㈠ 协同过滤与分类
[TOC]
本文是《写给程序员的数据挖掘实践指南》的一周性笔记总结。主要涵盖了以下内容:
所谓推荐系统就是系统根据你的行为操作为你推荐你可能想要的其他物品。这在电商平台、音乐平台、资讯推送平台等多有见到。而协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息。其推荐基础是用户评分。这里可以分为两种用户评分,即显式评分与隐式评分。显式评分即日常见到的为物品打分,如对喜好音乐评级等;隐式评分是通过对用户行为的持续性观察,进而发现用户偏好的一种方法,如新闻网页中的推送你经常阅读过的相关内容等。两种评分方法都有自己的问题。
总体来说,协同过滤其运作机制也可以分为两种:
基于用户的推荐是指通过用户的行为偏好,划分相似用户。在相似用户群体之间互相推送一方喜欢而另一方未有过的物品。核心在于相似用户群体的划分。这种推荐方法有自己的局限:
基于用户的过滤其核心是用户群体的划分,其实也就是分类。
这里的距离函数包括三种:曼哈顿距离和欧氏距离。这里以二维举例,更多维情况下类推即可。
两距离函数可以一般化为:
其中,当r=1时,函数为曼哈顿距离;当r=2时,函数为欧氏距离。
算法实现:
在算出距离函数后,通过比对目标用户与所有用户群体的偏好,找到最近邻的用户并给予推荐。
基于用户距离的推荐有一个明显的问题,就是用户评分体系的差异。比如评分极端的用户给喜欢的评最高分,给不喜欢的评最低分;而有些用户倾向于不出现极端评分。即所谓“分数贬值”( Grade Inflation )问题。这种问题的存在可能让基于距离的评分产生偏差。皮尔逊相关系数可以缓解这种问题。
原皮尔逊相关系数公式在实际运用的时候会出现多次迭代的问题,影响计算效率,这里给出了近似公式:
皮尔逊相关系数的用户判断依据不是单纯的用户距离,而是用户的评分一致性:取值在[-1, 1]之间,越接近1则表示两用户的评分一致性越好;反之则反。
python实现:
基于用户推荐的过程中,另一个存在的问题就是由于大部分人的喜爱物品集合的交集过少,存在大量计算值为0的feature的情况。即所谓 稀疏性 问题。一个较容易理解的例子是对书本内容的挖掘。余弦相似度会忽略这种0-0匹配。
余弦相似度:
python实现:
如此多的评估系数,如何进行抉择呢?根据数据特征:
另外值得考虑的一点是,目前为止的推荐都是基于单用户的。即对一个用户的推荐系统只是基于另一个用户。这会存在一些问题。比如虽然虽然两者相似度很高,但是另外一个人有一些怪癖,怪癖的推荐就是不合理的;又比如,在相似度极高的情况下,你不能确定统一账户下的操作是同一个人做出的或者说操作行为是为了用户自身。比如用户考虑购买某件商品作为礼物送给别人,这就是基于别人喜好的购买行为,这种推荐也是不合适的。
对这种问题的解决可以使用群体划分的方法。原理与单用户类似,但是用户的匹配是k个。在这k位最优匹配的用户之间,以相似度的大小为依据设定权重作为物品推荐的条件。此即协同过滤的k近邻。
正如前面提到的基于用户的推荐有复杂度、稀疏性的问题,而基于物品的过滤则可以缓解这些问题。所谓基于物品的过滤是指,我们事先找到最相似的物品,并结合用户对物品的评级结果来生成推荐。前提是要对物品进行相似度匹配,找到一种算法。
这里的调整是指为了减轻用户评分体系的不一致情况(抵消分数贬值),从每个评级结果中减去该用户所有物品的平均分的评级结果。
其中,U表示所有同时对i, j进行评级过的用户的集合。 表示用户u给物品i的评分减去用户u对所有物品的评分的平均值。
在得到所有物品的余弦相似度后,我们就可以通过该指数预测用户对某件物品的偏好程度。方法就是所有相似物品的相似度乘以得分的总和。
其中p(u, i)指的是用户u对物品i评分的预测值。N是用户u的所有评级物品中每个和i得分相似的物品。这里的相似指的是矩阵中存在N和i的一个相似度得分。 是i和N之间的相似度得分。 是u给N的评级结果。公式较好运行的条件是 取值在(-1, 1)之间,这里就要使用归一化概念。
另一种常用的基于物品过滤的算法就是 slope one 算法。它的大概原理是预测用户u对产品j的评分时,预先计算包含所有物品的两物品偏差表;根据u的已评价的所有物品评分与该物品和产品j的偏差( )之和并乘以所有对此两类物品有过评分的用户个数,一一加总,除以所有同时对产品i与u评价过的所有物品有过评分的用户的人数,得到得分。公式如下:
其中, ; 是利用加权s1算法给出的用户u对物品j的预测值。 指的是对所有除j之外u打过分的物品。
python实现:
在前面两节中,基于物品和基于用户的过滤其前提都是用户需要对已有的item进行评分。而实际上,如果一个新的item出现,由于缺乏别人的偏好,他永远不会被推荐。这就是推荐系统中所谓的—— 冷启动 问题。基于用户评价的系统就会出现这种问题。
冷启动 问题的解决方案之一就是 基于物品属性的过滤 来进行推荐:对物品自身的属性进行归纳总结,并以此进行物品推荐。基于物品属性的过滤存在一个问题同样是量纲的不统一。如果量纲不统一极端值将会对推荐系统造成大麻烦。解决方法也很简单:归一化。此章使用的是z-评分。
使用z得分也存在问题,就是极易受到离群值的影响。这里可以使用 改进的标准分数 来缓解这个问题:
什么时候可以进行归一化呢?
这里用曼哈顿距离举例基于物品属性的过滤:
在上一章最后一节对于用户是否喜欢某件item的判别中,实际上包含了分类器的思想:分类器就是利用对象属性判定对象属于哪个组或类别的程序。这里简单用另一个小项目来说明。
简单来说就是根据运动员的某些指标来判断这位运动员属于什么类别的运动员。
准确率有0.8。
㈡ 协同过滤
协同过滤(Collaborative Filtering,CF)——经典/老牌
只用户行为数据得到。对于 个用户, 个物品,则有共现矩阵 :
对于有正负反馈的情况,如“赞”是1和“踩”是-1,无操作是0:
对于只有显示反馈,如点击是1,无操作是0:
算法步骤:
1)得到共现矩阵 ;
2)计算 任意两行 用户相似度,得到用户相似度矩阵 ;
3)针对某个用户 选出与其最相似的 个用户, 是超参数;——召回阶段
4)基于这 个用户,计算 对每个物品的得分;
5)按照用户 的物品得分进行排序,过滤已推荐的物品,推荐剩下得分最高的 个。——排序阶段
第2步中,怎么计算用户相似度?——使用共现矩阵的行
以余弦相似度为标准,计算 和 之间的相似度:
第4步中,怎么每个用户对每个物品的得分?
假如和用户 最相似的2个为 和 :
对物品 的评分为1,用户 对物品 的评分也为1,那么用户 对 的评分为:
也就是说:利用用户相似度对用户评分进行加权平均:
其中, 为用户 和用户 之间的相似度, 为用户 和物品 之间的相似度。
UserCF的缺点
1、现实中用户数远远大于物品数,所以维护用户相似度矩阵代价很大;
2、共现矩阵是很稀疏的,那么计算计算用户相似度的准确度很低。
算法步骤:
1)得到共现矩阵 ;
2)计算 任意两列 物品相似度,得到物品相似度矩阵 ;
3)对于有正负反馈的,获得用户 正反馈的物品;
4)找出用户 正反馈的物品最相似的 个物品,组成相似物品集合;——召回阶段
5)利用相似度分值对相似物品集合进行排序,生产推荐列表。——排序阶段
最简单情况下一个物品(用户未接触的)只出现在另一个物品(用户已反馈的)的最相似集合中,那么每个用户对每个物品的得分就是相似度。如果一个物品和多个物品最相似怎么办?
如用户正反馈的是 和 ,对于物品 其最相似的是 ,相似度为0.7,对于物品 其最相似的也是 ,相似度为0.6,那么 相似度为:
也就是说:如果一个物品出现在多个物品的 个最相似的物品集合中,那么该物品的相似度为多个相似度乘以对应评分的累加。
其中, 是物品p与物品h的相似度, 是用户u对物品p的评分。
第2步中,怎么计算物品相似度?——使用共现矩阵的列
以余弦相似度为标准,计算 和 之间的相似度:
余弦相似度
皮尔逊相关系数
基于皮尔逊相关系数的改进
UserCF适用于用户兴趣比较分散变换较快的场景,如新闻推荐。
IteamCF适用于用户情趣不叫稳定的场景,如电商推荐。
优点:直观,可解释性强。
缺点:
㈢ 推荐算法的基于协同过滤的推荐
基于协同过滤的推荐算法理论上可以推荐世界上的任何一种东西。图片、音乐、样样可以。 协同过滤算法主要是通过对未评分项进行评分 预测来实现的。不同的协同过滤之间也有很大的不同。
基于用户的协同过滤算法: 基于一个这样的假设“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”所以基于用户的协同过滤主要的任务就是找出用户的最近邻居,从而根据最近邻 居的喜好做出未知项的评分预测。这种算法主要分为3个步骤:
一,用户评分。可以分为显性评分和隐形评分两种。显性评分就是直接给项目评分(例如给网络里的用户评分),隐形评分就是通过评价或是购买的行为给项目评分 (例如在有啊购买了什么东西)。
二,寻找最近邻居。这一步就是寻找与你距离最近的用户,测算距离一般采用以下三种算法:1.皮尔森相关系数。2.余弦相似性。3调整余弦相似性。调整余弦 相似性似乎效果会好一些。
三,推荐。产生了最近邻居集合后,就根据这个集合对未知项进行评分预测。把评分最高的N个项推荐给用户。 这种算法存在性能上的瓶颈,当用户数越来越多的时候,寻找最近邻居的复杂度也会大幅度的增长。
因而这种算法无法满足及时推荐的要求。基于项的协同过滤解决了这个问题。 基于项的协同过滤算法 根基于用户的算法相似,只不过第二步改为计算项之间的相似度。由于项之间的相似度比较稳定可以在线下进行,所以解决了基于用户的协同过滤算法存在的性能瓶颈。
㈣ 基于用户协同过滤(User-CF)的推荐算法
1. 数学必备知识(向量)
2. 构建矩阵模型
3. User-CF的思想和计算
在一个个性化推荐系统中,当一个用户A需要个性化推荐时,可以先找和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户A没有听说过的物品推荐给A。这种方法成为基于用户的协同过滤算法(User-CF)
根据问题域中构建出来的用户-行为评分矩阵(图1-1),我们可以构建出用户的向量.首先,把每一个用户用一个向量表示,每个向量里有6个数字,分别代表该用户对6本书喜爱程度的评分.0代表用户没看过这本书.图示:
接下来,计算俩个用户的相似性,这里使用的指标叫作余弦相似度,计算公式如下:
其中,分子部分a·b表示两个向量的点积,计算方法就是两个向量对应元素先相乘再求和,比如:
用户a=[4 3 0 0 5 0]和用户b=[5 0 4 0 4 0]
a·b=4x5+3x0+0x4+0x0+5x4+0x0=40
分母部分的 代表向量a的模长, 就是a,b两个向量模长的乘积.向量模长的计算方法就是把向量
中的每个元素平方后再求和最后再开根号.
于是,第一个用户和第二个用户的相似度就可以进行如下计算:
余弦相似度的值在[0,1]闭区间内,值越大说明越相似,值越小说明越不相似.根据上面的计算公式,分别计算小白和其他5个同事的相似度,然后根据从大到小的顺序排列.可以看到小白和前俩个同事相似度高而和最后一个同事完全不相似.
比如,和小白最相似的两个同事的阅读列表编号有1,3,4,5共4本书.其中1,5这两本书小白已经看过,3,4这两本书哪本可能更适合小白的口味呢?
可以计算这两个同事对这两本书的加权评分并作为小白的可能评分,权重就是他们之间的相似度,具体计算如
下图.通过计算可以看出编号为3的书可能更适合小白的口味.
计算步骤:
1. 先确定第一个同事拥有的阅读列表的图书编号为1,3,5
2. 再确定第二个同事拥有的阅读列表的图书编号为1,3,4,5
3. 小白自己已经拥有的阅读的图书列表是1,2,5[这也是打叉的意义,自己已经有的,不需要再推荐给自己了]
4. 最后剩余的只有编号为3和编号为4的两本书了
5. 计算公式说明,0.75和0.63代表权重,也就是相似值.4,3,5代表的是该用户对这本书的评分.
1. 性能:适用于用户较少的场合,如果用户过多,计算用户相似度矩阵的代价较大
2. 领域:实效性要求高,用户个性化兴趣要求不高
3. 实时性:用户有新行为,不一定需要推荐结果立即变化
4. 冷启动:在新用户对少的物品产生行为后,不能立即对他进行个性化推荐,因为用户相似度是离线计算的
新物品上线后一段时间,一旦有用户对物品产生行为,就可以将新物品推荐给其他用户
㈤ 基于协同过滤的推荐算法
协同过滤推荐算法是最经典的推荐算法,它的算法思想为 物以类聚,人以群分 ,基本的协同过滤算法基于以下的假设:
实现协同过滤的步骤:
1). 找到相似的Top-N个人或者物品 :计算两两的相似度并进行排序
2). 根据相似的人或物品产生推荐结果 :利用Top-N生成初始推荐结果,然后过滤掉用户已经有过记录或者明确表示不喜欢的物品
那么,如何计算相似度呢?
根据数据类型的不同,相似度的计算方式也不同,数据类型有:
一般的,相似度计算有 杰卡德相似度、余弦相似度、皮尔逊相关系数
在协同过滤推荐算法中,我们更多的是利用用户对物品的评分数据集,预测用户对没有评分过的物品的评分结果。
用户-物品的评分矩阵,根据评分矩阵的稀疏程度会有不同的解决方案。
目的:预测用户1对于物品E的评分
步骤分析:
实现过程
用户之间的两两相似度:
物品之间的两两相似度:
㈥ 推荐系统(一):基于物品的协同过滤算法
协同过滤(collaborative filtering)算法是最经典、最常用的推荐算法。其基本思想是收集用户偏好,找到相似的用户或物品,然后计算并推荐。
基于物品的协同过滤算法的核心思想就是:给用户推荐那些和他们之前喜欢的物品相似的物品。主要可分为两步:
(1) 计算物品之间的相似度,建立相似度矩阵。
(2) 根据物品的相似度和用户的历史行为给用户生成推荐列表。
相似度的定义有多种方式,下面简要介绍其中几种:
其中,分母 是喜欢物品 的用户数,而分子 是同时喜欢物品 和物品 的用户数。因此,上述公式可以理解为喜欢物品 的用户中有多少比例的用户也喜欢物品 。
上述公式存在一个问题。如果物品 很热门, 就会很大,接近1。因此,该公式会造成任何物品都会和热门的物品有很大的相似度,为了避免推荐出热门的物品,可以用下面的公式:
这个公式惩罚了物品 的权重,因此减轻了热门物品会和很多物品相似的可能性。
另外为减小活跃用户对结果的影响,考虑IUF(nverse User Frequence) ,即用户活跃度对数的倒数的参数,认为活跃用户对物品相似度的贡献应该小于不活跃的用户。
为便于计算,还需要进一步将相似度矩阵归一化 。
其中 表示用户 对物品 的评分。 在区间 内,越接近1表示相似度越高。
表示空间中的两个点,则其欧几里得距离为:
当 时,即为平面上两个点的距离,当表示相似度时,可采用下式转换:
距离越小,相似度越大。
一般表示两个定距变量间联系的紧密程度,取值范围为[-1,1]
其中 是 和 的样品标准差
将用户行为数据按照均匀分布随机划分为M份,挑选一份作为测试集,将剩下的M-1份作为训练集。为防止评测指标不是过拟合的结果,共进行M次实验,每次都使用不同的测试集。然后将M次实验测出的评测指标的平均值作为最终的评测指标。
对用户u推荐N个物品(记为 ),令用户u在测试集上喜欢的物品集合为 ,召回率描述有多少比例的用户-物品评分记录包含在最终的推荐列表中。
准确率描述最终的推荐列表中有多少比例是发生过的用户-物品评分记录。
覆盖率反映了推荐算法发掘长尾的能力,覆盖率越高,说明推荐算法越能够将长尾中的物品推荐给用户。分子部分表示实验中所有被推荐给用户的物品数目(集合去重),分母表示数据集中所有物品的数目。
采用GroupLens提供的MovieLens数据集, http://www.grouplens.org/node/73 。本章使用中等大小的数据集,包含6000多用户对4000多部电影的100万条评分。该数据集是一个评分数据集,用户可以给电影评1-5分5个不同的等级。本文着重研究隐反馈数据集中TopN推荐问题,因此忽略了数据集中的评分记录。
该部分定义了所需要的主要变量,集合采用字典形式的数据结构。
读取原始CSV文件,并划分训练集和测试集,训练集占比87.5%,同时建立训练集和测试集的用户字典,记录每个用户对电影评分的字典。
第一步循环读取每个用户及其看过的电影,并统计每部电影被看过的次数,以及电影总数;第二步计算矩阵C,C[i][j]表示同时喜欢电影i和j的用户数,并考虑对活跃用户的惩罚;第三步根据式\ref{similarity}计算电影间的相似性;第四步进行归一化处理。
针对目标用户U,找到K部相似的电影,并推荐其N部电影,如果用户已经看过该电影则不推荐。
产生推荐并通过准确率、召回率和覆盖率进行评估。
结果如下所示,由于数据量较大,相似度矩阵为 维,计算速度较慢,耐心等待即可。
[1]. https://blog.csdn.net/m0_37917271/article/details/82656158
[2]. 推荐系统与深度学习. 黄昕等. 清华大学出版社. 2019.
[3]. 推荐系统算法实践. 黄美灵. 电子工业出版社. 2019.
[4]. 推荐系统算法. 项亮. 人民邮电出版社. 2012.
[5]. 美团机器学习实践. 美团算法团队. 人民邮电出版社. 2018.
㈦ 协同过滤算法
用户行为数据在网站上最简单的存在形式就是日志,比如用户在电子商务网站中的网页浏览、购买、点击、评分和评论等活动。 用户行为在个性化推荐系统中一般分两种——显性反馈行为(explicit feedback)和隐性反馈 行为(implicit feedback)。显性反馈行为包括用户明确表示对物品喜好的行为。网站中收集显性反馈的主要方式就是评分和喜欢/不喜欢。隐性反馈行为指的是那些不能明确反应用户喜好 的行为。最具代表性的隐性反馈行为就是页面浏览行为。 按照反馈的明确性分,用户行为数据可以分为显性反馈和隐性反馈,但按照反馈的方向分, 又可以分为正反馈和负反馈。正反馈指用户的行为倾向于指用户喜欢该物品,而负反馈指用户的 行为倾向于指用户不喜欢该物品。在显性反馈中,很容易区分一个用户行为是正反馈还是负反馈, 而在隐性反馈行为中,就相对比较难以确定。
在利用用户行为数据设计推荐算法之前,研究人员首先需要对用户行为数据进行分析,了解 数据中蕴含的一般规律,这样才能对算法的设计起到指导作用。
(1) 用户活跃度和物品流行度
(2) 用户活跃度和物品流行度的关系
一般认为,新用户倾向于浏览热门的物品,因为他 们对网站还不熟悉,只能点击首页的热门物品,而老用户会逐渐开始浏览冷门的物品。如果用横坐标表示用户活跃度,纵坐标表示具有某个活跃度的所有用户评过分的物品的平均流行度。图中曲线呈明显下 降的趋势,这表明用户越活跃,越倾向于浏览冷门的物品。
仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法。学术界对协同过滤算法进行了深入研究,提出了很多方法,比如基于邻域的方法(neighborhood-based)、隐语义模型 (latent factor model)、基于图的随机游走算法(random walk on graph)等。在这些方法中, 最著名的、在业界得到最广泛应用的算法是基于邻域的方法,而基于邻域的方法主要包含下面两种算法。
基于用户的协同过滤算法 :这种算法给用户推荐和他兴趣相似的其他用户喜欢的物品
基于物品的协同过滤算法: 这种算法给用户推荐和他之前喜欢的物品相似的物品
基于邻域的算法是推荐系统中最基本的算法,该算法不仅在学术界得到了深入研究,而且在 业界得到了广泛应用。基于邻域的算法分为两大类,一类是基于用户的协同过滤算法,另一类是 基于物品的协同过滤算法。现在我们所说的协同过滤,基本上就就是指基于用户或者是基于物品的协同过滤算法,因此,我们可以说基于邻域的算法即是我们常说的协同过滤算法
(1) 基于用户的协同过滤算法(UserCF)
基于用户的协同过滤算法的基本思想是:在一个在线个性化推荐系统中,当一个用户A需要个性化推荐 时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户A没有听说过的物品推荐给A。
Ø 从上面的描述中可以看到,基于用户的协同过滤算法主要包括两个步骤。 第一步:找到和目标用户兴趣相似的用户集合。 第二步: 找到这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户。
这里,步骤1的关键是计算两个用户的兴趣相似度,协同过滤算法主要利用行为的相似度计算兴趣的相似度。给定用户u和用户v,令N(u)表示用户u曾经有过正反馈的物品集合,令N(v) 为用户v曾经有过正反馈的物品集合。那么我们可以通过以下方法计算用户的相似度:
基于余弦相似度
(2) 基于物品的协同过滤算法(itemCF)
与UserCF同理
(3) UserCF和itemCF的比 较
首先我们提出一个问题,为什么新闻网站一般使用UserCF,而图书、电商网站一般使用ItemCF呢? 首先回顾一下UserCF算法和ItemCF算法的推荐原理。UserCF给用户推荐那些和他有共同兴 趣爱好的用户喜欢的物品,而ItemCF给用户推荐那些和他之前喜欢的物品类似的物品。从这个算 法的原理可以看到,UserCF的推荐结果着重于反映和用户兴趣相似的小群体的热点,而ItemCF 的推荐结果着重于维系用户的历史兴趣。换句话说,UserCF的推荐更社会化,反映了用户所在的小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反映了用户自己的兴趣传承。 在新闻网站中,用户的兴趣不是特别细化,绝大多数用户都喜欢看热门的新闻。个性化新闻推荐更加强调抓住 新闻热点,热门程度和时效性是个性化新闻推荐的重点,而个性化相对于这两点略显次要。因 此,UserCF可以给用户推荐和他有相似爱好的一群其他用户今天都在看的新闻,这样在抓住热 点和时效性的同时,保证了一定程度的个性化。同时,在新闻网站中,物品的更新速度远远快于新用户的加入速度,而且 对于新用户,完全可以给他推荐最热门的新闻,因此UserCF显然是利大于弊。
但是,在图书、电子商务和电影网站,比如亚马逊、豆瓣、Netflix中,ItemCF则能极大地发 挥优势。首先,在这些网站中,用户的兴趣是比较固定和持久的。一个技术人员可能都是在购买 技术方面的书,而且他们对书的热门程度并不是那么敏感,事实上越是资深的技术人员,他们看 的书就越可能不热门。此外,这些系统中的用户大都不太需要流行度来辅助他们判断一个物品的 好坏,而是可以通过自己熟悉领域的知识自己判断物品的质量。因此,这些网站中个性化推荐的 任务是帮助用户发现和他研究领域相关的物品。因此,ItemCF算法成为了这些网站的首选算法。 此外,这些网站的物品更新速度不会特别快,一天一次更新物品相似度矩阵对它们来说不会造成 太大的损失,是可以接受的。同时,从技术上考虑,UserCF需要维护一个用户相似度的矩阵,而ItemCF需要维护一个物品 相似度矩阵。从存储的角度说,如果用户很多,那么维护用户兴趣相似度矩阵需要很大的空间, 同理,如果物品很多,那么维护物品相似度矩阵代价较大
下表是对二者的一个全面的表较: