导航:首页 > 净水问答 > 2014型离子交换

2014型离子交换

发布时间:2023-09-14 03:02:07

1. 硬水转化软水原理

软水和硬水的原理是肥皂水的主要成份是硬脂酸钠,硬水含钙镁离内子多,和肥皂水反容应生成硬脂酸钙和硬脂酸镁沉淀,而软水含钙镁离子少,不会产生沉淀,所以能用肥皂水检验软水、硬水。

取一杯热水倒入肥皂水。水面上出现泡沫的为软水,水面上出现浮渣的为硬水,浮渣越多,水的硬度越大。

也可以用烧杯加热,在杯壁留下较多水垢的是硬水。因为硬水是含有较多的可溶性钙,镁物质的水,加热后,这些可溶性的钙镁物质转化成不可溶性的物质,沉淀杂质多的是硬水,杂质越多,水的硬度越大。

(1)2014型离子交换扩展阅读:

硬水变为软水可以通过以下方法:

1、用石灰、纯碱等软水剂处理,使水中Ca2+、Mg2+生成沉淀析出,过滤、沉淀法。

2、对硬水进行加热的煮沸法。

3、使用泡沸石、水化硅酸钠铝进行的离子交换法。

4、电渗析法:用直流电源作动力,使水中的离子选择性地透过离子交换膜而获得软水。

5、石灰—纯碱法:暂时硬度加入石灰就可以完全消除。

2. 什么是离子交换过程,影响离子交换过程的因素有哪些

离子交换是借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的.它是一种属于传质分离过程的单元操作.
离子交换法
一、前言
离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中.
离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1mm,其离子交换能力依其交换能力特征可分:
1.
强酸型阳离子交换树脂:主要含有强酸性的反应基如磺酸基(-SO3H),此离子交换树脂可以交换所有的阳离子.
2.
弱酸型阳离子交换树脂:具有较弱的反应基如羧基(-COOH基),此离子交换树脂仅可交换弱碱中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Ca2+、K+等无法进行交换.
3.
强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除.
4.
弱碱型阴离子交换树脂:具有较弱的反应基如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除.
不论是离子交换树脂或是沸石,都有其一定的可交换基浓度,称为离子交换容量(ion exchange capacity).对阳离子交换树脂而言,大约在200~500meq/100g.因为阳离子交换为一化学反应,故必须遵守质量平衡定律.离子交换树脂的一般方程式可以表示如下:
全文请看:
离子交换的基本知识
为了除去水中离子态杂质,现在采用得最普遍的方法是离子交换.这种方法可以将水中离子态杂质清除得以较彻底,因而能制得很纯的水.所以,在热力发电厂锅炉用水的制备工艺中,它是一个必要的步骤.
离子交换处理,必须用一种称做离子交换剂的物质(简称交换剂)来进行.这种物质遇水时,可以将其本身所具有的某种离子和水中同符号的离子相互交换,离子交换剂的种类很多,有天然和人造、有机和无机、阳离子型和阴离子型等之分,大概情况如表所示.此外,按结构特征来分,还有大孔型和凝胶型等.
全文请看:

3. 离子交换树脂的交换原理

离子交换树脂的内部结构,由三部分组成,分别是:

1、高分子骨。

由交联的高分子聚合物组成;

2、离子交换基团。

它连在高分子骨架上,带有可交换的离子(称为反离子)的离子型官能团或带有极性的非离子型官能团;

3、孔。

它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。

在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团。这些交换基团也是由两部分组成:固定部分和活动部分。

交换基团中的固定部分被束缚在高分子的基体上,不能自由移动,所以称为固定离子;交换基团的活动部分则是与固定离子以离子键结合的符号相反的离子,称为反离子或可交换离子。反离子在溶液中可以离解成自由移动的离子,在一定条件下,它能与符号相同的其他反离子发生交换反应。

1、离子交换的选择性定义:

离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。

离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。

2、以001×7强酸阳离子交换树脂为例说明:

001×7强酸阳离子交换树脂是一种凝胶型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当原水当中的Ca2+,Mg2+等阳离子-扩散到树脂的孔道中时,由于该树脂对Ca2+,Mg2+等阳离子选择性强于对H+的选择性,所以H+就与进入树脂孔道中的Ca2+,Mg2+等阳离子发生快速的交换反应,Ca2+,Mg2+等阳离子被固定到树脂交换基团上面,被交换下来的H+向树脂的孔道中-扩散,最终扩散到水中。

(1)边界水膜内的扩散

水中的Ca2+,Mg2+等阳离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面;

(2)交联网孔内的扩散(或称孔道扩散)

Ca2+,Mg2+等阳离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点;

(03)离子交换

Ca2+,Mg2+等阳离子与树脂基团上的可交换的H+进行交换反应;

(4)交联网孔内的扩散

被交换下来的H+在树脂内部交联网孔中向树脂表面扩散。

(5)边界水膜内的扩散

最终扩散到水中。

鉴于离子交换树脂反应的可逆性,反应后的树脂通过处理,重新转化为原来的离子交换树脂,这样又可以进入下一循环,其循环次数视所用树脂类型不同而定。

4. 离子交换过程的5个步骤

离子交换过程归纳为如下几个过程1.水中离子在水溶液中向树脂表面扩散2.水中离子进入树脂颗粒的交联网孔,并进行扩散3.水中离子与树脂交换基团接触,发生复分解反应,进行离子交换4.被交换下来的离子,在树脂的交联网孔内向树脂表面扩散5.被交换下来的离子,向水溶液中扩散影响交换的主要因素有流速、原料液浓度、温度等。流速原料液的流速实际上反映了达到反应平衡的时间,在交换过程中,离子进行扩散—交换—扩散一系列步骤,有效地控制流速很重要。一般,交换液流速大,离子的透析量就高,未来及交换而通过树脂层流失的量增多。因此,应根据交换容量等选择适宜的流速。原料液浓度树脂中可交换的离子与溶液中同性离子既有可能进行交换,也有可能相斥,液相离子浓度高,树脂接触机会多,较易进入树脂网孔内,液相浓度低,树脂交换容量大时,则相反。但液相离子浓度过高,将引起树脂表面及内部交联网孔收缩,也会影响离子进入网孔。实验证明,在流速一定时,溶液浓度越高,溶质的流失量液越大。温度温度越提高,离子的热运动越剧烈。单位时间碰撞次数增加,可加快反应速率。但温度太高,离子的吸附强度会降低,甚至还会影响树脂的热稳定性,经济上不利,实际生产中采用室温操作较宜。

赞同0
暂无评论

5. 各类离子交换树脂的再生方法

再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐:

1、大孔吸附树脂简单再生的方法是用不同浓度的溶剂按极性从大到小剃度洗脱,再用2~3BV的稀酸、稀碱溶液浸泡洗脱,水洗至PH值中性即可使用。

2、钠型强酸性阳树脂可用10%NaCl溶液再生,用药量为其交换容量的2倍(用NaCl量为117g/l树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。

3、氯型强碱性树脂,主要以NaCl溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl+0.2%NaOH的碱盐液再生,常规用量为每升树脂用150~200gNaCl,及3~4gNaOH。OH型强碱阴树脂则用4%NaOH溶液再生。

4、一些脱色树脂(特别是弱碱性树脂)宜在微酸性下工作。此时可通入稀盐酸,使树脂pH值下降至6左右,再用水正洗,反洗各一次。

5、阳树脂再生:

通盐酸:在环境温度下,将4%的树脂床体积4倍的HCL通过树脂床,通过时间约2小时。
慢洗:以相同流速和;流向,通2倍树脂体积的除盐水。
快洗:以运行流速和流向,通除盐水至PH=5-6.树脂床备用。

6、阴树脂再生:
通氢氧化钠:在环境温度下,将浓度为4%的树脂体积4倍量的NaOH通过树脂床,通过时间约为2小时。
慢洗:以相同流速和;流向,通2倍树脂体积的除盐水。
快洗:以运行流速和流向,通除盐水至PH=8,树脂床备用
具体操作可根据树脂使用情况酌情增加酸碱的浓度和再生时间。

(5)2014型离子交换扩展阅读

应用领域:

1)水处理

水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

2)食品工业

离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。

3)制药行业

制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。

4)合成化学和石油化学工业

在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。

甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。

5)环境保护

离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。

6)湿法冶金及其他

离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。

6. 离子交换层析中流出物质顺序是什么

若用离子交换层析分离物质,以蛋白质为例,离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。

由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。

反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。

(6)2014型离子交换扩展阅读:

对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。

溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。

梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态。目的物的过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽。

7. 请问离子交换的作用是什么啊

您问的太笼统了啊。
(1)按骨架材料分类
按合成离子交换树脂骨架材料的不同,离子交换树脂可分为苯乙烯系、丙烯酸系、酚醛系、环氧系等。
(2)按交换基团的性质分类
根据交换基团的性质不同,离子交换树脂可分为两大类:凡与溶液中阳离子进行交换反应的树脂,称为阳离子交换树脂,阳离子交换树脂可电离的反离子是氢离子及金属离子;凡与溶液中的阴离子进行交换反应的树脂,称为阴离子交换树脂,阴离子交换树脂可电离的反离子是氢氧根离子和酸根离子。
离子交换树脂同低分子酸碱一样,根据它们的电离度不同又可将阳离子交换树脂分为强酸性阳树脂和弱酸性阳树脂;可将阴离子交换树脂分为强碱性阴树脂和弱碱性阴树脂。表1中归纳了离子交换树脂的类别。
表1 离子交换树脂的类别
树脂名称
交换基团
酸碱性
化学式
名称
阳离子交换树脂
—SO3-H+
磺酸基
强酸性
—COO-H+
羧酸基
弱酸性
阴离子交换树脂
—N+OH-
季铵基
强碱性
—NH+OH-
—NH2+OH-
—NH3+OH-
叔胺基
仲胺基
伯胺基
弱碱性

此外,还可以根据交换基团中反离子的不同,将离子交换树脂冠以相应的名称,例如:氢型阳树脂、钠型阳树脂、氢氧型阴树脂、氯型阴树脂等。离子交换树脂由钠型转变为氢型或由氯型转变为氢氧型称为树脂的转型。
(3)按离子交换树脂的微孔型态分类
由于制造工艺的不同,离子交换树脂内部形成不同的孔型结构。常见的产品有凝胶型树脂和大孔型树脂。
a)凝胶型树脂。这种树脂是均相高分子凝胶结构,所以统称凝胶型离子交换树脂。在它所形成的球体内部,由单体聚合成的链状大分子在交联剂的链接下,组成了空间结构。这种结构像排布错乱的蜂巢,存在着纵横交错的“巷道”,离子交换基团就分布在巷道的各个部位。由巷道所构成的空隙,并非我们想象的毛细孔,而是化学结构中的空隙,所以称为化学孔或凝胶孔。其孔径的大小与树脂的交联度和膨胀程度有关,交联度越大,孔径就越小。当树脂处于水合状态时,水分子链舒伸,链间距离增大,凝胶孔就扩大;树脂干燥失水时,凝胶孔就缩小。反离子的性质、溶液的浓度及pH值的变化都会引起凝胶孔径的改变。
凝胶孔的特点是孔径极小,平均孔径约1~2nm,而且大小不一,形状不规则。它只能通过直径很小的离子,直径较大的分子通过时,则容易堵塞孔道而影响树脂的交换能力。凝胶型树脂的缺点是抗氧化性和机械强度较差,特别是阴树脂易受有机物的污染。
b)大孔型树脂。这种树脂在制造过程中,由于加入了致孔剂,因而形成大量的毛细孔道,所以称为大孔树脂。在大孔树脂的球体中,高分子的凝胶骨架被毛细孔道分割成非均相凝胶结构,它同时存在着凝胶孔和毛细孔。其中毛细孔的体积一般为0.5mL(孔)/g(树脂)左右,孔径在20~200nm以上,比表面积从几m2/g到几百m2/g。由于这样的结构,大孔型树脂可以使直径较大的分子通行无阻,所以用它去除水中高分子有机物具有良好的效果。
大孔型树脂由于孔隙占据一定的空间,骨架的实体部分就相对减少,离子交换基团含量也相应减少,所以交换能力比凝胶型树脂低。大孔型树脂的吸附能力强,与交换的离子结合较牢固,不容易充分恢复其交换能力。但大孔树脂的抗氧化性能比较好,因为它的交联度较大,大分子不易降解。再者,大孔树脂具有较好的抗有机物污染性能,因为被树脂截留的有机物,易于在再生操作中,从树脂的孔眼中清除出去。
离子交换原理
应用离子交换树脂进行水处理时,离子交换树脂可以将其本身所具有的某种离子和水中同符号电荷的离子相互交换而达到净化水的目的。
如H型阳离子交换树脂遇到含有Ca2+、Na+的水时,发生如下反应:
2RH + Ca2+ R2Ca + 2H+
RH + Na+ RNa + H+
当OH型阴离子交换树脂遇到含有Cl-、SO42-的水时,其反应为:
ROH + Cl- RCl + OH-
2ROH + SO42- R2SO4 +2OH-
反应的结果是水中的杂质离子(Ca2+、Na+、Cl-、SO42-等)分别被吸着在树脂上,树脂由H型和OH型变为Ca型、Na型和Cl型SO4型,而树脂上的H+、OH-则进入水中,相互结合成为水,从而除去水中的杂质离子,制得纯水。
H+ + OH- H2O
离子交换树脂的离子与水中的离子之间所以能进行交换,是在于离子交换树脂有可交换的活动离子。而且因为离子交换树脂是多孔的,即在树脂颗粒中存在着许多水能渗入其内的微小网孔,这样使树脂和水有很大的接触面,不仅能在树脂颗粒的外表面进行交换,而且在与水接触的网孔内也可以进行这一交换。
如前所述,合成的离子交换树脂是一种带有交联剂的高分子化合物,有许多水能渗入的网孔,交换剂的内部是一个立体的网状结构作为骨架,这些网组成了无数的四通八达的孔隙,孔隙里面充满了水。在孔隙的一定部位上有一个可以自由活动的交换离子。当离子交换树脂和水溶液接触时,水溶液即通过这些网状结构的孔渗入其内,离子交换树脂进行离解,结果是一定数量的离子(H型离子交换树脂为氢离子,OH型离子交换树脂为氢氧根离子)进入围绕离子交换树脂颗粒四周的水溶液中,形成离子雾。
离子交换树脂与水溶液中离子的交换过程,实际上就是离子雾中的离子与水溶液中的离子的相互交换过程,其机理可以用双电层理论进行解释。
这种理论是将离子交换树脂看作具有胶体型结构的物质,即在离子交换树脂的高分子表面上有和胶体表面相似的双电层。也就是说,在离子交换树脂的高分子表面有两层离子,紧挨着高分子表面的一层离子(如强酸性阳树脂中的—SO3-),称为内层离子,在其外面的是一层符号相反的离子层(如强酸性阳树脂中的H+)。和内层离子符号相同的离子称为同离子,符号相反的称为反离子。
根据胶体结构的概念,双电层中的离子按其活动性的大小,可划分为吸附层和扩散层。那些活动性较差,紧紧地被吸附在高分子表面的离子层,称为吸附层,它包括内层离子和部分反离子;在吸附层外侧,那些活动性较大,向溶液中逐渐扩散的离子,称为扩散层。
内层离子依靠化学键结合在高分子的骨架上,吸附层中的反离子依靠异电荷的吸引力被固定着。而在扩散层中的反离子,由于受到异电荷的吸引力较小,热运动比较显著,所以这些反离子有向水溶液中渐渐扩散的现象。
当离子交换树脂遇到含有电解质的水溶液时,电解质对其双电层有以下的作用:
(1)交换作用
扩散层中的离子与胶核距离大,受胶核电荷吸引力小,在溶液中活动较自由,离子交换作用主要是由扩散层中的反离子和溶液中其它离子互换位置所致。
在H型阳离子交换树脂与溶液中Na+的交换中,树脂内部网孔间的水中有很多从树脂上离解下来的H+,形成了很大的H+浓度,但在流动的水中H+浓度却很小;相反在流动的水中,Na+浓度很大,而树脂内部网孔水溶液中原来没有Na+。浓度大的地方的离子要向浓度小的地方运动,这就是扩散。所以水溶液中的Na+要扩散到树脂颗粒内部去,而H+要从树脂颗粒内部扩散到水溶液中去。这就是离子交换的过程。
上述的交换过程并不局限于扩散层。溶液中也有一些反离子先交换至扩散层,然后再与吸附层中的反离子互换位置;吸附层中的反离子,也会先与扩散层的反离子互换位置后,再完成上述的交换过程。
(2)压缩作用
当水溶液中盐类浓度增大时,可以使扩散层受到压缩,从而使原来处于扩散层中的部分反离子变成吸附层中的反离子,以及使扩散层的活动范围变小。这使扩散层中的反离子活性减弱,不利于进行离子交换。这也可以说明为什么当再生溶液的浓度太大时,不仅不能提高再生效果,有时反使效果降低。
上述将离子交换树脂看作具有胶体型结构的物质,用扩散理论对其交换过程进行解释,适合与水处理工艺的离子交换过程。但关于离子交换过程的机理,有多种说法,现尚还不能统一。

8. 树脂软化水的原理!谢谢

离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。主要规律如下:
(1) 对阳离子的吸附
高价离子通常被优先吸附,而低价离子的吸附较弱。在同价的同类离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
(2) 对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:
SO42-> NO3- > Cl- > HCO3- > OH-
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:
OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
(3) 对有色物的吸附
糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。这被认为是由于前两者通常带负电,而焦糖的电荷很弱。
通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。这种选择性在稀溶液中较大,在浓溶液中较小。

9. 工业上是如何软化水的

工业一般都是生产用水,用水量会很大,用蒸馏法确实是太浪费时内间和能源了。现在工业上容一般都用钠离子交换法,就是利用钠离子树脂把钙镁离子置换出来,君浩环保软化水设备就是这样做的,设备是全自动运行,省时省力,效率还高。

10. 离子交换柱交换过程化学方程式

强酸型阳离子交换树脂:R-SO3H (有许多SO3H基团)
强碱型阴离子交换树脂:[R4N]OH (有许多内OH基团)
R-SO3H + M(+) = RSO3M + H(+) 将所有阳离容子吸附到树脂上,释放出H(+);
[R4N]OH + X(-) = [R4N]X + OH(-) 将所有阴离子吸附到树脂上,释放出OH(-);
H(+) + OH(-) = H2O 阳离子交换产生的H(+)与阴离子交换产生的OH(-)结合成水。

阅读全文

与2014型离子交换相关的资料

热点内容
超磁除垢 浏览:7
正规淀粉污水处理设备商家 浏览:551
超滤产水率低的原因 浏览:370
离子交换法软水 浏览:529
三联全不锈钢溶液过滤器 浏览:826
印染废水出水进反渗透有什么要求 浏览:512
净水器电的功率有多少 浏览:873
小区生活污水井设计图 浏览:661
反渗透r膜怎么装 浏览:546
反渗透膜冲洗电磁阀 浏览:601
虎牌电热水壶里的水垢怎么除 浏览:524
玻璃片水垢 浏览:844
江苏食堂油烟净化器需要多少钱 浏览:971
金滴净水剂过滤 浏览:776
水处理项目自控 浏览:368
废水可生化处理的重要指标 浏览:65
金属表面处理污水处理工艺1 浏览:918
热水器多长时间除垢一次 浏览:837
在哪学树脂工艺品制作 浏览:377
三叶回力镖怎么用 浏览:559