导航:首页 > 净水问答 > 阴离子交换膜怎么用

阴离子交换膜怎么用

发布时间:2023-08-26 18:40:35

1. 离子交换水处理中的应用

EDI(Electro-de-ionization)是一种将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离产生H和OH离子实现树脂自再生来克服树脂失效后通过化学药剂再生的缺陷,是20世纪80年代以来逐渐兴起的新技术。经过十几年的发展,EDI技术已经在北美及欧洲占据了相当部分的超纯水市场。
EDI装置包括阴/阳离子交换膜、离子交换树脂、直流电源等设备。其中阴离子交换膜只允许阴离子透过,不允许阳离子通过,而阳离子交换膜只允许阳离子透过,不允许阴离子通过。离子交换树脂充夹在阴阳离子交换膜之间形成单个处理单元,并构成淡水室。单元与单元之间用网状物隔开,形成浓水室。在单元组两端的直流电源阴阳电极形成电场。来水水流流经淡水室,水中的阴阳离子在电场作用下通过阴阳离子交换膜被清除,进入浓水室。在离子交换膜之间充填的离子交换树脂大大地提高了离子被清除的速度。同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。EDI装置将给水分成三股独立的水流:纯水、浓水、和极水。纯水(90%-95%)为最终得到水,浓水(5%-10%)可以再循环处理,极水(1%)排放掉。图2表示了EDI的净水基本过程。
EDI装置属于精处理水系统,一般多与反渗透(RO)配合使用,组成预处理、反渗透、EDI装置的超纯水处理系统,取代了传统水处理工艺的混合离子交换设备。EDI装置进水要求为电阻率为0.025-0.5MΩ·cm,反渗透装置完全可以满足要求。EDI装置可生产电阻率高达15MΩ·cm以上的超纯水。 EDI装置不需要化学再生,可连续运行,进而不需要传统水处理工艺的混合离子交换设备再生所需的酸碱液,以及再生所排放的废水。其主要特点如下:
EDI的净水基本过程
·连续运行,产品水水质稳定
·容易实现全自动控制
·无须用酸碱再生
·不会因再生而停机
·节省了再生用水及再生污水处理设施
·产水率高(可达95%)
·无须酸碱储备和酸碱稀释运送设施
·占地面积小
·使用安全可靠,避免工人接触酸碱
·降低运行及维护成本
·设备单元模块化,可灵活的组合各种流量的净水设施
·安装简单、费用低廉
·设备初投资大 EDI装置与混床离子交换设备属于水处理系统中的精处理设备,下面将两种设备在产水水质、投资量及运行成本方面进行比较,来说明EDI装置在水处理中应用的优越性。
(1)产品水水质比较
EDI装置是一个连续净水过程,因此其产品水水质稳定,电阻率一般为15MΩ·cm,最高可达18MΩ·cm,达到超纯水的指标。混床离子交换设施的净水过程是间断式的,在刚刚被再生后,其产品水水质较高,而在下次再生之前,其产品水水质较差。
(2)投资量比较
与混床离子交换设施相比EDI装置投资量要高约20%左右,但从混床需要酸碱储存、酸碱添加和废水处理设施及后期维护、树脂更换来看,两者费用相差在10%左右。随着技术的提高与批量生产,EDI装置所需的投资量会大大的降低。另外,EDI装置设备小巧,所需厂房远远小于混床。
(3)运行成本比较
EDI装置运行费用包括电耗、水耗、药剂费及设备折旧等费用,省去了酸碱消耗、再生用水、废水处理和污水排放等费用。
在电耗方面,EDI装置约0.5kWh/t水,混床工艺约0.35kWh/t水,电耗的成本在电厂来说是比较经济的,可以用厂用电的价格核算。
在水耗方面,EDI装置产水率高,不用再生用水,因此在此方面运行费用低于混床。
至于药剂费和设备折旧费两者相差不大。
总的来说,在运行费用中,EDI装置吨水运行成本在2.4元左右,常规混床吨水运行成本在2.7元左右,高于EDI装置。因此,EDI装置多投资的费用在几年内完全可以回收。 EDI装置属于水精处理设备, 具有连续产水、水质高、易控制、占地少、不需酸碱、利于环保等优点, 具有广泛的应用前景。随着设备改进与技术完善以及针对不同行业进行优化, 初投资费用会大大降低。可以相信在不久的将来会完全取代传统的水处理工艺中的混合 。
控制氮含量的方法(4种):生物硝化-反硝化(无机氮延时曝气氧化成硝酸盐,再厌氧反硝化转化成氮气);折点氯化(二级出水投加氯,到残余的全部溶解性氯达到最低点,水中氨氮全部氧化);选择性离子交换;氨的气提(二级出水pH提高到11以上,使铵离子转化为氨,对出水激烈曝气,以气体方式将氨从水中去除,再调节pH到合适值)。每种方法氮的去除率均可超过90%。

2. 为什么电解饱和食盐水实验中,需要把阴阳两级反应相隔进行

一、电解饱和食盐水的原理
在nacl溶液中,nacl电离出na+,
电离出cl-.通电后,在电场的作用下,na+和h+向阴极移动,cl-和oh-向阳极移动.
在阳极,由于cl-比oh-容易失去电子,所以cl-失去电子被氧化生成cl2.
在阴极,na+不得电子而h+得到电子被还原生成h2.h+得电子后,使水电离向右移动,因此,阴极产物包括h2和oh-.
(
阴阳极反应,我想在此就不用写了吧。大家应该都知道的。)
工业上电解饱和食盐水是用涂有钛、钌等氧化物的钛网作阳极,用碳钢网作阴极.
二、电解饱和食盐水制烧碱必须解决两个主要问题
第一个问题是:避免生成物氯气与氢气混合,和氯气接触naoh溶液.因为氯气与氢气混合遇火或遇强光会爆炸,
氯气接触naoh溶液会反应生成nacl和naclo,使产品不纯.
第二个问题是:饱和食盐水必须精制.因为粗盐水电解会损坏离子交换膜.
(1)离子交换膜
使用离子交换膜能解决上述第一个问题.
离子交换膜属于功能高分子材料.离子交换膜分为阳离子交换膜和阴离子交换膜,阳离子交换膜只允许阳离子穿过,不许阴离子和气体分子穿过;阴离子交换膜只允许阴离子穿过,不许阳离子和气体分子穿过.
在电解饱和食盐水制烧碱的工业上,使用阳离子交换膜如下图所示.阳离子交换膜把电解槽分成阴极室和阳极室,使阴极产物氢气和naoh溶液与阳极产物氯气分开,避免混合和接触.
另外,在电解过程中,阳极室cl-减少,阴极室h+减少而oh-增多,na+从阳极室穿过阳离子交换膜进入阴极室,使溶液中的电荷得以平衡.
工业上通过电解饱和食盐水而获得氯气、氢气和氢氧化钠溶液.再通过蒸发氢氧化钠溶液而获得固体氢氧化钠.
注意:为什么强调电解饱和食盐水,是因为氯气在饱和食盐水中的溶解量较小.

3. 为何要用阴离子交换膜钾离子不就过不去了吗而且就算生成硝酸盐为何会干扰反应

你把电极反应方程式写一下就清楚了。

  1. 负极发生反应:8NH3+24OH- -24e- ===4N2+24H2O

  2. 正极发生反应:6NO2+12H2O +24e-====3N2+24OH-

可以看到,负极需专要消耗掉属OH-,而正极反应产生OH-,所以要用阴离子交换膜使得正极产生的OH-迁移到负极,负极的OH-得到补充。假如说采用阳离子交换膜,那么OH-无法迁移,只能是阳离子K+转移,没有什么作用,只会使得电极A处KOH浓度不断变小,而B处KOH浓度不断变大,最终反应会终止。

4. 为什么要先将水通过阳离子交换膜后通过阴离子交换膜

如果先通过阴离子交抄换膜,把水袭中的阴离子换成OHˉ,导致水呈碱性,则水中的Ca²⁺、Mg²⁺等阳离子就会与OHˉ反应,生成沉淀,附着在交换膜上,影响交换膜工作。

5. 电解池中“阴离子交换膜”的作用是为了把电解池中的阴离子都通过“阴离子交换膜”进入阴极么

阴离子交换膜是只允许阴离子通过,不可能所有阴离子都过去,这个主要是为了阻止某些副反应的发生。

6. 阴离子交换膜的介绍

阴离子交换膜是一类含有碱性活性基团,对阴离子具有选择透过性的高分子聚合物膜,也称为离子选择透过性膜。阴离子交换膜由三个部分构成:带固定基团的聚合物主链即高分子基体(也称基膜)、荷正电的活性基团(即阳离子)以及活性基团上可以自由移动的阴离子,如图所示。

7. 阳离子交换膜和阴离子交换膜的区别,我知道它们分别让不同的离子进入,但是是从哪边进,哪一边出啊

阳离子交换膜是两边都可以进出阳离子的,格挡主阴离子。同理,阴离子交换膜也一样

8. 膜技术的电渗析

在直流电场作用下,利用阴、阳离子交换膜对溶液中的阴、阳离子的选择透过回性,分离溶答质和水。
阴膜只让阴离子通过;阳膜只让阳离子通过。
阴极:
还原反应:2H+ +2e → H2↑
阴极室溶液呈碱性,结垢
阳极:
氧化反应:4OH- → O2↑+2H2O +4e
或 2Cl-→Cl2↑+2e
阳极室溶液呈酸性,腐蚀
特点:只能将电解质从溶液中分离出去。不能去除有机物等。 离子交换树脂:树脂与离子之间发生交换反应
离子交换膜:对溶液中的离子具有选择透过的特性★按其结构分为:异相膜、均相膜。
异相膜:离子交换树脂磨成粉末,加入粘合剂,滚压在纤维网上。
均相膜:离子及交换树脂的母体材料制成连续的膜状物,作为底膜,然后在上面嵌接上活性基团。
★按离子选择性分:
阳离子交换膜(一般为聚苯乙烯磺酸型):R-SO3H,在水中电离后,呈负电性
阴离子交换膜(聚苯乙烯季胺型):R-CH2 N(CH3)3OH,电离后,呈正电性
★离子交换膜选择透过性主要是由于:
1)膜的孔隙结构;2)活性交换基团的作用。
★离子交换膜是电渗析的关键部分,良好的电渗析应在于:
1)高的离子选择性;2)渗水性差;3)导电性好;4〕化学稳定性和机械强度。

9. 阴阳离子交换膜是干什么

让离子选择透过,更好的完成反应。

10. 离子交换色谱法的原理,装置及应用

原理:
离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固定离子基团及可交换的离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。

装置:
(1)分离柱 装有离子交换树脂,如阳离子交换树脂、阴离子交换树脂或螯合离子交换树脂。为了减小扩散阻力,提高色谱分离效率,要使用均匀粒度的小球形树脂。最常用的阳离子交换树脂是在有机聚合物分子(如苯乙烯-二乙烯基苯共聚物)上连接磺酸基官能团(─SO3─)。最常用的阴离子交换剂是在有机聚合物分子上连接季铵官能团(─NH4)。这些都是常规高交换容量的离子交换树脂,由于它们的传质速度低,使柱效和分离速度都低。C.霍瓦特描述了一种薄膜阴离子交换树脂,它是在苯乙烯-二乙烯基苯共聚物核心上沉淀一薄层阴离子交换树脂,就象鸡蛋有一薄层外皮那样,离子交换反应只在外皮上进行,因此缩短了扩散的路径,所以离子交换速度高,传质快,提高了柱效。同样,在小颗粒多孔硅胶上涂一薄层离子交换材料也可得到相同类型的树脂。螯合离子交换树脂具有络合某些金属离子而同时排斥另一些金属离子的能力,因此这种树脂具有很高的选择性。除了离子交换柱外,其他高效液相色谱柱也可用于分离离子。
(2)抑制柱和柱后衍生作用 常用的检测器不仅能检测样品离子,而且也对移动相中的离子有响应,所以必须消除移动相离子的干扰。在离子色谱中,消除(抑制)移动相离子干扰的常用方法有两种。
①抑制反应,用抑制反应来改变移动相,使移动相离子不被检测器测出。离子色谱通常使用电导检测器。在抑制反应中??缍匝衾胱佣?裕?把高电导率移动相的氢氧化物转变成水,而样品离子则转变成它们相应的酸:
NaOH+H+─→Na++H2O
NaX+H+─→HX+Na+
在装有强酸性阳离子交换树脂的柱中进行抑制反应,使用一段时间后,这种树脂就需要再生,很不方便。改用连接有磺酸基(─SO3H)的离子交换膜(阳离子交换膜)或用连接有铵基(─NH4)的离子交换膜(阴离子交换膜),就可以连续进行抑制反应。例如,阳离子交换膜可使阳离子通过它扩散过去,而阴离子则不能扩散过去。
1981年,T.S.史蒂文斯和斯莫尔等报道了中空纤维抑制法。这种纤维是由阳离子交换膜材料拉制而成。用这种方法不仅不需要再生抑制柱而且减小了峰的加宽,提高了柱效。一种比较新的膜技术是加一电场以加速离子的传递,该法与中空纤维法比较,其优点是反应时间短、交换能力高,并且可以用于阳离子和阴离子两者。
②柱后衍生作用,将从柱子流出的洗出液与对被测物有特效作用的试剂相混合,在一反应器中生成带色的络合物(见配位化合物)。对衍生试剂最重要的要求是它们与被测物能生成络合物,但不与移动相生成络合物。柱后衍生法能用于测定重金属离子,所用的衍生试剂有茜素红S等。
(3)检测器 分为通用型和专用型。通用型检测器对存在于检测池中的所有离子都有响应。离子色谱中最常用的电导检测器就是通用型的一种。紫外-可见分光光度计是专用型的检测器,对离子具有选择性响应。可变波长紫外检测器与电导检测器联用,能帮助鉴定未知峰,分辨重叠峰和提供电导检测器不能测定的阴离子,如硫化物及亚砷酸中的阴离子的检测。
在离子色谱中,电导检测法总是和抑制反应配合使用。这种检测器对分子不响应,如水、乙醇或者不离解的弱酸分子等。对于电导检测器,一个重要的条件是温度要稳定,所以检测池要放在恒温箱中,1982年H.萨托设计一种双示差电导检测器,消除了温度变化对检测的影响,可测定10-9摩尔的阴离子。

应用:
离子色谱主要用于测定各种离子的含量,特别适于测定水溶液中低浓度的阴离子,例如饮用水水质分析,高纯水的离子分析,矿泉水、雨水、各种废水和电厂水的分析,纸浆和漂白液的分析,食品分析,生物体液(尿和血等)中的离子测定,以及钢铁工业、环境保护等方面的应用。离子色谱能测定下列类型的离子:有机阴离子、碱金属、碱土金属、重金属、稀土离子和有机酸,以及胺和铵盐等。

阅读全文

与阴离子交换膜怎么用相关的资料

热点内容
过滤器没排气 浏览:519
生活污水处理保护法 浏览:771
乙烯基酯树脂毒性 浏览:122
焦化污水总氮如何去除 浏览:627
无电ro反渗透纯水机原理图 浏览:81
医疗废物及污水管理督查整改报告 浏览:461
过滤器的折旧年限 浏览:393
乙酸乙酯蒸馏器化验 浏览:950
什么可以保持干净水的供应 浏览:638
购买饮水机做什么费用 浏览:103
山上纯净水怎么渗透 浏览:175
我的世界要素蒸馏系统 浏览:242
小仓鼠的饮水机怎么安装到房子上 浏览:944
东方红液压提升器维修 浏览:332
一个废机油滤芯能收多少废机油 浏览:396
蒸馏水跟2次蒸馏水的区别 浏览:895
颗粒很细为什么不能过滤除去 浏览:85
16款轩逸波箱油滤芯在什么位置 浏览:391
实习建设污水处理厂 浏览:488
潍坊水处理设备市场 浏览:974