导航:首页 > 净水问答 > 高价离子交换能力强于低价离子

高价离子交换能力强于低价离子

发布时间:2023-12-15 22:45:44

❶ 什么叫离子交换树脂的选择性与什么因素有关

离子交换树脂选择性是什么?

离子交换树脂的选择性是指离子交换树脂能吸附的金属离子,污回水中有很多金答属离子而离子交树脂不可能可以把所有的金属离子都吸咐干净的,有一些金属离子树脂对它的吸附能力是比较弱的而有一些则比较强,也就是说离子交换树脂只能针对性的吸附某一些金属离子,拿同一款离子交换树脂来说,与水溶液中各种不同的离子其交换作用不同,有一些离子比较容易被吸附,吸附后如果想把它置换下来也比较困难。别一种离子是很难被吸附。这就是离子交换树脂的选择性。


离子交换树脂选择性与什么有关?

1.如果水中的杂质离子所带的电荷数越多,就容易被离子交换树脂所吸咐,比如说高价的离子就低价的离子容易被吸附。

2.如果离子有着相同的电荷数时,理论上原子序大的离子,就更容易被离子吸附。

3. 溶液的稀释情况一样可以影响树脂的吸附。浓溶液同稀溶液相比较而言,浓溶液则使得原本不易被吸附的低价离子相对的容易被树脂所吸附。

4.树脂交换效率与树脂的选择性有着密切的关系。树脂的选择数越大,不能过吸咐的离子就越少,处理后的溶液就越纯,树脂的实际交换吸附能力也越高。

❷ 离子交替吸附作用

离子交替吸附作用主要发生在具有固定电荷的固体矿物表面,无论是阳离子还是阴离子,均可发生交替吸附作用,但目前研究得较多的是阳离子交替吸附作用。离子交替吸附作用的一个重要特点就是,伴随着一定量的一种离子的吸附,必然有等当量的另一种同号离子的解吸(图2-5-4)。离子交替吸附作用之所以具有这样的特点,主要是由于吸附剂通常都具有一定的离子交换容量,因此这里首先对离子交换容量予以讨论。

图2-5-3 有机质表面的负电荷

图2-5-4 阳离子交替吸附作用图解

2.5.2.1 离子交换容量

离子交换容量包括阳离子交换容量(CEC—Cation Exchange Capacity)和阴离子交换容量(AEC—Anion Exchange Capacity),我们主要讨论阳离子交换容量,它被定义为每100 g干吸附剂可吸附阳离子的毫克当量数。例如,在蒙脱石的结晶格架中,铝八面体中的三价铝可被二价镁所置换,根据测定,每摩尔蒙脱石中镁的含量为0.67 mol,即蒙脱石的分子式为:Si8Al3.33Mg0.67O20(OH)4。已知蒙脱石的分子量是734 g,因此这种蒙脱石的阳离子交换容量为:

水文地球化学

在实际中,通常都是通过实验来测定吸附剂的阳离子交换容量。尤其是对于野外所采取的土样或岩样,由于其中含有多种吸附剂,实验测定往往是唯一可行的方法。阳离子交换容量的实验测定在多数情况下都是用pH为7的醋酸铵溶液与一定量固体样品混合,使其全部吸附格位被所饱和,然后用其他溶液(例如NaCl溶液)把被吸附的全部交换出来,达到交换平衡后,测定溶液中Na+的减少量,据此便可计算样品的阳离子交换容量。表252列出了一些粘土矿物及土壤的阳离子交换容量,由表可见,与土壤相比,矿物的阳离子交换容量有更大的变化范围。

松散沉积物的阳离子交换容量受到了多种因素的影响,主要有:

(1)沉积物中吸附剂的种类与数量。例如,我国北方土壤中的粘土矿物以蒙脱石和伊利石为主,因此其CEC值较大,一般在20 meq/100 g以上,高者达50 meq/100 g以上;而南方的红壤,由于其有机胶体含量少,同时所含的粘土矿物多为高岭石及铁、铝的氢氧化物,故CEC较小,一般小于20 meq/100 g。

表2-5-2 一些粘土矿物及土壤的阳离子交换容量

(2)沉积物颗粒的大小。一般来说,沉积物的颗粒越小,其比表面积越大,CEC值越高。例如,根据一河流沉积物的粒径及其CEC的实测结果,随着沉积物的粒径为从4.4μm增至1000μm,其CEC从14~65 meq/100 g变到4~20 meq/100 g,最终减小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般来说,随着水溶液pH值的增加,土壤表面的可变负电荷量增多,其CEC相应增加;相反,随着水溶液pH值的减小,土壤表面的可变负电荷量不断减少,其CEC也随之减小。

2.5.2.2 阳离子交换反应及平衡

阳离子交换反应的一般形式可写为:

水文地球化学

式中:Am+、Bn+表示水溶液中的A、B离子;AX、BX表示吸附在固体表面的A、B离子。上述反应的平衡常数可写为:

水文地球化学

式中:a标记溶液中组分的活度;{}表示表示吸附在固体表面上的离子的活度。对于水溶液中的离子,其活度可使用表2-1-1中的公式进行计算;但对于吸附在固体表面上的离子,其活度的计算至今还没有满意的方法。目前主要采用两种替代的方法来处理这一问题,一种是Vanselow惯例,另一种是Gaines-Thomas惯例。Vanselow惯例是由Vanselow于1932年提出的,他建议使用摩尔分数来代替式(2-5-7)中的{AX}和{BX}。若固体表面仅吸附了A离子和B离子,在一定重量(100 g)的吸附剂表面A、B的含量(mmol)依次为qA和qB,则吸附剂表面A、B的摩尔分数分别为:

水文地球化学

显然,xA+xB=1。这样式(2-5-7)可改写为:

水文地球化学

Gaines-Thomas惯例是由Gaines和Thomas于1953年提出的,他们建议采用当量百分数来代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分别表示吸附剂表面A、B的当量百分数,则有:

水文地球化学

同样,yA+yB=1,这样式(2-5-7)变为:

水文地球化学

目前,这两种惯例都还在被有关的研究者所使用,各有优点,互为补充。事实上,离子交换反应的平衡常数并不是一个常数,它往往随着水溶液的成分、pH值及固体表面成分的变化而变化,因此许多研究者认为将其称为交换系数(Exchange Coefficient)或选择系数(Selectivity Coefficient)更合适一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知两种不同离子与同一种离子在某种吸附剂中发生交换反应的交换系数,则可计算出这两种离子发生交换反应的交换系数。例如,若在某种吸附剂中下述反应:

水文地球化学

交换系数分别为KCa-Na和KK-Na,则在该吸附剂中反应:

水文地球化学

的交换系数为:

水文地球化学

这是因为(以Vanselow惯例为例):

水文地球化学

故有:

水文地球化学

表2-5-3列出了不同离子与Na+发生交换反应的交换系数(Vanselow惯例),据此便可按照上述的方法求得这些离子之间发生交换反应时的交换系数。

需要说明的是,在表2-5-3中,I离子与Na+之间交换反应的反应式为:

水文地球化学

表2-5-3 不同离子与Na+发生交换反应时的交换系数

其交换系数的定义式如下:

水文地球化学

【例】在某地下水系统中,有一段含有大量粘土矿物、因此具有明显阳离子交换能力的地段,假定:

(1)该地段含水层的阳离子交换容量为100 meq/100 g,含水层中的交换性阳离子只有Ca2+和Mg2+,初始状态下含水层颗粒中Ca2+、Mg2+的含量相等;

(2)在进入该地段之前,地下水中的Ca2+、Mg2+浓度相等,均为10-3 mol/L;

(3)含水层的孔隙度为n=0.33,固体颗粒的密度为ρ=2.65 g/cm3

(4)含水层中发生的阳离子交换反应为:

水文地球化学

不考虑活度系数的影响,其平衡常数(Vanselow惯例)为:

水文地球化学

试使用阳离子交换平衡关系计算,当地下水通过该地段并达到新的交换平衡后,水溶液中及含水层颗粒表面Ca2+、Mg2+浓度的变化。

【解】:设达到新的交换平衡后,含水层颗粒中Ca2+的摩尔分数为y、水溶液中Ca2+的浓度为x(mmol/L),则这时含水层颗粒中Mg2+的摩尔分数为1-y、水溶液中Mg2+的浓度为2-x(mmol/L),故有:

水文地球化学

整理得:

水文地球化学

已知含水层的CEC=100 meq/100g,因此对于二价阳离子来说,含水层颗粒可吸附的阳离子总量为50 mmol/100 g=0.5 mmol/g。若用z表示达到交换平衡后1 g含水层颗粒中Ca2+的含量,则有:

水文地球化学

以式(2-5-25)带入式(2-5-24)得:

水文地球化学

为了计算上述变化,需要对1 L水所对应的含水层中Ca2+的质量守恒关系进行研究。已知含水层的孔隙度为0.33,显然在这样的含水层中,1 L水所对应的含水层颗粒的体积为0.67/0.33(L),相应的含水层颗粒的质量为:

水文地球化学

故吸附作用前后1 L水所对应的含水层中Ca2+的质量守恒关系为:

水文地球化学

式中的0.25为吸附作用前1 g含水层颗粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化学

以式(2-5-26)带入式(2-5-28)并整理得:

水文地球化学

这是一个关于z的一元二次方程,求解该方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得达到新的交换平衡后含水层颗粒中Ca2+的摩尔分数为0.5001254,水溶液中Ca2+的浓度为0.75 mmol/L,故这时含水层颗粒中Mg2+的摩尔分数为0.4998746、水溶液中Mg2+的浓度为1.25 mmol/L。由此可见,地下水通过该粘性土地段后,尽管Ca2+、Mg2+在含水层颗粒中的含量变化很小,但它们在地下水中的含量变化却较大,Mg2+从原来的1 mmol/L增加到了1.25 mmol/L,Ca2+则从原来的1 mmol/L减少到了0.75 mmol/L。

2.5.2.3 分配系数及离子的吸附亲和力

除了交换系数,还有一个重要的参数需要介绍,这就是分配系数(Separation Factor)(Benefield,1982)。对于反应(2-5-6),它被定义为:

水文地球化学

式中cA和cB分别为水溶液中A、B离子的摩尔浓度。显然,若不考虑活度系数的影响,对于同价离子间的交换反应,QA-B=KA-B。式(2-5-29)可改写为:

水文地球化学

由式(2-5-30)可见,QA-B反映了溶液中B与A的含量之比与吸附剂表面B与A的含量之比之间的相对关系。当QA-B=1时,说明达到交换平衡时B与A在水溶液中的比例等于其在吸附剂表面的比例,因此对于该吸附剂,A和B具有相同的吸附亲和力;当QA-B>1时,说明达到交换平衡时B与A在水溶液中的比例大于其在吸附剂表面的比例,因此A与B相比具有更大的吸附亲和力;当QA-B<1时,说明达到交换平衡时B与A在水溶液中的比例小于其在吸附剂表面的比例,因此B与A相比具有更大的吸附亲和力。

事实上,即使对于同一阳离子交换反应,其分配系数也会随着水溶液性质的变化而变化(Stumm and Morgan,1996)。图2-5-5给出了Na—Ca交换反应的分配系数随Na+浓度的变化。沿着图中的虚线,QNa-Ca=1,这时Na+和Ca2+具有相同的吸附亲和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附剂中的比例要远大于其在水溶液中的比例,因此在这种情况下Ca2+具有更强的吸附亲和力。随着Na+浓度的增大,Ca2+的吸附亲和力逐渐减弱,Na+的吸附亲和力则逐渐增强,当[Na+]=2 mol/L时,Na+已经变得比Ca2+具有更强的吸附亲和力。Na—Ca交换反应分配系数的这种变化对于解释一些实际现象具有重要的意义,根据这种变化,我们可以推断淡水含水层中通常含有大量的可交换的Ca2+,而海水含水层中通常含有大量的可交换的Na+。这种变化关系也解释了为什么硬水软化剂能够选择性地去除Ca2+,同时通过使用高Na+浓度的卤水溶液进行冲刷而再生。

图2-5-5 溶液中Ca2+的含量对吸附作用的影响

根据离子交换反应的分配系数,可以定量地评价离子的吸附亲和力。一般来说,离子在土壤中的吸附亲和力具有下述的规律:

(1)高价离子比低价离子具有更高的吸附亲和力。例如,Al3+>Mg2+>Na+;>。这是因为离子交换反应从本质上说是一个静电吸引过程,离子价越高,所受到的静电吸引力就越大,它就越容易被吸附剂所吸附。

(2)同价离子的吸附亲和力随着离子水化半径的减小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。这是因为离子的水化半径越小,它越容易接近固体表面,从而也就越易于被固体所吸附。

Deutsch(1997)根据Appelo和Postma(1994)的资料,对二价阳离子的吸附亲和力进行了研究,他所得到了吸附亲和力顺序如下:

水文地球化学

在常见的天然地下水系统中,Ca2+和Mg2+通常为地下水中的主要阳离子,它们在水溶液中相对较高的含量将使其成为含水层颗粒表面的主要吸附离子,尽管一些微量元素可能更紧密地被吸附在含水层颗粒表面上。但在污染地下水系统中,若吸附亲和力更强的Pb2+和Ba2+的含量与Ca2+、Mg2+的含量在同一水平上,则含水层颗粒表面的主要吸附离子将变为Pb2+和Ba2+,这将大大地影响Pb2+和Ba2+在地下水中的迁移能力。

综合来讲,阳离子和阴离子的吸附亲和力顺序分别为(何燧源等,2000):

水文地球化学

可见,阳离子中Li+和Na+最不易被吸附,阴离子中Cl-和最不易被吸附。

离子交换对地下水质产生重要影响的一种常见情况就是海水入侵到淡水含水层中。当在沿海地带大量抽取含水层中的淡水时,海水将对含水层进行补给。初始状态下含水层颗粒表面吸附的主要是Ca2+和Mg2+,海水中的主要阳离子为Na+,阴离子为Cl-。这样入侵的海水将导致含水层中发生下述的阳离子交换反应:

水文地球化学

由于Cl-通常不易被吸附,也不参与其他的水岩作用过程。所以相对于Cl-来说,该过程将使得Na+的迁移能力降低。

地下水系统中另一种常见的情况与上述过程相反,这就是Ca2+置换被吸附的Na+,反应式如下:

水文地球化学

人们在大西洋沿岸的砂岩含水层(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉积盆地中(Thorstenson等,1979;Henderson,1985)均发现了这种天然的软化过程。该反应发生的前提条件是:含水层中含有碳酸盐矿物,CO2的分压较高,含水层颗粒中含有大量的可交换的Na+

❸ 离子交换法富集分离阳离子和阴离子的原理各是什么

离子交换树脂是利用被分离离子交换能力的差别而实现分离的,一般情况下价内态高的离子选择系容数大,如铁离子的交换顺序大于钙离子,具体情况如下:对阳离子的吸附
高价离子通常被优先吸附,而低价离子的吸附较弱。在同价的同类离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序如下:fe3+
>
al3+
>
pb2+
>
ca2+
>
mg2+
>
k+
>
na+
>
h+
对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:so42->
no3-
>
cl-
>
hco3-
>
oh-

弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:oh->
柠檬酸根3-
>
so42-
>
酒石酸根2-
>草酸根2-
>
po43-
>no2-
>
cl-
>醋酸根-
>
hco3-

❹ 吸附-解吸作用

吸附-解吸是水-岩(土)系统调节氟浓度的一种重要作用。除了由母岩和风化壳转移而进入土壤的氟化物大部分作为土壤的原生矿物而存在外,土壤中其余的氟多以胶体吸附态的离子(简单阴离子或复杂配离子)和分子(主要是氟化物)形式存在于土壤。

关于吸附解吸的机理相当复杂,基本包括机械吸附、物理化学吸附和生物吸附。土壤是多孔体系,有大孔隙,也有小孔隙,孔隙的状况极其复杂,如大小孔隙相互连接,孔径弯曲多种多样,因而可以对进入其中的氟化物起机械阻留作用。机械吸附对可溶性的分子和离子,如水溶性养分等不起保存作用。物理化学吸附是发生在土壤溶液和土壤胶体界面上的一种物理化学反应,土壤胶体借助于极大的表面积和电性,把土壤溶液中的离子吸附在胶体的表面上而保存下来。

在氟迁移和转化过程中,由于氟与一些金属离子的配合作用以及含氟矿物或氟化物沉淀和溶解作用,使土壤中一些束缚态的氟以氟阴离子或氟配合物的形式游离于水-岩(土)系统,而水-岩(土)系统是一个非常复杂的多相复合系统,土壤中存在大量的黏土矿物和沉淀的氢氧化铁、无定形硅酸以及有机物和腐殖质,它们在水-岩(土)系统中会发生不同程度的电离,而使它们带电,根据吸附作用的本质,游离于土壤溶液中的氟阴离子或氟配合物在它们随淋滤液迁移时会与水-岩(土)系统中的黏土矿物和沉淀的氢氧化铁、无定形硅酸、有机物以及腐殖质等发生不同程度的物理、化学或物理化学吸附作用。

土壤中黏土矿物和沉淀的氢氧化铁、无定形硅酸以及有机物等是F-主要吸附剂。在岩土中,由于氟离子和羟基离子的大小相近,电性相同,所以氟可以和金属氧化物中与金属离子配位的羟基、水合基以及腐殖质含有的—COOH和—OH等官能团发生离子交换,把这种作用过程称为离子交换吸附,并且这种反应过程是可逆的,其反应式如下:

河南省地下水中氟的分布及形成机理研究

以氧化铁为例,其交换方式可用下式表示。

(1)与配位羟基交换:

河南省地下水中氟的分布及形成机理研究

(2)与配位水合基交换:

河南省地下水中氟的分布及形成机理研究

土壤腐殖质也是土壤中氟的重要吸附剂。土壤腐殖质主要是由在分子的三维方向上带有很多活性基团的芳烃所组成,故具有较强的吸附表面。土壤腐殖质与氟的吸附,主要通过与腐殖质中的—COOH和—OH等功能团的离子交换反应进行。反应式如下:

河南省地下水中氟的分布及形成机理研究

研究表明,被吸附离子半径越接近OH-的离子半径(r=1.32~1.40×10-10m),其交换吸附能力愈大。由于氟的离子半径与OH-非常接近,所以土壤对F-交换吸附能力与其他一些阴离子相比,确实要大得多。下面是土壤中阴离子吸附能力大小的排列顺序:

河南省地下水中氟的分布及形成机理研究

除沉淀等因素的影响,一般来说,岩土中氟与相应阴离子或水分子的交换能力与岩土中羟基等可交换离子的物质的量有关,而岩土中的羟基等可交换离子的物质的量又与迁移液的pH、岩土本身的酸碱性、岩土中铁铝氧化物胶体、腐殖质以及氟的阳离子配合物的物质的量密切相关,所以,单位质量的岩土颗粒所含的羟基越多,对氟的吸附量就越大;岩土中腐殖质越多,岩土的pH越大,对氟的吸附量也愈大。

从以上分析可以看出,溶液中F-取代了土壤胶体上的OH-,由于土壤溶液中增加了OH-,势必导致土壤pH值的增高,从而使土壤向碱性反应发展。有研究表明,土壤氟的数量即氟离子吸附量随OH-的释放而明显增加。不过,土壤溶液中OH-的增加量与土壤胶体上F的吸附量之间并不存在简单的数量关系,这可能是因为土壤中形成一定量的酸碱使土壤具有较大的缓冲能力。

在土壤中,被胶体静电吸附的阳离子,一般都可以被溶液中另一种阳离子交换而从胶体表面解吸。对这种能相互交换的阳离子称为交换性阳离子,把发生在土壤胶体表面的交换反应称为阳离子交换作用。而土壤对于金属-氟配合物的吸附就是通过这一作用来实现的。通常高价阳离子的交换能力大于低价阳离子,就同价离子而言,水化半径较小的阳离子的交换能力较强。土壤中常见的几种交换性阳离子的交换能力顺序如下:

Fe3+、Al3+>H+>Ca2+>Mg2+>K+>Na+

衡量土壤阳离子交换能力的指标为阳离子交换容量(CEC),它指土壤所能吸附和交换的阳离子的容量。它与土壤胶体的比表面积和表面电荷有关。按照土壤的交换能力,一般将土壤划分为三个等级:一般认为阳离子交换容量为20cmol/kg以上的为交换能力强的土壤;20~10cmol/kg为交换能力中等的土壤;小于10cmol/kg的为交换能力弱的土壤。对周口开封地区取样坑的土壤测定其阳离子交换容量,结果见表7-3。

表7-3中显示,本区域土壤的阳离子交换容量均在20cmol/kg以上,属于交换性比较强的土壤,为吸附金属-氟配合物提供了有利条件。

总之,土壤吸附性氟包括对氟阴离子(F-)和金属-氟配合物阳离子(如 AlF2+

、FeF2+

、CoF2+

等)的吸附。其中,对F-吸附主要是通过与黏土矿物和土壤腐殖质上OH-的交换实现吸附,对金属-氟配合物阳离子的吸附则主要通过与黏土矿物或土壤腐殖质上的阳离子交换实现吸附。在红壤和黄壤等酸性、富铁铝土壤上吸附态氟主要是氟配合离子,而在石灰性土壤和盐碱土上的吸附态氟主要是F。

表7-3 周口开封地区取样坑阳离子交换量统计表

❺ 离子交换色谱的原理以及阴阳离子交换树脂的特性

离子交换树脂的结构:

离子交换树脂主要由高分子骨架和活性基团两部分组成,高分子骨架是惰性的网状结构骨架,是不溶于酸或碱的高分子物质,常用的离子交换树脂是由苯乙烯和二乙烯苯聚合得到树脂的骨架。

而活性基团不能自由移动的官能团离子和可以自由移动的可交换离子两部分组成,可交换离子能够决定树脂所吸附的离子,比如可交换离子为H型阳离子交换树脂,那么这个树脂能够吸附的离子,就是H型阳离子,而官能团离子能够决定树脂的“酸"、“碱"性和交换能力的强弱,比如官能团离子是强酸性离子,那么树脂就是强酸性离子交换树脂。


离子交换树脂的内部结构:

1.凝胶型树脂是由纯单体混合物经缩合或聚合而成的,结构为微孔状,合成的工艺比较简单,孔径大概在1-2nm左右,凝胶型树脂的操作容量高,产水量高,物理强度好,且再生效率高,被广泛应用在食品饮料加工,超纯水制备,饮用水过滤,硬水软化,制糖业,制药等领域。

2.大孔型树脂的孔径一般在10nm左右,在树脂中孔径是比较大的,所以被称为大孔型树脂,且孔径不会随着周围的环境而变化,能够弥补凝胶型树脂不能在非水系统中使用的缺点,吸附能力非常强大,不易碎裂,耐氧化好,操作容量高,能够应用在医药领域、除重金属污染、药品纯化、水处理中除去碳酸硬度、冷凝水精处理等领域。

详情点击:网页链接

❻ 离子交换树脂的选择性如何怎样选择

离子交换树脂的选抄择性如何怎样选择
水中各种离子在与离子交换树脂交换时,其能力是不一样的:有的离子很容易被树脂吸附,但很难被“置换"下来;有的则很难被树脂吸附,但很容易被“置换”下来。这种性能就称为离子交换树脂的“选择性”。

❼ 阳离子交换质量作用方程

(一)阳离子吸附亲合力

就特定的固相物质而言,阳离子吸附亲合力是不同的。影响阳离子吸附亲合力的因素主要是;(1)同价离子,其吸附亲合力随离子半径及离子水化程度而差异,一般来说,它随离子半径的增加而增加,随水化程度的增加而降低;离子半径越小,水化程度越高。例如Na+、K+、NH4+的离子半径分别为0.98、1.33和1.43Å,其水化半径分别为7.9、5.37和5.32Å;他们的亲合力顺序为NH4+>K+>Na+。(2)一般来说,高价离子的吸附亲合力高于低价离子的吸附亲合力。

按各元素吸附亲合力的排序如下:

水文地球化学基础

上述排序中,H+是一个例外,它虽然是一价阳离子,但它具有两价或三价阳离子一样的吸附亲合力。

值得注意的是,上述排序并不是绝对的,因为阳离子交换服从质量作用定律,所以吸附亲合力很弱的离子,只要浓度足够大,也可以交换吸附亲合力很强而浓度较小的离子。

(二)阳离子交换质量作用方程

按质量作用定律,阳离子交换反应可表示为:

水文地球化学基础

式中,KA-B为阳离子交换平衡常数,A和B为水中的离子,Ax和Bx为吸附在固体颗表面的离子,方括弧表示活度。

以Na-Ca交换为例,其交换反应方程为:

水文地球化学基础

(1.146)式表明,交换反应是等当量交换,是个可逆过程;两个钠离子交换一个钙离子。如果水中的Na+交换已被吸附在固体颗粒表面的Ca2+(即Cax),则反应向右进行;反之,则向左进行。如反应向右进行,那么,就钙离子而言,是个解吸过程;就钠离子而言,是个吸附过程。所以,阳离子交换反应,实际上是一个吸附-解吸过程。

在地下水系统中,Na-Ca交换是一种进行得最广泛的阳离子交换。例如,当海水入侵到淡水含水层时,由于海水Na+远高于淡水,而且淡水含水层颗粒表面可交换性的阳离子主要是Ca2+,因此产生海水中的Na+与颗粒表面的Ca2+产生交换,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右进行。又如,如果在某个地质历史里,淡水渗入海相地层,按上述类似的机理判断,则产生Na+被解吸Ca2+被吸附的过程,方程(1.146)向左进行。

Na-Ca交换反应方向的判断,以及对地下水化学成分的影响,仍至对土壤环境的影响,是水文地球化学及土壤学中一个很重要的问题,后面将作更详细的介绍。

上述(1.145)式中都使用活度,水中的A和B离子活度可以按第一节所提供的方法求得,但如何求得被吸附的阳离子(Ax和Bx)的活度,目前还没有太满意的解决办法。万赛罗(Vanselow,1932)〔7〕提出,规定被吸附离子的摩尔分数等于其活度。

摩尔分数的定义为:某溶质的摩尔分数等于某溶质的摩尔数与溶液中所有溶质摩尔数和溶剂摩尔数总和之比。其数学表达式如下

水文地球化学基础

式中,xB为B组分的摩尔分数,无量纲;mA为溶剂的摩尔数(mol/L);mB、mC、mD、……为溶质B、C、D……的摩尔数(mol/L)。就水溶液而言,溶剂是水,1mol H2O=18g,lL H2O=1000g,所以l升溶剂(H2O)的摩尔数=1000/18=55.56mol/L。

按照上述摩尔分数的定义,Ax和Bx的摩尔分数的数学表达式为:

水文地球化学基础

式中,NA和NB分别为被吸附离子A和B的摩尔分数;(Ax)和(Bx)分别为被吸附离子A和B的摩尔数(mol/kg)。

以摩尔分数代替被吸附离子A和B的活度。则(2.145)的交换平衡表达式可写成:

水文地球化学基础

式中,

称为选择系数,其他符号含义同前。选择系数已为许多学者所应用。从理论上讲,该方程(1.150式)提供了一个预测阳离子交换反应对地下水阳离子浓度影响的有效方法。

从理论上讲,

基本上是一个常数,但随水的离子强度的改变,稍有变化。它的数值的大小,能说明各种离子在竞争吸附中,优先吸附何种离子。如

说明B离子比A离子更易被吸附;反之,则相反。选择系数方面的信息在文献中已很普遍。就

来说,在(Mgx)/(Cax)和水中离子强度变化比较大的范围内,

在0.6—0.9间,变化很小。

值的范围说明,Ca2+比Mg2+更易被吸附。

在研究阳离子交换反应时,人们关心的问题是,在地下水渗流过程中,从补给区流到排泄区,由于阳离子交换反应,地下水中的阳离子浓度将会产生何种变化?为了简化问题起见,假定其他反应对阳离子浓度的变化都可忽略,那么从理论上讲,地下水从原来的地段进入一个具有明显交换能力的新地段后,必然会破坏其原有的阳离子交换平衡,而调整到一个新的交换平衡条件。达到新的平衡后,其阳离子浓度的变化主要取决于:(1)新地段固体颗粒表面各种交换性阳离子的浓度,以及它们互相间的比值;(2)进入新地段地下水的原有化学成分,特别是阳离子浓度。随着地下水的不断向前流动,阳离子交换平衡不断被打破,又不断地建立新的平衡。其结果是,不但水的阳离子浓度变化了,含水层固体颗粒表面有关的交换性阳离子浓度也改变了。为了定量地说明上述理论上的判断,特列举下列例题的计算。

例题1.8

在某一地下水流动系统中,有一段具有明显阳离子交换能力且含有大量粘土矿物的地段,试利用阳离子交换质量平衡方程(2.150),计算地下水达到新的交换平衡后,水中Ca2+和Mg2+浓度的变化,含水层粘土矿物颗粒表面交换性阳离子(被吸附的阳离子)浓度的变化。

假定:(1)含粘土矿物地段的阳离子交换容量为100meq/100g,交换性阳离子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)进入该地段前,地下水中的Ca2+和Mg2+浓度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)该含水层地段的有关参数:孔隙度n=0.33;固体颗粒密度ρ=2.65g/cm3;(4)地下水与该地段粘土矿物颗粒相互作用后,达到平衡时,选择系数

计算步骤:

(1)求新的地下水进入该地段前的NCa和NMg

按题意所给,Cax=Mgx=50meq/100g。把它们换算为以mol/g表示,则Cax=Mgx=0.25×10-8mol/g;将此数据代入(1.149)式,则

NCa=NMg=0.5

(2)求新的地下水刚进入该地段时,起始状态的

按质量作用定律,Ca-Mg交换方程为:

水文地球化学基础

交换平衡后,虽然各自的摩尔分数有所增减,但其总数仍然不变,即NCa+NMg=1。

设达到新交换平衡时,NCa=Y,那么,NMg=1-Y。

把上述假设代入(1.151)式,则

水文地球化学基础

因达到新的交换平衡时,

把它代入(1.152)式,经整理后,得:

水文地球化学基础

因达到新交换平衡时,Cax和Mgx虽然有变化,那其总和仍然不变,即Cax+Mgx=0.5。设那时的Cax=Z,那么:

水文地球化学基础

把(1.154)式代入(1.153)式,得:

水文地球化学基础

由于达到交换平衡前后,固相中的交换性钙离子(Cax)和液相中的溶解钙离子的总和不变。就一升水及其所接触的岩土而论,达到交换平衡前,一升水的Ca2+为1mmol;岩土中的Cax=0.25mmol/g,-升水所占据的岩土体积=5379.5g。达交换平衡后,一升水的Ca2+摩尔数为x,岩土中交换性钙离子(Cax)浓度为Z。那么,其均衡方程为:

水文地球化学基础

式的左边,为交换平衡前固液相中钙离子总量(mmol);式的右边,为交换平衡后固液相中钙离子总量(mmol)。

整理(1.156)式,得:

水文地球化学基础

把(1.157)式代入(1.155)式,整理后得:

水文地球化学基础

解方程(1.158),得:

Z=0.250046,即交换平衡后,Cax=0.250046mmol/g

那么,Mgx=0.5-0.250046=0.249954mmol/L

按上述计算摩尔分数的方法,得:

NCa=0.50009,NMg=0.49991

把所算得的Z值代入(1.157),得:

x=0.7525,即交换平衡后,〔Ca2+〕=0.7525mmol/L

那么,〔Mg2+〕=2-0.7525=1.2475mmol/L

上述计算结果说明,当新的地下水通过交换地段,达到交换平衡时,吸附的阳离子(Ca2+和Mg2+)的浓度或摩尔分数的比值变化极小;相比之下,地下水中Ca2+和Mg2+的浓度变化很大,〔Mg2+〕/〔Ca2+〕从1约增至1.7。如果随后进入该地段的地下水〔Mg2+〕/(Ca2+)仍然是1的话,地下水再次破坏了刚建立起来的交换平衡,交换反应又继续进行,直至NMg/NCa=O.6为止。此时,新流入地下水的Ca2+和Mg2+的浓度才不会改变。然而,要达到此种状态,必需通过无数个孔隙体积的水,甚至要几百万年时间才能完成。

上述计算还说明,阳离子的交换方向,从左向右进行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不断被解吸。交换反应方向不仅取决于水中两种离子的浓度比,同时也取决于吸附离子的摩尔分数比。如若交换的起始条件为NMg=0.375和NCa=0.625,流入的水,其钙镁活度比为1,那么流过该地段的地下水,其Ca2+和Mg2+的浓度就没有变化了。如若交换的起始条件为NMg/NCa<0.6,其交换方向则与上述相反,从右向左进行(2.151式)。

(三)地下水系统中的Na-Ca交换

地下水中Na-Ca交换在地下水化学成分形成和演变过程中,是一个很重要的阳离子交换过程,它无论在深层地下水形成和演变,或者在浅层潜水水化学成分的改变,特别是硬度升高等方面,都具有重要意义;在土壤科学中,它对盐碱土的形成,也有重要作用。

地下水系统中,固液相间的Na-Ca交换也服从质量作用定律,但其质量作用方程的表达形式不同。其交换反应如下:

水文地球化学基础

(2.159)反应最常用的质量作用方程是Gappn方程:

水文地球化学基础

在Gapon方程的基础上,又有许多学者提出类似于此方程的各种表达式。例如,美国盐实验室〔17〕在研究灌溉水与土壤间的Na-Ca交换时,提出类似于Gapon方程的表达式:

水文地球化学基础

式中,Nax为达到交换平衡时土壤的交换性钠量(meq/100g);CEC为土壤的阳离子交换容量(meq/100g);Na+、Ca2+和Mg2+是达交换平衡时水中这些离子的浓度(meq/L);K为平衡常数。

(1.161)式左边项表示为:

水文地球化学基础

式中的ESR称为“交换性钠比”。

(1.16l)式右边项表示为:

水文地球化学基础

式中的“SAR”称为钠吸附比,它是Na-Ca交换中一个很重要的参数。(1.161)式可改写成:

水文地球化学基础

(1.164)式说明,ESR与SAR线性相关,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。许多学者通过岩土的Na-Ca交换试验,得出了有关回归方程,列于表1.20。

表1.20Na-Ca交换的回归方程

表1.20中的Na-Ca交换方程是实验方程,应用起来当然有其局限性。其中,美国盐实验室的回归方程是用美国西部12个土壤剖面59个土样试验得出的,所以其代表性较好。尽管有其局限性,但是,应用此类方程判断Na-Ca交换的方向,定量化计算其交换量,还是比较有效的。表1.21的数据充分说明这一推断。

表1.21Na-Ca试验中某些参数的变化〔2〕

表1.21中是一组Na-Ca交换试验数据,其中包括实测值与计算值的对比。表中的数据可说明以下几点;

(1)Na-Ca交换反应方向取决于水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分别为0.73和9.81的水淋滤ESR值为0.046的同一种土壤时,淋滤后,前者的(Cax+Mgx)从8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固体颗粒表面的交换性Na+解吸到水中,按(1.159)式,其交换反应方向朝左进行;相反,后者的(Cax+Mgx)从8.56减至7.52meq/100g,水中的Na+被吸附,而固体颗粒表面的交换性Ca2+和Mg2+解吸进入水中,按(1.159)式,其交换反应向右进行。如果起始条件已知,即水中的SAR值及岩土中的ESR值已知,也可判断其反应方向。例如,把表1.21中的SAR值0.73和9.81分别代入表1.20中的3号方程,ESR值的计算值分别为0.038和0.1379。前者的ESR计算值(0.038)小于土壤的起始ESR值(0.046,见表1.21),反应按(1.159)式向左进行;后者的SER计算值(0.1379)明显大于土壤的起始ESR值(0.046),反应按(1.159)式向右进行。也就是说;如果ESR计算值小于岩土的ESR值,反应向左进行;反之,则相反。当然,如果土壤的起始ESR值为0.038,与S4R值为0.73的水相互作用时,Na-Ca交换处于平衡状态,水中的Na+、Ca2+和Mg2+浓度不会改变。表1.22是现场试验结果,结果说明,SAR值越高,固体表面解吸出来的Ca2+和Mg2+就越多,水的硬度增加就越大。这些数据充分证明了上述理论。

表1.22SAR值不同的污水现场试验结果〔2〕

注:硬度以CaCO3计(mg/L)。

(2)把Na-Ca交换方程应用于实际是比较可靠的。表1.21中(Cax+Mgx)的实测值及计算值相差很小,说明了这一点。其计算方法如下:以计算SAR=0.73的水为例,将0.73代入表1.20中的方程3,求得ESR=0.038;将此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;将CEC值减去Nax值,即为(Cax+Mgx)值(因为土中吸附的阳离子主要是Na+、Ca2+和Mg2+),其值为8.63meq/100g。

SAR值不仅在研究Na-Ca交换反应中是重要的,而且它是灌溉水质的一个重要参数。前面谈到,SAR高的水,在水岩作用过程中,引起水中的Na+被吸附到固相颗粒表面上,2个Na+交换一个Ca2+或Mg2+(等当量交换)。因为2个Na2+的大小比一个Ca2+或Mg2+大,因而引起土壤的透气性减小,产生板结及盐碱化。有关SAR值的灌溉水质标准可参考有关文献。本书不详述。

阅读全文

与高价离子交换能力强于低价离子相关的资料

热点内容
城市污水高效生物处理新方法及其技术原理 浏览:698
达州房间不通风净化器多少钱一台 浏览:102
优的净水机怎么样 浏览:411
纯水uf是什么意思 浏览:562
办污水排放证怎么办 浏览:389
原生质层和半透膜区别 浏览:664
北京大兴瀛海污水处理厂 浏览:868
哪里能查到老楼污水管道图 浏览:652
污水池悬浮 浏览:731
澳兰斯空气净化器怎么用使用 浏览:190
绍兴实惠中空纤维超滤膜供应 浏览:453
清理万和电热水器水垢 浏览:682
12伏饮水机抽水泵怎么测好坏 浏览:798
饮水机再使用怎么消毒 浏览:133
超滤错流率 浏览:652
内置汽油滤芯多少钱可以换 浏览:525
博瑞的空调滤芯怎么拆 浏览:148
超声波废水主要污染物 浏览:634
可用碱液清除水垢吗 浏览:510
污水处理补充营养加什么好 浏览:275