导航:首页 > 净水问答 > 永久电荷与阳离子交换量

永久电荷与阳离子交换量

发布时间:2024-05-19 12:55:05

⑴ 阳离子交换量名词解释

在一定的pH值条件下(一般pH为7),每千克干土所吸收的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)总量。

常用单位:每千克厘摩尔数cmol(+)/kg土

国际单位:mmol/kg土

(1)永久电荷与阳离子交换量扩展阅读:

土壤阳离子交换量(CEC)的大小,基本上代表了土壤可能保持的养分数量,即保肥性的高低。阳离子交换量的大小,可作为评价土壤保肥能力的指标。阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。

b、土壤质地越细,其阳离子交换量越高。

c、对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。

d、土壤溶液pH值,因为土壤胶体微粒表面的羟基(OH)的解离受介质pH值的影响,当介质pH值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低;反之就增大。

⑵ 阳离子交换

1.阳离子交换

按质量作用定律,阳离子交换反应可以表示为

水文地球化学基础

式中:KA—B为阳离子交换平衡常数;A和B为水中的离子;AX和BX为吸附在固体颗粒表面的离子;方括号指活度。

在海水入侵过程中,准确模拟阳离子交换作用是预测阳离子在含水层中运移的前提条件。按照质量作用定律可以用一个平衡常数把离子交换作为一种反应来描述。例如Na+、Ca2+的交换:

水文地球化学基础

平衡常数为:

水文地球化学基础

式(3—115)表明,交换反应是等当量的,是个可逆过程;两个Na+交换一个Ca2+。如果水中的Na+与吸附在固体颗粒表面的Ca2+(即CaX)交换,则反应向右进行;反之,则向左进行。如果反应向右进行,Ca2+是解吸过程,而Na+是吸附过程。所以,阳离子交换实际上是一个吸附—解吸过程。Na+、Ca2+的交换是一种最广泛的阳离子交换。当海水入侵淡水含水层时,由于海水中Na+远高于淡水,而且淡水含水层颗粒表面可交换的阳离子主要是Ca2+,因此产生Na+、Ca2+之间的离子交换,Na+被吸附而Ca2+被解吸,方程(3—115)向右进行;当淡水渗入海相地层时,则Na+被解吸而Ca2+被吸附,反应向左进行。

2.质量作用方程

描述离子交换反应的方程式有多种,通常主要是通过对实验数据的最佳拟合来决定选择哪一种方程式,众多的研究者很难达成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因为目前并没有一个统一的理论来计算吸附剂上的离子活度,而前面提到的迪拜—休克尔方程、戴维斯方程都是适用于水溶液中的离子活度计算。

交换性阳离子活度有时用摩尔分数来计算,但更为常用的是当量分数作为交换位的数量分数或者作为交换性阳离子的数量分数。在一种理想的标准状态下,交换剂只被一种离子完全占据,交换离子的活度等于1。对于等价交换使用哪一种方程式没有区别,但是对于非等价交换影响十分显著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函数形式:

水文地球化学基础

即为交换位浓度(单位质量吸附剂的摩尔数)与无单位函数

)和

)的乘积。这些函数依赖于溶液中阳离子的活度。

海水入侵过程中的交换反应主要为Na+与Ca2+之间的交换,通常写作:

水文地球化学基础

X为—1价的表面交换位,交换位X的总浓度为

水文地球化学基础

式中:S指每单位质量固体的总交换位浓度,mol/g。这种情况下S的量等于阳离子交换容量(只要单位换算统一即可)。

水文地球化学基础

式(3—120)的书写方式符合Gaines—Thomas方程式,Gaines(盖恩斯)和Thomas(托马斯)(1995)最先给出交换性阳离子热动力学标准态的严格定义。它使用交换性阳离子的当量分数作为吸附离子的活度。若式(3—120)使用摩尔分数,则遵守Vanselow(1932)公式。

如果假定吸附阳离子的活度和被离子占据的交换位的数目成正比,反应式(3—115)则可写成

水文地球化学基础

式(3—122)符合Gapon(加蓬)方程式。在Gapon方程式中,摩尔分数和当量分数是一样的,都是电荷为—1的单一交换位。

还有一种交换形式为:

水文地球化学基础

Y指交换位的电荷为—2,这种反应式同样是交换反应的一种有效热力学描述。它假定交换位Y的总浓度为

水文地球化学基础

S则为阳离子交换容量的二分之一。Cernik(采尔尼克)等根据当量分数利用反应式(3—123),将交换系数表示为:

水文地球化学基础

3.质量作用方程拟合

利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式对在砂样中进行的试验所获得的数据进行拟合,根据拟合结果作出 Na+、Ca2+、Mg2+、K+吸附等温线(刘茜,2007),如图3—4~图3—7所示。

图3—4 Na+吸附等温线和拟合数据

由吸附等温线可以看出,砂样对Na+、Mg2+、K+的吸附量均随着溶液中离子浓度的增加而逐渐增加,而Ca2+发生解吸。图3—4中,砂样对Na+的吸附量随溶液中离子浓度的增加而缓慢增加。图3—5中,在Ca2+浓度较低时,解吸量迅速增大,当Ca2+浓度较高时,随浓度增加解吸量增加缓慢,逐渐趋于平稳状态。

图3—6中Mg2+浓度较低时,吸附量增加较慢,在较高浓度时增加较快,但并没有出现Ca2+的解吸等温线中的平稳状态,依然为直线型,且直线的斜率大于低浓度状态时的斜率,说明Na+、Mg2+的吸附速率在低浓度(海水含量为20%左右)时较小,在高浓度时,吸附速率变大;Ca2+的解吸在高浓度时基本达到平衡,而Na+、Mg2+还有增长趋势,也较好证明了试验所用砂样的交换位主要为Ca2+所占据。图3—7中K+实测值的吸附等温线则没有出现Ca2+、Na+、Mg2+的规律,虽然整体上随着溶液离子浓度的增加,吸附量也是增长趋势,但并没有出现直线规律。究其原因,主要是阳离子交换吸附作用不大,主要是化学吸附,因为K+的水化膜较薄,所以有较强的结合力,K+被吸附后,大多被牢固吸附在黏土矿物晶格中。

图3—5 Ca2+吸附等温线和拟合数据

图3—6 Mg2+吸附等温线和拟合数据

图3—7 K+吸附等温式和拟合数据

由吸附等温线模拟图(图3—4~图3—7)及公式与试验数据拟合的相关系数(表3—17)看出,GT方程式拟合效果较好,能够很好地预测离子交换趋势。因此,在多组分离子交换模拟计算中采用Gaines—Thomas方程,为阳离子交换的定量研究提供了依据。

表3—17 GT、GP、VS方程式拟合的相关系数

所以根据Gaines—Thomas方程式(3—126)~式(3—131)计算离子交换系数(表3—18)。由于 9 种配比浓度的离子强度不同,所以各自的交换系数也有所差别。对比

可知3种离子的吸附亲和力顺序为Mg2+>K+>Na+。但是由于海水中Na+、Mg2+含量远远高于地下水,尤其是Na+的含量比地下水高出3个数量级,因此,海水入侵过程中以Ca2+、Na+交换为主,其次为Ca2+、Mg2+交换,交换量最少的为Ca2+、K+

水文地球化学基础

表3—18 试验土样不同浓度下的交换系数

⑶ 阳离子交换量一般空白是多少

0.05-0.15ML。
凯氏定氮法,注在蒸馏以后的比色滴定中,可以调整硼酸的ph值来获得空白值。最佳的空白值是0.05-0.15ML滴定酸(样品空白)。
阳离子交换量,土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度和pH、淋洗方法等,必须严格掌握操作技术才能获得可靠的结果。

⑷ 离子交替吸附作用

离子交替吸附作用主要发生在具有固定电荷的固体矿物表面,无论是阳离子还是阴离子,均可发生交替吸附作用,但目前研究得较多的是阳离子交替吸附作用。离子交替吸附作用的一个重要特点就是,伴随着一定量的一种离子的吸附,必然有等当量的另一种同号离子的解吸(图2-5-4)。离子交替吸附作用之所以具有这样的特点,主要是由于吸附剂通常都具有一定的离子交换容量,因此这里首先对离子交换容量予以讨论。

图2-5-3 有机质表面的负电荷

图2-5-4 阳离子交替吸附作用图解

2.5.2.1 离子交换容量

离子交换容量包括阳离子交换容量(CEC—Cation Exchange Capacity)和阴离子交换容量(AEC—Anion Exchange Capacity),我们主要讨论阳离子交换容量,它被定义为每100 g干吸附剂可吸附阳离子的毫克当量数。例如,在蒙脱石的结晶格架中,铝八面体中的三价铝可被二价镁所置换,根据测定,每摩尔蒙脱石中镁的含量为0.67 mol,即蒙脱石的分子式为:Si8Al3.33Mg0.67O20(OH)4。已知蒙脱石的分子量是734 g,因此这种蒙脱石的阳离子交换容量为:

水文地球化学

在实际中,通常都是通过实验来测定吸附剂的阳离子交换容量。尤其是对于野外所采取的土样或岩样,由于其中含有多种吸附剂,实验测定往往是唯一可行的方法。阳离子交换容量的实验测定在多数情况下都是用pH为7的醋酸铵溶液与一定量固体样品混合,使其全部吸附格位被所饱和,然后用其他溶液(例如NaCl溶液)把被吸附的全部交换出来,达到交换平衡后,测定溶液中Na+的减少量,据此便可计算样品的阳离子交换容量。表252列出了一些粘土矿物及土壤的阳离子交换容量,由表可见,与土壤相比,矿物的阳离子交换容量有更大的变化范围。

松散沉积物的阳离子交换容量受到了多种因素的影响,主要有:

(1)沉积物中吸附剂的种类与数量。例如,我国北方土壤中的粘土矿物以蒙脱石和伊利石为主,因此其CEC值较大,一般在20 meq/100 g以上,高者达50 meq/100 g以上;而南方的红壤,由于其有机胶体含量少,同时所含的粘土矿物多为高岭石及铁、铝的氢氧化物,故CEC较小,一般小于20 meq/100 g。

表2-5-2 一些粘土矿物及土壤的阳离子交换容量

(2)沉积物颗粒的大小。一般来说,沉积物的颗粒越小,其比表面积越大,CEC值越高。例如,根据一河流沉积物的粒径及其CEC的实测结果,随着沉积物的粒径为从4.4μm增至1000μm,其CEC从14~65 meq/100 g变到4~20 meq/100 g,最终减小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般来说,随着水溶液pH值的增加,土壤表面的可变负电荷量增多,其CEC相应增加;相反,随着水溶液pH值的减小,土壤表面的可变负电荷量不断减少,其CEC也随之减小。

2.5.2.2 阳离子交换反应及平衡

阳离子交换反应的一般形式可写为:

水文地球化学

式中:Am+、Bn+表示水溶液中的A、B离子;AX、BX表示吸附在固体表面的A、B离子。上述反应的平衡常数可写为:

水文地球化学

式中:a标记溶液中组分的活度;{}表示表示吸附在固体表面上的离子的活度。对于水溶液中的离子,其活度可使用表2-1-1中的公式进行计算;但对于吸附在固体表面上的离子,其活度的计算至今还没有满意的方法。目前主要采用两种替代的方法来处理这一问题,一种是Vanselow惯例,另一种是Gaines-Thomas惯例。Vanselow惯例是由Vanselow于1932年提出的,他建议使用摩尔分数来代替式(2-5-7)中的{AX}和{BX}。若固体表面仅吸附了A离子和B离子,在一定重量(100 g)的吸附剂表面A、B的含量(mmol)依次为qA和qB,则吸附剂表面A、B的摩尔分数分别为:

水文地球化学

显然,xA+xB=1。这样式(2-5-7)可改写为:

水文地球化学

Gaines-Thomas惯例是由Gaines和Thomas于1953年提出的,他们建议采用当量百分数来代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分别表示吸附剂表面A、B的当量百分数,则有:

水文地球化学

同样,yA+yB=1,这样式(2-5-7)变为:

水文地球化学

目前,这两种惯例都还在被有关的研究者所使用,各有优点,互为补充。事实上,离子交换反应的平衡常数并不是一个常数,它往往随着水溶液的成分、pH值及固体表面成分的变化而变化,因此许多研究者认为将其称为交换系数(Exchange Coefficient)或选择系数(Selectivity Coefficient)更合适一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知两种不同离子与同一种离子在某种吸附剂中发生交换反应的交换系数,则可计算出这两种离子发生交换反应的交换系数。例如,若在某种吸附剂中下述反应:

水文地球化学

交换系数分别为KCa-Na和KK-Na,则在该吸附剂中反应:

水文地球化学

的交换系数为:

水文地球化学

这是因为(以Vanselow惯例为例):

水文地球化学

故有:

水文地球化学

表2-5-3列出了不同离子与Na+发生交换反应的交换系数(Vanselow惯例),据此便可按照上述的方法求得这些离子之间发生交换反应时的交换系数。

需要说明的是,在表2-5-3中,I离子与Na+之间交换反应的反应式为:

水文地球化学

表2-5-3 不同离子与Na+发生交换反应时的交换系数

其交换系数的定义式如下:

水文地球化学

【例】在某地下水系统中,有一段含有大量粘土矿物、因此具有明显阳离子交换能力的地段,假定:

(1)该地段含水层的阳离子交换容量为100 meq/100 g,含水层中的交换性阳离子只有Ca2+和Mg2+,初始状态下含水层颗粒中Ca2+、Mg2+的含量相等;

(2)在进入该地段之前,地下水中的Ca2+、Mg2+浓度相等,均为10-3 mol/L;

(3)含水层的孔隙度为n=0.33,固体颗粒的密度为ρ=2.65 g/cm3

(4)含水层中发生的阳离子交换反应为:

水文地球化学

不考虑活度系数的影响,其平衡常数(Vanselow惯例)为:

水文地球化学

试使用阳离子交换平衡关系计算,当地下水通过该地段并达到新的交换平衡后,水溶液中及含水层颗粒表面Ca2+、Mg2+浓度的变化。

【解】:设达到新的交换平衡后,含水层颗粒中Ca2+的摩尔分数为y、水溶液中Ca2+的浓度为x(mmol/L),则这时含水层颗粒中Mg2+的摩尔分数为1-y、水溶液中Mg2+的浓度为2-x(mmol/L),故有:

水文地球化学

整理得:

水文地球化学

已知含水层的CEC=100 meq/100g,因此对于二价阳离子来说,含水层颗粒可吸附的阳离子总量为50 mmol/100 g=0.5 mmol/g。若用z表示达到交换平衡后1 g含水层颗粒中Ca2+的含量,则有:

水文地球化学

以式(2-5-25)带入式(2-5-24)得:

水文地球化学

为了计算上述变化,需要对1 L水所对应的含水层中Ca2+的质量守恒关系进行研究。已知含水层的孔隙度为0.33,显然在这样的含水层中,1 L水所对应的含水层颗粒的体积为0.67/0.33(L),相应的含水层颗粒的质量为:

水文地球化学

故吸附作用前后1 L水所对应的含水层中Ca2+的质量守恒关系为:

水文地球化学

式中的0.25为吸附作用前1 g含水层颗粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化学

以式(2-5-26)带入式(2-5-28)并整理得:

水文地球化学

这是一个关于z的一元二次方程,求解该方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得达到新的交换平衡后含水层颗粒中Ca2+的摩尔分数为0.5001254,水溶液中Ca2+的浓度为0.75 mmol/L,故这时含水层颗粒中Mg2+的摩尔分数为0.4998746、水溶液中Mg2+的浓度为1.25 mmol/L。由此可见,地下水通过该粘性土地段后,尽管Ca2+、Mg2+在含水层颗粒中的含量变化很小,但它们在地下水中的含量变化却较大,Mg2+从原来的1 mmol/L增加到了1.25 mmol/L,Ca2+则从原来的1 mmol/L减少到了0.75 mmol/L。

2.5.2.3 分配系数及离子的吸附亲和力

除了交换系数,还有一个重要的参数需要介绍,这就是分配系数(Separation Factor)(Benefield,1982)。对于反应(2-5-6),它被定义为:

水文地球化学

式中cA和cB分别为水溶液中A、B离子的摩尔浓度。显然,若不考虑活度系数的影响,对于同价离子间的交换反应,QA-B=KA-B。式(2-5-29)可改写为:

水文地球化学

由式(2-5-30)可见,QA-B反映了溶液中B与A的含量之比与吸附剂表面B与A的含量之比之间的相对关系。当QA-B=1时,说明达到交换平衡时B与A在水溶液中的比例等于其在吸附剂表面的比例,因此对于该吸附剂,A和B具有相同的吸附亲和力;当QA-B>1时,说明达到交换平衡时B与A在水溶液中的比例大于其在吸附剂表面的比例,因此A与B相比具有更大的吸附亲和力;当QA-B<1时,说明达到交换平衡时B与A在水溶液中的比例小于其在吸附剂表面的比例,因此B与A相比具有更大的吸附亲和力。

事实上,即使对于同一阳离子交换反应,其分配系数也会随着水溶液性质的变化而变化(Stumm and Morgan,1996)。图2-5-5给出了Na—Ca交换反应的分配系数随Na+浓度的变化。沿着图中的虚线,QNa-Ca=1,这时Na+和Ca2+具有相同的吸附亲和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附剂中的比例要远大于其在水溶液中的比例,因此在这种情况下Ca2+具有更强的吸附亲和力。随着Na+浓度的增大,Ca2+的吸附亲和力逐渐减弱,Na+的吸附亲和力则逐渐增强,当[Na+]=2 mol/L时,Na+已经变得比Ca2+具有更强的吸附亲和力。Na—Ca交换反应分配系数的这种变化对于解释一些实际现象具有重要的意义,根据这种变化,我们可以推断淡水含水层中通常含有大量的可交换的Ca2+,而海水含水层中通常含有大量的可交换的Na+。这种变化关系也解释了为什么硬水软化剂能够选择性地去除Ca2+,同时通过使用高Na+浓度的卤水溶液进行冲刷而再生。

图2-5-5 溶液中Ca2+的含量对吸附作用的影响

根据离子交换反应的分配系数,可以定量地评价离子的吸附亲和力。一般来说,离子在土壤中的吸附亲和力具有下述的规律:

(1)高价离子比低价离子具有更高的吸附亲和力。例如,Al3+>Mg2+>Na+;>。这是因为离子交换反应从本质上说是一个静电吸引过程,离子价越高,所受到的静电吸引力就越大,它就越容易被吸附剂所吸附。

(2)同价离子的吸附亲和力随着离子水化半径的减小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。这是因为离子的水化半径越小,它越容易接近固体表面,从而也就越易于被固体所吸附。

Deutsch(1997)根据Appelo和Postma(1994)的资料,对二价阳离子的吸附亲和力进行了研究,他所得到了吸附亲和力顺序如下:

水文地球化学

在常见的天然地下水系统中,Ca2+和Mg2+通常为地下水中的主要阳离子,它们在水溶液中相对较高的含量将使其成为含水层颗粒表面的主要吸附离子,尽管一些微量元素可能更紧密地被吸附在含水层颗粒表面上。但在污染地下水系统中,若吸附亲和力更强的Pb2+和Ba2+的含量与Ca2+、Mg2+的含量在同一水平上,则含水层颗粒表面的主要吸附离子将变为Pb2+和Ba2+,这将大大地影响Pb2+和Ba2+在地下水中的迁移能力。

综合来讲,阳离子和阴离子的吸附亲和力顺序分别为(何燧源等,2000):

水文地球化学

可见,阳离子中Li+和Na+最不易被吸附,阴离子中Cl-和最不易被吸附。

离子交换对地下水质产生重要影响的一种常见情况就是海水入侵到淡水含水层中。当在沿海地带大量抽取含水层中的淡水时,海水将对含水层进行补给。初始状态下含水层颗粒表面吸附的主要是Ca2+和Mg2+,海水中的主要阳离子为Na+,阴离子为Cl-。这样入侵的海水将导致含水层中发生下述的阳离子交换反应:

水文地球化学

由于Cl-通常不易被吸附,也不参与其他的水岩作用过程。所以相对于Cl-来说,该过程将使得Na+的迁移能力降低。

地下水系统中另一种常见的情况与上述过程相反,这就是Ca2+置换被吸附的Na+,反应式如下:

水文地球化学

人们在大西洋沿岸的砂岩含水层(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉积盆地中(Thorstenson等,1979;Henderson,1985)均发现了这种天然的软化过程。该反应发生的前提条件是:含水层中含有碳酸盐矿物,CO2的分压较高,含水层颗粒中含有大量的可交换的Na+

⑸ 含蛭石晶层间层矿物的阳离子交换容量及酸浸研究

彭同江 刘福生 张宝述 孙红娟

(西南科技大学矿物材料及应用研究所,四川绵阳 621010)

摘要 对采自新疆尉犁蛭石矿、河南灵宝-陕西潼关蛭石矿的工业蛭石矿物样品进行了可交换性阳离子、交换容量和酸处理试验研究。结果发现新疆尉犁蛭石矿金云母-蛭石中的可交换性阳离子主要为Na和Ca2+,其次有Mg2+和K、Ba2+和Sr2+。而河南灵宝-陕西潼关蛭石矿工业蛭石样品主要为Ca2+和Mg2+,其次为Na、K等。金云母-蛭石和绿泥石-蛭石间层矿物的阳离子交换容量随间层结构中蛭石晶层的含量增加而增大,一般在56.92~98.95 m mol/100 g之间,仅为蛭石最大阳离子交换容量的一半。金云母-蛭石样品阳离子交换容量大小与K2O含量呈负相关关系,与(Na2O+CaO)含量呈正相关关系。层间可交换性阳离子的氧化物CaO和Na2O的酸浸取率最高,层间不可交换性阳离子的氧化物 K2O次之,八面体中阳离子的氧化物MgO、Fe2O3和Al2O3具有较高的酸浸取率,而四面体阳离子的氧化物SiO2的酸浸取率最低;金云母-蛭石间层矿物中蛭石晶层含量高的样品酸浸取率高,金云母-蛭石间层矿物的耐酸蚀性能不如金云母。

关键词 金云母-蛭石;间层矿物;阳离子交换容量;酸浸取物;酸浸取率。

第一作者简介:彭同江,男,1958年4月出生,博士,教授,矿物晶体化学专业。E-mail:[email protected]

一、含蛭石晶层间层矿物的阳离子交换容量

(一)原理

根据工业蛭石样品的化学成分研究,蛭石晶层中可交换性阳离子的种类主要有:K、Na、Ca2+、Mg2+、Ba2+、Sr2+等。用醋酸铵(NH4Ac)作为淋洗剂,

离子可将工业蛭石中的可交换性阳离子交换出来:

中国非金属矿业

相关系数为0.90。

图1 金云母-蛭石样品阳离子交换容量(CEC) 随K2O 和Na2O+CaO 含量(质量分数) 的变化

可以看出,随着K2O含量的增加,样品的阳离子交换容量减小;随(Na2O+CaO)含量的增加,阳离子交换容量增加。从而表明,随K2O含量的增加,蛭石晶层的含量降低;随(Na2O+CaO)含量的增加,蛭石晶层的含量增加。由此可以得出,在金云母变化为金云母-蛭石的过程中,溶液中富含Na和Ca2+离子组分。

对于金云母-蛭石样品来说,我们发现其阳离子交换容量的大小与样品的粉末X射线衍射谱特征有一定关系。一般说来,阳离子交换容量小于75 m mol/100 g的样品,其粉末X射线衍射图上发现有较强的金云母的衍射峰;高于95 m mol/100 g样品,发现有蛭石的衍射峰。这进一步表明对样品阳离子交换容量的贡献主要来自于间层结构中蛭石晶层的含量。蛭石晶层的含量越高,间层矿物的阳离子交换容量越大。

二、酸浸实验研究

(一)酸处理实验与酸浸取物分析

酸处理试验步骤与实验方法如下:

1)将烧杯在100℃下烘干1 h后称重。

2)分别在烧杯中加0.5 g样品。

3)将盛样品的烧杯放在烘箱中在100℃下烘干2 h。

4)从烘箱中取出烧杯在干燥器中凉至室温后称重,计算出样品除去吸附水后的质量。

5)将烧杯中分别加入0.5 mol/L,1.0 mol/L,1.5 mol/L,2.0 mol/L稀盐酸30 mL,搅拌均匀后静止作用12 h。

6)过滤、洗涤、定溶后用原子吸收光谱法测定滤液中K、Na、Mg、Si、Fe、Al的含量。

利用上述方法对所选的3个样品进行了酸处理和酸浸取物的分析。测定结果转换成氧化物百分含量后列入表2中。

表2 不同浓度的稀盐酸对样品不同氧化物的腐蚀量(wB/%)

注:X为盐酸溶液的浓度,单位mol/L。

(二)酸蚀量与酸浸取物的变化规律

由表2可以看出,在不同盐酸浓度溶液的情况下金云母样品主要氧化物的酸蚀量都大大低于金云母-蛭石样品主要氧化物的酸蚀量,这表明金云母的耐酸性能高于金云母-蛭石间层矿物。

金云母-蛭石间层矿物两个样品不同氧化物的酸浸取率大致相同。按氧化物的酸浸取率的大小可分为三种情形。

(1)处于蛭石晶层层间域中的水化阳离子

刘福生等(2002)给出的金云母-蛭石间层矿物样品的可交换性阳离子氧化物的含量(不考虑H2O)分别为,Wv-6a:CaO 0.612%,Na2O 1.30%;Wv-16:CaO 0.394%,Na2O 1.79%,考虑所含H2O后样品的可交换性阳离子氧化物的含量分别为,Wv-6a:CaO 0.580%,Na2O 1.231%;Wv-16:CaO 0.375%,Na2O 1.702%,这些数值与表2中CaO和Na2O的腐蚀量非常相近(其差别来源于对样品进行不同的处理及分析的误差)。由于水化阳离子与结构层间的结合最弱,故CaO和Na2O的酸浸取率最高,其中CaO几乎全部浸出,Na2O的浸取率在82.27%~89.24%之间。

(2)在结构中以离子键相结合的阳离子

在结构中与阴离子呈离子键结合的阳离子主要有:K、Mg2+、Fe2+、Al3+。相应氧化物酸浸取率分别为 K2O 6.33%~13.80%,Al2O33.67%~12.45%,Fe2O34.44%~11.75%,MgO 3.44%~10.03%。离子键的结合力高于蛭石晶层层间水化阳离子与结构层之间的结合力,而又小于硅氧四面体内的共价键结合力,因此,以离子键结合的阳离子氧化物的酸浸取率低于层间水化阳离子氧化物,而又高于以共价键结合的阳离子氧化物。

(3)在结构中以共价键结合的阳离子

在结构中与阴离子呈共价键结合的阳离子只有Si4+,SiO2的酸浸取率最低,为2.15%~3.02%。

蛭石晶层的水化阳离子最容易被酸淋滤出来,即使在低浓度的盐酸溶液中,且它们的酸蚀量随盐酸浓度的增大变化很小;其次是处于金云母晶层的层间K离子。MgO、Fe2O3和Al2O3也具有较高的酸蚀量百分数,其中MgO、Al2O3的酸蚀量随盐酸浓度的增大而急剧增大,Fe2O3酸蚀量随盐酸浓度的增大而缓慢增大;SiO2的酸蚀量最低,且酸蚀量随盐酸浓度的增大变化很小。

金云母-蛭石样品与金云母样品相比较,层间阳离子、八面体阳离子、四面体阳离子都具有较高的氧化物酸蚀量百分数。这表明金云母-蛭石的结构稳定性较金云母差,即使是金云母-蛭石间层结构中的金云母晶层也是如此。这一结果与热分析所得出的结果(彭同江等,1995)是完全一致的。

(三)金云母-蛭石间层矿物酸蚀机理

对于蛭石及含蛭石晶层的间层矿物酸蚀机理的研究不多。但对于蒙脱石酸活化机理研究已经很深入,并得出比较一致的结论。即当用酸处理蒙脱石时 蒙脱石层间的可交换性阳离子(如Ca2+、Mg2+、Na、K等)可被氢离子交换而溶出,同时随之溶出的还有蒙脱石八面体结构中的铝离子及羟基。因此,活化后的蒙脱石比表面积增大,形成多孔活性物质,使其吸附性及离子交换性进一步增强(张晓妹,2002)。下面结合前面的试验与分析结果对金云母-蛭石间层矿物酸蚀机理进行讨论。

1.酸浸取反应机理

金云母-蛭石间层矿物中蛭石晶层的结构和阳离子占位与蒙脱石的大致相同,只是蛭石晶层八面体中的阳离子主要是Mg2+,而蒙脱石则主要是Al3+,而与蛭石晶层相间排列的还有金云母晶层。因此,金云母-蛭石间层矿物的酸蚀机理可以看成是蛭石晶层和金云母晶层分别与酸进行作用。

蛭石晶层与盐酸产生离子交换反应和酸腐蚀反应,后者导致结构的局部破坏。其中离子交换反应是氢离子将样品中蛭石晶层的层间可交换阳离子如K、Na、Ca2+、Mg2+等置换出来。

氢质蛭石晶层在酸的继续作用下结构产生局部破坏,溶出八面体中的阳离子及羟基,硅氧四面体转化为偏硅酸。

金云母晶层与盐酸产生酸腐蚀反应,产生局部结构被破坏,溶出层间阳离子、八面体中的阳离子及羟基,硅氧四面体转化为偏硅酸。

上述反应可归三类:H离子与蛭石晶层层间可交换阳离子的交换反应;H离子与结构中八面体片上的(OH)-和四面体片中Si-OH上的(OH)-中和形成H2O的反应;阳离子从结构上解离形成盐和偏硅酸的反应。

2.酸浸取规律的晶体化学分析

金云母-蛭石间层矿物属三八面体层状硅酸盐矿物。由金云母的晶体结构特点可知,结构中阳离子与阴离子结合有两种化学键,即离子键和共价键。其中,四面体阳离子(主要为 Si4+)与阴离子(氧)的化学键主要为共价键,因而在结构中的联结力最强;八面体阳离子(主要为Mg2+)以离子键与阴离子(氧和羟基)结合,联结力相对较强;层间阳离子位于层间域内与底面氧以弱离子键结合,联结力较弱。金云母-蛭石间层矿物结构中金云母晶层的情形与金云母相类似,蛭石晶层的八面体和四面体两种位置的化学键特点与金云母的情形也相类似。在金云母-蛭石间层结构中联结力相对最弱的位置是蛭石晶层层间水化阳离子的位置,由于水分子的存在,层间阳离子与结构层的联结力比金云母的更弱。

上述晶体化学特点决定了四面体阳离子Si4+的酸浸取率最小,八面体阳离子Mg2+、Al3+、Fe2+酸浸取率较大,层间可交换性阳离子Na、Ca2+最大。

因此,金云母-蛭石间层矿物样品不同氧化物酸浸取率的大小取决于晶体结构的强度和阴阳离子之间的化学键强度的大小。

3.酸蚀作用历程与结构破坏

根据酸蚀试验和分析结果,结合金云母-蛭石的晶体结构特点,得出金云母-蛭石酸蚀作用和结构破坏的过程如下。

酸蚀过程中各种酸蚀反应首先沿矿物颗粒边缘和结构缺陷部位进行。H离子与层间可交换阳离子产生交换反应,形成氢质蛭石,交换出来的阳离子Na、Ca2+、K等形成盐;H离子与八面体中的(OH)-作用,形成H2O,其结果导致与(OH)-呈配位关系的Mg2+和其他阳离子随(OH)-的解离而裸露于外表面并变得不稳定,从而脱离结构表面并进入溶液形成盐;H离子与四面体片边缘的Si-O(或OH)作用,中和后形成H2O,并使Si4+裸露,进一步使Si4+解离并形成偏硅酸配阴离子;伴随着H离子的这些反应,还会导致金云母晶层边缘的层间阳离子(主要为K)从结构中解离出来;整个结构的破坏程度和酸蚀量随H浓度增大和反应时间的增长而增大。酸蚀反应主要发生在结构层的边缘、层间域和结构缺陷部位。

X射线分析结果表明,金云母-蛭石间层矿物具有较好的耐酸蚀性能,层间可交换性阳离子的氢交换反应和边缘与缺陷部位离子的解离和浸取,没有导致金云母-蛭石间层结构的破坏。但结合酸浸取物和酸浸取残留物的研究,金云母-蛭石间层矿物的耐酸蚀性能不如金云母。

三、结论

金云母-蛭石间层矿物具有良好的阳离子交换性。因此,它可用于环保,吸附水中的重金属离子或有机污染物,回收有用物质;在农业上用作储水和储肥载体,改良土壤等等。含蛭石晶层矿物结构中的Ca、Mg、K、Fe等元素在酸性条件下易被淋滤出来。因此,它可在农业上用作储水和储肥载体,同时又是长效肥料。一方面可为植物提供K、Mg、Ca、Si、Fe等有用元素;另一方面可以起到改良土壤的作用,即增加土壤的保水,保肥性能,降低土壤的密度,提高土壤的透气性能等等。

酸浸取的结果导致金云母-蛭石间层矿物中蛭石晶层的可交换性阳离子几乎全部被淋滤交换出来,同时也在结构层边缘和结构缺陷部位淋滤出其他组分。其结果导致金云母-蛭石间层矿物比表面积增大,形成多孔活性物质,使其吸附性及离子交换性进一步增强(Suquet et al.,1991;Suquet et al.,1994)。因此,酸处理后的金云母-蛭石间层矿物可用于环保方面作污水处理剂。

An Experimental Study on Cation Exchange Capacity and Acid Soaking of Vermiculite Containing Interstratified Minerals

Peng Tongjiang,Liu Fusheng,Zhang Baoshu,Sun Hongjuan

(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)

Abstract:The changeable cations,the exchange capacity and acid erodibility of instrial vermiculite samples from Weli Mine,Xinjiang Autonomous Region,Lingbao Mine,Henan Province,and Tongguan Mine,Shanxi Province are studied.It is found that the changeable cations of phlogopite-vermiculite samples from Weli Mine are mainly Na,Ca2+,and Mg2+,K,Ba2+,Sr2+in the next place.The changeable cations of phlogopite vermiculite samples from Tongguan Mine are mainly Mg2+,Ca2+,and Na,Kin the next place.The cation exchange capacity of phlogopite-vermiculite and chlorite-vermiculite increases with the increase of content of ver miculite crystal layer in interstratified structure.The cation exchange capacity is commonly between 56.92 m mol/100 g and 98.95 m mol/100 g,which is only a half of the maximal value of cation exchange capacity of vermiculite.The cation exchange capacity of phlogopite-vermiculite is negatively related to the content of K2O and positively related to the content of Na2O and CaO.The acid soak-out ratios of CaO and Na2O are the highest and that of K2O is lower slightly,the acid soak-out ratios of MgO,Fe2O3and Al2O3are relatively higher,but the acid soak-out ratios of SiO2are the lowest.The acid corroding contents of the samples with more vermiculite layer are higher.The acid-resistant property of the phlogopite-vermiculite interstratified mineral is not as good as the phlogopite.

Key words:phlogopite-vermiculite,interstratified minerals,cation exchange capacity,acid soak-out-substances,acid soak-out-ratio.

⑹ 阳离子交换量的介绍

土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度和pH、淋洗方法等,必须严格掌握操作技术才能获得可靠的结果。 联合国粮农组织规定用于土壤分类的土壤分析中使用经典的中性乙酸铵法或乙酸钠法。中性乙酸铵法也是我国土壤和农化实验室所采用的常规分析方法,适于酸性和中性土壤。最近的土壤化学研究表明,对于热带和亚热带的酸性、微酸性土壤,常规方法由于浸提液pH值太低和离子强度太高,与实际情况相差较大,所得结果较实际情况偏高很多。新方法是将土壤用BaCl2 饱和,然后用相当于土壤溶液中离子强度那样浓度的BaCl2溶液平衡土壤,继而用MgSO4交换Ba测定酸性土壤阳离子交换量。 石灰性土壤阳离子交换量的测定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前应用的较多、而且认为较好的是NH4Cl–NH4OAc法,其测定结果准确、稳定、重现性好。NaOAc法是目前国内广泛应用于石灰性土壤和盐碱土壤交换量测定的常规方法。 随着土壤分析化学的发展,现在已有了测定土壤有效阳离子交换量的方法。如美国农业部规定用求和法测定阳离子交换量;对于可变电荷为主的热带和亚热带地区高度风化的土壤,国际热带农业研究所建议测定用求和法土壤有效阳离子交换量(ECEC);最近国际上又提出测定土壤有效阳离子交换量(ECEC或Q+,E)和潜在阳离子交换量(PCEC或Q+,P)的国际标准方法,如ISO 11260:1994(E)和ISO 13536:1995(P),这两种国际标准方法适合于各种土壤类型。

阅读全文

与永久电荷与阳离子交换量相关的资料

热点内容
污水处理的数学模型的构建 浏览:249
混凝土污水处理池施工 浏览:618
北京高盐废水费用多少 浏览:710
饮水机保温表怎么设置 浏览:643
净水器种草视频怎么拍 浏览:875
饮水机一年不用了怎么办 浏览:597
污水处理厂控制盒怎么接线 浏览:51
wireshark怎么过滤mac 浏览:276
废水处理可以移走多少氧气 浏览:712
300污水管道流量是多少 浏览:907
电离子去痣开始图片 浏览:658
贵阳污水泵有哪些品牌 浏览:285
开个净水厂需要些什么 浏览:240
05奥德赛汽油滤芯怎么拆 浏览:803
可更换空气过滤器 浏览:557
江苏电镀含氰废水处理价格如何 浏览:564
如何净化生活污水养殖 浏览:512
树脂热线性膨胀系数 浏览:26
污水处理厂设备单机运行方案 浏览:878
离子交换吸附原 浏览:330