨勫瓟鐘剁粨鏋勶紝鏃犺烘槸鐤忔按鎬ф爲鑴傦紙濡傚己閰-寮遍吀-寮辩⒈鏍戣剛锛夎繕鏄浜叉按鎬ф爲鑴傦紙濡傜氦缁寸礌鍜屼氦鑱旇憽鑱氱硸锛夛紝閮戒负绂诲瓙杩佺Щ鎻愪緵浜嗘湁鍒╂潯浠讹紝浣嗛夋嫨鏃堕渶閽堝规牱鍝佺壒鎬ф潵鍐冲畾銆

鍦ㄥ疄闄呮搷浣滀腑锛岀诲瓙浜ゆ崲鍓傜殑閫夋嫨鑷冲叧閲嶈侊紝濡傞槼绂诲瓙浜ゆ崲鍓傞拡瀵规g數鑽风墿璐锛岄槾绂诲瓙浜ゆ崲鍓傞拡瀵硅礋鐢佃嵎锛屾垨鑰呴拡瀵逛袱鎬х诲瓙鐨勭壒瀹歱H鑼冨洿銆傚己鍨嬩氦鎹㈠墏閫傜敤浜庡箍娉涚殑pH鑼冨洿锛岃屽急鍨嬪垯鍦ㄤ腑鎬pH鏉′欢涓嬩繚鎸侀珮浜ゆ崲瀹归噺銆傚己閰告爲鑴傚逛簬纰辨ц泲鐧借川灏ゅ叾鏈夋晥锛屽弽绂诲瓙鐨勯夋嫨鍒欏彇鍐充簬缁撳悎鍔涳紝寮洪吀鍨嬮夋嫨H鍨嬶紝寮遍吀鍨嬮夋嫨Na鍨嬨

棰勫勭悊鍜屽啀鐢熻浆鍨嬫槸缁存寔鏍戣剛鎬ц兘鐨勫叧閿鐜鑺傦紝鍙鑳藉寘鎷鏍戣剛娴告场銆侀櫎鏉傝川锛堥吀纰卞勭悊锛変互鍙婂啀鐢熸ラゃ備翰姘存ф爲鑴傚彲鑳介渶瑕佷娇鐢∟aOH/NaCl鎴朒Cl澶勭悊锛岃岀惣鑴傜硸鍒欏彲閫氳繃閰哥⒈娴告场澶勭悊銆傝呮煴鏃讹紝鏌遍珮涓庣洿寰勭殑姣斾緥銆佺诲瓙寮哄害閮戒細褰卞搷鍒嗙绘晥鏋滐紝瑁呮煴闇鍧囧寑鍒嗗竷锛岄伩鍏嶆皵娉′骇鐢熴傛牱鍝佷笂鏌辨椂锛屽钩琛$紦鍐叉恫鏄鍩虹锛岄殢鍚庡潎鍖鍔犲叆锛屾礂鑴卞垯闇瑕佺簿缁嗚捐★紝閫氳繃鍒嗘点佹搴︽垨澶嶅悎鏂规硶鎻愰珮鍒嗚鲸鐜囥

璐ㄥ勭悊鏃讹紝浜叉按鎬ф爲鑴傞噰鐢ㄤ箼閱囨垨涓欓叜锛岄吀纰卞勭悊鐢ㄤ簬鐞艰剛绯栥傛敹闆嗘礂鑴辨恫鏃讹紝搴旀帶鍒舵祦閫燂紝鍒嗘ユ敹闆嗕互纭淇濆崟涓鐗╄川鐨勭函搴︺傜‘瀹氭礂鑴辨恫娴侀熸椂锛岄氬父鍦5~8cm³/(cm²-h)鑼冨洿鍐呭疄楠岋紝鏀堕泦1%~2%鏌变綋绉鐨勬礂鑴辨恫锛岄氳繃鐩戞祴鍚稿厜搴︾粯鍒舵礂鑴辨洸绾裤傜诲瓙浜ゆ崲鑹茶氨鍦ㄨ泲鐧借川绾鍖栵紙濡傜豢璞嗗嚑涓佽川閰讹級鍜岀瓑鐢电偣娴嬪畾锛堝傞キ璞囪眴鍑濋泦绱狅級绛夐嗗煙琛ㄧ幇鍑鸿壊锛屽嚟鍊熷叾楂樼伒鏁忓害鍜岄噸澶嶆э紝鎴愪负绉戝﹀朵滑鐨勫緱鍔涘伐鍏枫

鎬荤殑鏉ヨ达紝绂诲瓙浜ゆ崲鑹茶氨閫氳繃绮惧瘑鐨勬搷鎺у拰绛栫暐鎬у簲鐢锛屼负绉戝﹀朵滑鎻愪緵浜嗕竴绉嶅己澶х殑宸ュ叿锛岀敤浜庣簿缁嗗垎绂诲拰鍒嗘瀽澶嶆潅鐨勭敓鐗╁垎瀛愶紝鏄鐜颁唬鐢熺墿鍖栧﹀拰鍒嗗瓙鐢熺墿瀛﹀疄楠屽や腑鐨勫繀澶囨妧鏈銆

F. 离子交换法和反渗透技术的应用你了解多少呢

若采用自动控制,则控制点多、阀门要求高,投资很大。同时酸碱耗量大,再生废水也多。另外由于树脂对非极性的大分子没有去除能力,所以制水过程中可能会出现细菌殖生。反渗法流程简介:原水经原水泵送到石英砂过滤器降低浊度,在活性炭过器中降低COD,胶体及有机大分子的含量。活性炭出水再送至保安过滤器进行最后的预处理,使原水SDI<5mg/l,满足反渗透(RO)主机的进水要求。经保安过滤器后的合格水由高压泵送至RO主机反渗透进行除盐处理。反渗透膜截留下的有机物、胶体和盐无机盐由浓水侧直接排掉,不会给环境造成污染。产品水由膜清水侧送出至脱碳塔,除去渗透至清水的二氧化碳气体。脱气后的一级除盐水送至混床进行最后的精除盐。

G. 离子交换原理

离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于丙烯酸系弱酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。以D113型离子交换树脂制备硫酸钙晶须为例说明: D113丙烯酸系弱酸性阳离子交换树脂是一种大孔型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当硫酸锌溶液中的Zn2+,S042-扩散到树脂的孔道中时,由于该树脂对Zn2+选择性强于对Ca2+的选择性,,所以Zn2+就与树脂孔道中的交换基团Ca2+发生快速的交换反应,被交换下来的Ca2+遇到扩散进入孔道的S042-发生沉淀反应,生成硫酸钙沉淀。其过程大致为:
(1)边界水膜内的扩散 水中的Zn2+,S042-离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Zn2+,S042-离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点;
(3)离子交换 Zn2+与树脂基团上的可交换的Ca2+进行交换反应;
(4)交联网孔内的扩散 被交换下来的Ca2+在树脂内部交联网孔中向树脂表面扩散;部分交换下来的Ca2+在扩散过程中遇到由外部扩散进入孔径的S042-发生沉淀反应,生成CaS04沉淀;
(5)边界水膜内的扩散 没有发生沉淀反应的部分Ca2+扩散通过树脂颗粒表面的边界水膜层,并进入水溶液中。 此外,由于离子交换以及沉淀反应的速度很快,硫酸钙沉淀基本在树脂的孔道里生成,因此树脂的孔道就限制了沉淀的生长及形貌,对其具有一定的规整作用。通过调整搅拌速度、反应温度等外界条件,可以使树脂颗粒及其内部孔道发生相应的变化,这样当沉淀在树脂孔道中生成后,就得到了不同尺寸和形貌的硫酸钙沉淀。

阅读全文

与电控离子交换技术应用相关的资料

热点内容
乐山污水处理设备批发多少钱 浏览:43
如何维修污水浸泡的墙 浏览:164
中国净水服务网平台怎么样 浏览:891
怎样去滴定硫酸根离子浓度 浏览:194
树脂释迦佛小的 浏览:638
废水处理怎么学 浏览:465
17款思域空调滤芯怎么换 浏览:282
净水器排水孔是干什么用的 浏览:657
AS树脂高温分解生成什么 浏览:454
怎么处理饮水机水桶里的水垢 浏览:255
如何处理浓氟废水 浏览:32
GE和bwt即热净水机哪个好 浏览:738
一个车间每天产生多少废水 浏览:541
宝鸡市十里铺污水招标 浏览:740
飞利浦净水器怎么拆除 浏览:448
过滤管壁上的孔数计算 浏览:360
嘉定新城金茂府净水器是什么牌子 浏览:948
一米二鱼缸底滤加装双重过滤 浏览:502
城市污水处理厂如何运行 浏览:43
生活污水处理后形成再生水 浏览:613