1. 石墨烯超级电容器原理
一、成本问题。用 [公式] 模板,然后采用 CVD 工艺用 [公式] 做碳氮源,长出石墨烯材料,再用氢氟酸腐蚀掉模板,得到三维石墨烯块材料的工艺,确实其成本太高工业化生产难以接受。能否采用其它已有的成熟工艺降低成本呢?这是有可能的。例如:采用溶胶凝胶法用石墨烯微片低成本地制备石墨烯气凝胶三维块。众多的研究文献已公开了这方面的技术,浙江大学高超及中科院金属所成会明研究的三维石墨烯气凝胶制备技术是可以参考的。但是,采用溶胶凝胶法实现低成本的关键,是如何低成本地制备石墨烯微片。现广泛采用化学液相机械剥离法制备二维的氧化态石墨烯微片成本高,还存在使用化学材料对环境影响大、需将石墨烯还原处理工艺长导电性下降、二维微片易粘结成团等等问题。
二、氮化处理对环境的影响问题。若工业化生产中采用实验室中常用的浓硝酸处理氮化工艺,确实环评很困难通过,必须找到更好的氮化工艺工业化。
三、能量密度问题。能量密度是超级电容器的“死穴”。为提高超级电容器的能量密度,国内外都投入了大量的资金和人力在研究。但是,国内外研究的路线,基本是研究新型电极材料以提高电极的比容量,或研究于电极表面产生化学反应的复合型电极,中科院上海硅酸盐所的超级电容器公开之前,超级电容器的能量密度问题还没见突破性进展。通常超级电容器的碳电极的比容量小于250F/g,目前已知最高比容量的材料为氧化钌,其比容量为 900F/g。但氧化钌的价格太贵,工业生产中不可能应用。黄富强研究员等采用氮化技术将石墨烯电极的比容量提高至 855F/g,是目前已报导的高比容量材料的最高水平。
接着,我们从实业的角度来看,宁波中车新能源科技在超级电容单体已经量产了五款产品用在电车上,虽然能量密度最大为 40Wh/kg,但总是比 2015 年的 10.7Wh/kg 有了突破。
我们去年也投入石墨烯超级电容的开发,使用的多孔洞石墨烯具有 350F/g 之比电容,选择使用水系电解液,因水系电解液之电位窗只有 1V,改用有机电解液制造超级电容可以有效扩大电位窗,提升能量密度。水系电解液和有机电解液适用的石墨烯不太一样,在有机电解液中,石墨烯之官能基要尽量去除。
另外,对电动载具而言,体积电容量(F/cc)比克电容量(F/g)更为重要。石墨烯可快速充放电并有高克电容量(F/g),但是体积电容(F/cc)很低,因其压实密度太低。反之,活性碳具有高的体积电容(F/cc),因其压实密度大;但快速充放电效能差。故我们选择多孔石墨烯搭配活性碳来提高电极活物的密度,能有效提升体积电容。左图是每公斤能量与功率,右图是每公升能量与功率。碳材是氮掺杂多孔石墨烯搭配活性碳,使用有机系电解液(2.5V)。
2. 超级电容和普通电容的具体区别和特点
一、两者的特点不同:
1、超级电容的特点:充电速度快,充电10秒~10分钟可达到其额定容量的95%以上;循环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;
大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源。
2、普通电容的特点:体积大,容量小用途:震荡、谐振、退耦及要求不高的电路无极性独石电容体积比CBB更小,其他同CBB,有感。
二、两者的概述不同:
1、超级电容的概述:超级电容又名电化学电容,双电层电容器、黄金电容、法拉电容,是从上世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。
2、普通电容的概述:普通电容是一种静态电荷存储介质,可能电荷会永久存在,这是它的特征,它的用途较广,它是电子、电力领域中不可缺少的电子元件。
三、两者的用途不同:
1、超级电容的用途:超级电容器三十多年的发展历程中微型超级电容器已经在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上。就未来十年的发展而言,超级电容器将是运输行业和自然能源采集的重要组成部分。
2、普通电容的概述:主要用于电源滤波、信号滤波、信号耦合、谐振、滤波、补偿、充放电、储能、隔直流等电路中。
3. 请教大神们一个问题,超级电容器中的隔膜,电解液中的离子能透过去吗和锂电的隔膜有什么区别呢
超级电容器的隔膜应满足具有尽可能高的离子电导和尽可能低的电子电导的条件。
以超级电容两种基本形式之一的双电层电容器为例。一对浸在电解质溶液中的固体电极在外加电场的作用下,在电极表面与电解质接触的界面电荷会重新分布、排列。作为补偿,带正电的正电极吸引电解液中的负离子,负极吸引电解液中的正离子,从而在电极表面形成紧密的双电层,由此产尘的电容称为双电层电容。双电层是由相距为原子尺寸的微小距离的两个相反电荷层构成,这两个相对的电荷层就像平板电容器的两个平板一样。
超级电容器充电时,电子通过外加电源从正极流向负极,同时,正负离子从溶液体相中分离并分别移动到电极表面,形成双电层;充电结束后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。在放电时,电子通过负载从负极流到正极,在外电路中产生电流,正负离子从电极表面被释放进入溶液体相呈电中性。
锂电隔膜和超级电容隔膜有类似的要求,区别在于材质有所不同。因为锂电的离子运动是化学反应的结果,而超级电容是物理(电场)驱动的结果。