① 离子交换器的工作原理
工作原理就是离子的交换。
运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+)
阴树脂(OH-R)+(X-)-->:(X-R)+(OH-)
其中M+为金属离子,X-为阴离子。
再生过程为其逆过程。
离子交换器的失效控制
离子交换除盐水处理最简单的流程为 阳床-阴床 组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括 阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。
1 检测和控制原理
强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R为树脂基团):
An+ +nRH=RnA+n H+
HCO3- + H+ =H2O+CO2↑
强碱性阴树脂对水中各种阴离子的吸附顺序为:SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团):
Bm- +mROH=RmB+mOH-
2 控制点和控制方法
由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。
以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。
(1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。
3 出水水质
原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/L。
② 为什么加氨系统的电导率监测仪表要装氢离子交换器
装氢离子交换器是为了将水质中的Ca2+、Mg2+、Na等阳离子置换成H+。
离子交换器只是一个装树脂的容器而已,主要是靠离子交换器中装的树脂将水质颂档中有的Ca2+、Mg2+、并厅Na等阳离子置换成H+后,用在线电导率化学分析表实时测量氢电导含量。
电导率绝樱隐测定仪是一款面向于医用多效蒸馏水系统,锅炉底水、凝结水,热交换系统,机械零部件的工业热清洗等。
③ 氢氧型离子交换树脂含水量测定过程注意事项有哪些
1 原理
将吸收了平衡水量的离子交换树脂样品,用离心法除去颗粒外部的水分后,称取一定量的样品,用烘干法除去内部水分,由质量的减少计算树脂的含水量。
2 仪器和设备
2.1玻璃离心过滤器:如下图。
2.2电动离心沉淀机:0~4000r/min(可调);
50mL离心管4支。
2.3烘箱:最高温度200℃,温度波动±2℃。
2.4架盘天平:感量0.1g,最大称量100g。
2.5干燥器:ф250mm,内放硅胶干燥剂。
2.6称量瓶:ф50mm×30mm。
2.7秒表:分度0.02 s。
2.8分析天平:感量0.1mg。
3 试验步骤
3.1取样按GB/T 5475—1985《离子交换树脂取样方法》进行。
3.2试样的预处理按GB/T 5476—1996《离子交换树脂预处理方法》进行。需要将树脂转为某一型态时,可将相应的电解质溶液通过上述预处理后的样品。
3.3将预处理好的树脂样品5~15mL装入离心过滤管内,在另一对称管内装入某一样品或水,然后放在架盘天平两边称量,用电导率(25℃)小于2μs/cm的少量纯水调整至两管质量相同。
3.4将离心过滤管放至电动离心沉淀机内,在2000±200 r/min下离心5 min,用秒表计时。
3.5取出离心过滤管,将样品倒入称量瓶内,盖严。
注:取出离心过滤管时,应防止分离出来的游离水重新进到树脂层中。
3.6 在已恒重的两个称量瓶中分别称入上述树脂样品0.9g~1.3g,准确至1mg。
3.7将称量瓶敞盖放入烘箱中,在105℃±3℃下烘2 h。
3.8在烘箱中,将称量瓶盖严,取出置于干燥器内,冷却至室温(约20min~30min),在分析天平上称量。
4 允许差
同一实验室内允许差为0.29 %;
不同实验室间允许差为1.09 %。
④ 离子交换树脂的还原方式
离子交换树脂的还原一般是使用再生剂进行再生,从而达到还原的目的。
阳离子交换树脂的再生方法:
首先要将阳离子交换树脂床里面的水放空,然后关闭全部阀门,只需要打开进酸阀、上排阀,然后将酸泵打开,然后放入酸液,在液面超过树脂20厘米以上,打开下排,流速和进酸速度相同,流量一般在600-1000L/H左右,酸洗时间最好不要低于40分钟,酸洗之后可以直接清洗树脂,首先打开砂过滤和精密过滤,然后放掉酸液,再打开上进和下进,清除掉残留的酸液,然后关闭树脂床下进阀,开始进行清洗,清洗时打开树脂床上排阀,阳床内的水须始终漫过树脂,不要使树脂失水。清洗到下排阀出水接近中性为止。
对于污染较严重的树脂,可用碱性食盐溶液反复处理,一些报道有提到:某些络合剂、沉淀剂、增溶剂、氧化剂以及外力等能够改变树脂污染物的化学物理环境。在盐碱复苏液的基础上,加入一定浓度的腐殖酸络合剂、腐殖酸增溶剂、有机物的抗氧化剂及抗静电作用屏蔽剂等,阴离子吸附树脂复苏效果有所提高。当采用上述方式再生后制水量任无法达到原来制水置一半时,应考虑更换新树脂。
阳离子交换树脂再生剂:
1.再生剂的纯度
再生用的药品质量对阳离子交换树脂的再生效果有很大的影响,阴阳离子交换树脂再生采用高纯碱有利于对阴树脂的再生。根据离子交换平衡原理,对工业碱与高纯碱质量的理论分析得出,采用高纯碱再生时,其阴床出水Cl一含量仅为工业碱再生时的1/46。实践证明,采用高纯碱再生时,树脂的再生度提高了约77%,树脂的工作交换容量提高了约13%,同时设备的周期制水量提高了约16 %。
2.再生剂量
离子交换是可逆的,离子交换剂失效后理论上再生1 mol离子量需要再生剂的摩尔量称为再生比耗(或称再生水平),以100%纯度再生剂表示。也可用实际再生剂的消耗量与理论需要量的比值来表示,如强碱阴树脂需要100%纯度NaOH的再生比耗为1.5,即实际再生lmol离子量需要的NaOH量1.5×40是60g(1molNaOH是40g),也可以说强碱阴树脂需要100%纯度NaOH的再生比耗(再生水平)为60g/mol。再生比耗与进水水质、树脂质量、再生方式等因数有关。阳离子交换树脂首次再生,其再生剂量应是设计再生剂量的1.5~2倍,逆流再生设备在大反洗后的再生剂量要增加10%-50%。
⑤ 离子交换的基本原理和装置运行方式
离子交换的基本原理和装置运行方式
借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的单元操作。离子交换是可逆的等当量交换反应。下面一起来了解一下离子交换的基本原理和装置运行方式:
水处理中主要采用离子交换树脂和磺化煤用于离子交换。其中离子交换树脂应用广泛,种类多,而磺化煤为兼有强酸型和弱酸型交换基团的阳离子交换剂。
离子交换树脂按结构特征,分为:凝胶型、大孔型和等孔型;
按树脂母体种类,分为:苯乙烯系、酚醛系和丙烯酸系等;
按其交换基团性质,分为:强酸型、弱酸型、强碱型和弱碱型。
⑴离子交换树脂的构造
是由空间网状结构骨架(即母体)与附属在骨架上的许多活性基团所构成的不溶性高分子化合物。活性基团遇水电离,分成两部分:固定部分,仍与骨架牢固结合,不能自由移动,构成所谓固定离子,活动部分,能在一定范围内自由移动,并与其周围溶液中的其他同性离子进行交换反应,称为可交换离子。
⑵基本性能
①外观
呈透明或半透明球形,颜色有乳白色、淡黄色、黄色、褐色、棕褐色等,
②交联度
指交联剂占树脂原料总重量的百分数。对树脂的许多性能例如交换容量、含水率、溶胀性、机械强度等有决定性影响,一般水处理中树脂的交联度为7%~10%.
③含水率
指每克湿树脂所含水分的百分率,一般为50%,交联度越大,孔隙越小,含水率越少。
④溶胀性
指干树脂用水浸泡而体积变大的现象。一般来说,交联度越小,活性基团越容易电离,可交换离子的水合离子半径越大,则溶胀度越大;树脂周围溶液电解质浓度越高,树脂溶胀率就越小。
在生产中应尽量保证离子交换器有长的工作周期,减少再生次数,以延长树脂的使用寿命。
⑤密度
分为干真密度、湿真密度和湿视密度
⑥交换容量
是树脂最重要的性能,是设计离子交换过程装置时所必须的数据,定量地表示树脂交换能力的大小。分为全交换容量和工作交换容量。
⑦有效PH范围
由于树脂的交换基团分为强酸强碱和弱酸弱碱,所以水的PH值对其电离会产生影响,影响其工作交换容量。弱碱只能在酸性溶液中以及弱酸在碱性溶液中有较高的交换能力。
⑧选择性
即离子交换树脂对水中某种离子能优先交换的性能。除与树脂类型有关外,还与水中湿度和离子浓度有关。
⑨离子交换平衡
离子交换反应是可逆反应,服从质量作用定律和当量定律。经过一定时间,离子交换体系中固态的树脂相和溶液相之间的离子交换反应达到平衡,其平衡常数也称为离子交换选择系数。降低反应生成物的浓度有利于交换反应的进行。
⑩离子交换速率
主要受离子交换过程中离子扩散过程的影响。
其他性能:如溶解性、机械强度和耐冷热性等。离子交换树脂理论上不溶于水,机械强度用年损耗百分数表示,一般要求小于3%~7%/年。另外,温度对树脂机械强度和交换能力有影响。温度低则树脂的机械强度下降,阳离子比阴离子耐热性能好,盐型比酸碱型耐热好。
⑶树脂层离子交换过程
以离子交换柱中装填钠型树脂,从上而下通以含有一定浓度钙离子的硬水为例,以交换柱的深度为横坐标,以树脂的饱和度为纵坐标,可绘得某一时刻的饱和度曲线。就整个交换过程而言,树脂层的变化可分为三个阶段。
离子交换装置按运行方式不同,分为固定床和连续床
⑴固定床的构造与压力滤罐相似,是离子交换装置中最基本的也是最常用的一种型式,其特点是交换与再生两个过程均在交换器中进行,根据交换器内装填树脂种类及交换时树脂在交换器中的.位置的不同,可分为单层床、双层床和混合床。
单层床是在离子交换器中只装填一种树脂,如果装填的是阳树脂,称为阳床;如果装填的是阴树脂,称为阴床。
双层床是离子交换器内按比例装填强、弱两种同性树脂,由于强、弱两种树脂密度的不同,密度小的弱型树脂在上,密度大的强型树脂在下,在交换器内形成上下两层。
混合床则是在交换器内均匀混杂的装填阴、阳两种树脂,由于阴、阳树脂混杂,因此原水流经树脂层时,阴、阳两种离子同时被树脂所吸附,其产物氢离子和氢氧根离子又因反应生成水而得以降低,有利于交换反应进行的彻底,使得出水水质大大提高。但其缺点是再生的阴、阳树脂很难彻底分层。于是又发明了三层混床新技术,保证在反洗时将阴、阳树脂分隔开来。
根据固定床原水与再生液的流动方向,又分为两种形式,原水与再生液分别从上而下以同一方向流经离子交换器的,称为顺流再生固定床,原水与再生液流向相反的,称为逆流再生固定床。
顺流再生固定床的构造简单,运行方便,但存在几个缺点:在通常生产条件下,即使再生剂单位耗量二至三倍于理论值,再生效果也不太理想;树脂层上部再生程度高,而下部再生程度差;工作期间,原水中被去除的离子首先被上层树脂所吸附,置换出来的反离子随水流流经底层时,与未再生好的树脂起逆交换反应,上一周期再生时未被洗脱出来的被去除的离子,作为泄漏离子出现在本周期的出水中,所以出水剩余被去除的离子较大;而到了了工作后期,由于树脂层下半部原先再生不好,交换能力低,难以吸附原水中所有被去除的离子,出水提前超出规定,导致交换器过早地失效,降低了工作效率。因此,顺流再生固定床只选用于设备出水较小,原水被去除的离子和含盐量较低的场合。
逆流再固定床的再生有两种操作方式:一是水流向下流的方式,一是水流向上流的方式,逆流再生可以弥补顺流再生的缺点,而且出水质量显著提高,原水水质适用范围扩大,对于硬度较高的水,仍能保证出水水质,所以目前采用该法较多。
总起来说,固定床有出水水质好等优点,但固定床离子交换器存在三个缺点:一是树脂交换容量利用率低,二是在同设备中进行产水和再生工序,生产不连续,三是树脂中的树脂交换能力使用不均匀,上层的饱和程度高,下层的低。
为克服固定床的缺点,开发出了连续式离子交换设备,即连续床。
⑵连续床又分为移动床和流动床
移动床的特点是树脂颗粒不是固定在交换器内,而是处于一种连续的循环运动过程中,树脂用量可减少三分之一至二分之一,设备单位容积的处理水量还可得到提高,如双塔移动床系统和三塔移动床系统。
流动床是运行完全连续的离子交换系统,但其操作管理复杂,废水处理中较少应用。
;⑥ 姘㈢诲瓙浜ゆ崲鍑烘按姘磋川濡備綍鍙樺寲瑕佸叏杩囩▼.璋㈣阿!
濡傛灉鍙杩涜屾阿绂诲瓙浜ゆ崲,涔熷氨鏄闃崇诲瓙浜ゆ崲,鍒欐按涓闄ゆ阿绂诲瓙浠ュ栫殑鎵鏈夐槼绂诲瓙琚娓呴櫎锛
M(+) + HR(s) = MR(s) + H(+)
鐢变簬姘翠腑鐨凥(+)娴撳害浼氬崌楂,鎵浠ユ按琛ㄧ幇閰告э紱浜ゆ崲鍓嶆按涓鐨勯槼绂诲瓙娴撳害瓒婇珮,鍒欎氦鎹㈠悗鐨勬按涓鐨勯吀鎬ц秺寮,pH瓒婂皬.
鐢变簬涓嶇′氦鎹㈠墠绂诲瓙鐨勪环鎬佸備綍,浜ゆ崲鍚庨兘鍙樻垚姝1浠风殑姘㈢诲瓙,鎵浠ユ按涓绂诲瓙鐨勬绘祿搴︽槸澧炲姞鐨(浜屼环绂诲瓙涓涓鍙樹咯,涓変环绂诲瓙涓涓鍙樹花锛,鎵浠ョ數瀵间篃浼氱暐鏈変笂鍗.
姘翠腑鐨勯槾绂诲瓙浠嶇劧瀛樺湪.
⑦ 环保工程师知识点:离子交换
2017环保工程师知识点:离子交换
离子交换法在水的软化和除盐中早已获得广泛的应用,目前已应用在回收和处理工业废水中的有毒物质方面。下面我为大家准备了离子交换的相关知识,欢迎阅读。
1离子交换的基本原理
水处理中主要采用离子交换树脂和磺化煤用于离子交换。其中离子交换树脂应用广泛,种类多,而磺化煤为兼有强酸型和弱酸型交换基团的阳离子交换剂。 离子交换树脂按结构特征,分为:凝胶型、大孔型和等孔型; 按树脂母体种类,分为:苯乙烯系、酚醛系和丙烯酸系等;按其交换基团性质,分为:强酸型、弱酸型、强碱型和弱碱型。
⑴离子交换树脂的构造
是由空间网状结构骨架(即母体)与附属在骨架上的许多活性基团所构成的不溶性高分子化合物。活性基团遇水电离,分成两部 分:固定部分,仍与骨架牢固结合,不能自由移动,构成所谓固定离子,活动部分,能在一定范围内自由移动,并与其周围溶液中的其他同性离子进行交换反应,称为可交换离子。
⑵基本性能
①外观
呈透明或半透明球形,颜色有乳白色、淡黄色、黄色、褐色、棕褐色等,
②交联度
指交联剂占树脂原料总重量的百分数。对树脂的许多性能例如交换容量、含水率、溶胀性、机械强度等有决定性影响,一般水处理 中树脂的交联度为7%~10%。
③含水率
指每克湿树脂所含水分的百分率,一般为50%,交联度越大,孔隙越小,含水率越少。
④溶胀性
指干树脂用水浸泡而体积变大的现象。一般来说,交联度越小,活性基团越容易电离,可交换离子的水合离子半径越大,则溶胀度越大;树脂周围溶液电解质浓度越高,树脂溶胀率就越小。
在生产中应尽量保证离子交换器有长的工作周期,减少再生次数,以延长树脂的使用寿命。
⑤密度
分为干真密度、湿真密度和湿视密度
⑥交换容量
是树脂最重要的性能,是设计离子交换过程装置时所必须的数据,定量地表示树脂交换能力的大小。分为全交换容量和工作交换容 量。
⑦有效PH范围
由于树脂的交换基团分为强酸强碱和弱酸弱碱,所以水的PH值对其电离会产生影响,影响其工作交换容量。弱碱只能在酸性溶液中以及弱酸在碱性溶液中有较高的交换能力。
⑧选择性
即离子交换树脂对水中某种离子能优先交换的性能。除与树脂类型有关外,还与水中湿度和离子浓度有关。
⑨离子交换平衡
离子交换反应是可逆反应,服从质量作用定律和当量定律。经过一定时间,离子交换体系中固态的树脂相和溶液相之间的离子交换反应达到平衡,其平衡常数也称为离子交换选择系数。降低反应生成物的浓度有利于交换反应的进行。
⑩离子交换速率
主要受离子交换过程中离子扩散过程的影响。
其他性能:如溶解性、机械强度和耐冷热性等。离子交换树脂理论上不溶于水,机械强度用年损耗百分数表示,一般要求小于3%~ 7%/年。另外,温度对树脂机械强度和交换能力有影响。温度低则树脂的机械强度下降,阳离子比阴离子耐热性能好,盐型比酸碱型耐热 好。
⑶树脂层离子交换过程
以离子交换柱中装填钠型树脂,从上而下通以含有一定浓度钙离子的硬水为例,以交换柱的深度为横坐标,以树脂的饱和度为纵坐标,可绘得某一时刻的饱和度曲线。就整个交换过程而言,树脂层的变化可分为三个阶段。
2离子交换装置运行方式
离子交换装置按运行方式不同,分为固定床和连续床
⑴固定床的构造与压力滤罐相似,是离子交换装置中最基本的也是最常用的一种型式,其特点是交换与再生两个过程均在交换器中进行,根据交换器内装填树脂种类及交换时树脂在交换器中的位置的不同,可分为单层床、双层床和混合床。单层床是在离子交换器中只装填一种树脂,如果装填的是阳树脂,称为阳床;如果装填的是阴树脂,称为阴床。双层床是离子交换器内按比例装填强、弱两种同性树脂,由于强、弱两种树脂密度的不同,密度小的弱型树脂在上,密度大的强型树脂在下,在交换器内形成上下两层。
混合床则是在交换器内均匀混杂的装填阴、阳两种树脂,由于阴、阳树脂混杂,因此原水流经树脂层时,阴、阳两种离子同时被树 脂所吸附,其产物氢离子和氢氧根离子又因反应生成水而得以降低,有利于交换反应进行的'彻底,使得出水水质大大提高。但其缺点是 再生的阴、阳树脂很难彻底分层。于是又发明了三层混床新技术,保证在反洗时将阴、阳树脂分隔开来。 根据固定床原水与再生液的流动方向,又分为两种形式,原水与再生液分别从上而下以同一方向流经离子交换器的,称为顺流再生 固定床,原水与再生液流向相反的,称为逆流再生固定床。顺流再生固定床的构造简单,运行方便,但存在几个缺点:在通常生产条件下,即使再生剂单位耗量二至三倍于理论值,再生效果 也不太理想;树脂层上部再生程度高,而下部再生程度差;工作期间,原水中被去除的离子首先被上层树脂所吸附,置换出来的反离子 随水流流经底层时,与未再生好的树脂起逆交换反应,上一周期再生时未被洗脱出来的被去除的离子,作为泄漏离子出现在本周期的出水中,所以出水剩余被去除的离子较大;而到了了工作后期,由于树脂层下半部原先再生不好,交换能力低,难以吸附原水中所有被去除的离子,出水提前超出规定,导致交换器过早地失效,降低了工作效率。因此,顺流再生固定床只选用于设备出水较小,原水被去除的离子和含盐量较低的场合。逆流再固定床的再生有两种操作方式:一是水流向下流的方式,一是水流向上流的方式,逆流再生可以弥补顺流再生的缺点,而且出水质量显著提高,原水水质适用范围扩大,对于硬度较高的水,仍能保证出水水质,所以目前采用该法较多。总起来说,固定床有出水水质好等优点,但固定床离子交换器存在三个缺点:一是树脂交换容量利用率低,二是在同设备中进行产水和再生工序,生产不连续,三是树脂中的树脂交换能力使用不均匀,上层的饱和程度高,下层的低。为克服固定床的缺点,开发出了连续式离子交换设备,即连续床。
⑵连续床又分为移动床和流动床
移动床的特点是树脂颗粒不是固定在交换器内,而是处于一种连续的循环运动过程中,树脂用量可减少三分之一至二分之一,设备单位容积的处理水量还可得到提高,如双塔移动床系统和三塔移动床系统。 流动床是运行完全连续的离子交换系统,但其操作管理复杂,废水处理中较少应用。
3离子交换工艺的设计
⑴进水预处理
废水成分复杂,应进行预处理,目的是保障反应器中离子交换树脂交换容量充分得以发挥,并有效延长使用寿命。预处理的对象包括进水的水温、PH值、悬浮物、油类、有机物、引起树脂中毒的高价离子和氧化剂等。
⑵树脂的选用
选择树脂时应考虑交换容量、进水水质和离子交换器的运行方式等,选择合适的树脂。
例如考虑进水水质时,对于只需去除进水中吸附交换能力较强的阳离子,可选用弱酸型树脂,若需去除的阳离子的吸附交换能力较弱,只能选用强酸型阳离子树脂。考虑离子交换器的运行方式时,移动床和流动床要选用耐磨、高机械强度的树脂。对于混床,要选用湿真密度相差较大的阴、阳树脂。另外,不同树脂的交换容量有差异,而同一种树脂的交换容量还受所处理废水的悬浮物、油类、高价金属离子等影响。
⑶掌握工艺设计参数
4离子交换法在水处理中的应用
离子交换法目前废水处理中得到了广泛应用,例如
⑴用于含铬废水的处理
对于废水,经预处理后,可用阳树脂去除三价铬和其他阳离子,用阳树脂去除六价铬,并可回收铬酸,实现废水在生产中的循环使 用。
⑵含锌废水的处理
化纤厂纺丝车间的酸性废水主要含有硫酸锌、硫酸和硫酸钠等,用钠离子型阳树脂交换其中的锌离子,用芒硝再生失效的树脂,即可得到硫酸锌的浓缩液。
⑶电镀含氰废水的处理
阴树脂对络合氰(即氰与金属离子的络合物)的结合力大,所以利用阴离子交换树脂能消除氰化物以及重金属离子的污染,并将其回收利用。
⑷有机废水的处理
如洗涤烟草的过程中产生的含有烟碱的废水,可以用阳树脂回收后作为杀虫剂。
⑸用于水的软化处理
例如利用钠离子交换软化法可以去除水中的硬度。
⑹水的除盐
分复床除盐和混合床除盐等系统。
复床是指阳、离子交换器串联使用,常用的系统有强酸-脱气-强碱系统,强酸-弱碱-脱气系统以及强酸-脱气-弱碱-强碱系统等。 混合床除盐具有水质稳定、间断运行影响小、失效终点分明等特点。
;⑧ 离子交换树脂再生方式有哪些
w
离子交换来树脂再生方式源有哪些?
离子交换剂失效后通过再生来恢复离子交换能力,常用再生方式有顺流再生与逆流再生。
(一)顺流再生
顺流再生时原水与再生液流过交换剂层的方向相同。因此在再生液流过交换剂层时首先接触到的是交换剂层上部完全失效的已包含上部交换剂层被置换出来的离子,影响交换剂层下部的再主度(再生度指离子交换剂层中已再生离子量与全部交换容量的比值),造成处理水质降低、再生剂耗量增加。顺流再生离子交换设备简单,工作可靠,但受原水水质组分影响大,再生效果换容量不能得到充分利用。而再生后,下部再生度最低,为了提高出水质量和工作交换容量,必须增加再生剂的耗量。
(二)逆流再生
原水从交换器上部进人与再生液的方向相反,逆流再生(也称对流再生)过程中交换剂层的离子分布状态
1.逆流再生的优点
与顺流再生比较,采用逆流再生提高了再生剂利用率,降低再生剂耗量30%-50%提高出水质量;降低清洗水耗量30%~50%降低再生废液排放量与排放浓度,排放再生废液中酸、碱浓度小于1%,图3-7为氢离子交换逆流再生废液流出曲线。