1. 超滤膜可以截留来细菌,但不可以杀死自细菌,截留率再好的超滤膜也不能长期保证干净区没有细菌,这样会直接影响到出水水质,因此必须定期对周转环境及过滤系统进行定期灭菌,灭菌的操作周期因供给原水的水质情况而定。
2. 过滤系统所用组件数量是根据设计总透水量而定的,而每根组件所标称的每小时产水量是指纯水透水速率,是指采用纯水作测试介质,纯水对超滤膜不存在溶质引起的堵塞问题。但由于装置的透水速率随运转时间而逐渐下降,但经清洗后基本上可以回复到一个相对稳定值。此外,超滤组件的透水量还受到温度、压力、料液浓度、给水浊度等因素影响。
3. 由于每根超滤组件在出厂前加入保护液,使用前要彻底冲洗组件中的保护液,无论低压还是高压冲洗时,系统的产水排放阀均应全部打开。
4. 超滤组件要轻拿轻放,并注意保护,由于超滤组件是精密器材,所以在使用安装时要小心,要轻拿轻放,更不能甩坏。组件若停用,要先用清水冲洗干净后,加0.5%甲醛水溶液进行消毒灭菌,并密封好。如冬天组件还要进行防冻处理。
5. 使用中空纤维超滤膜前必须认真阅读使用说明,按照超滤膜在水处理应用工艺进行操作。
B. 超滤能去除二价以上的离子吗,去除率有多大
超滤主要是过滤胶体类物质,大分子,就连COD去除率都有限,一般感觉文献中内COD去除率也就40%,而且超滤不是过滤容离子的,超滤超滤膜的公称孔径一般都是0.02微米,所以去除率很低,你要是过滤离子就得上反渗透,都在98%以上。如果你非要超滤,那么最好把金属离子胶体化,这样效率很高,基本都可以90%以上,但是你如果单纯说水溶性金属离子,效果非常低,他只能处理部分吸附在胶体上的重金属,具体数值与你的胶体含量有关。
C. 超滤技术在工业废水处理中的应用
超滤技术在工业废水处理中的应用
简介:超滤是迅速崛起的一门分离技术,它在环境保护的水处理中有着广泛的应用。文章简要介绍了超滤技术的发展现状,并对超滤分离法在电泳漆、化学纤维、纺织、造纸、印钞、酿造、制革、石油和食品工业废水处理中的应用进行了综述。
早在1861年Schmidt用牛心包膜截留阿拉伯胶,可作为世界上第一次超滤试验,到1960年,在Loeb和Sourirajan试验成功不对称反渗透醋酸纤维素膜的影响下,1963年Michaels开发了不同孔径的不对称CA超滤膜。基于CA膜物化性质的限制,1965年开始,不断有新品种的高聚物超滤膜问世,并很快商品化,1965-1975年是超滤工艺大发展的阶段,膜材料从初期的不对称CA膜扩大到现在的聚砜(PSF)、聚丙烯腈(PAN)、聚醚砜(PES)以及各种高分子合金膜等,膜组件有板式、卷式和中空纤维等,在不同的生产过程中都已成功的应用[1]。目前所用超滤膜较多由高分子材料制成,随着工业上超滤技术的应用和发展,以金属、陶瓷、多孔硅铝等材料制成的无机膜,在20世纪80年代初期至90年代获得了重要发展。如1980-1985年期间,美国UCC公司开发的载体为多孔炭、外涂一层陶瓷氧化锆的无机膜可用作超滤膜管,美国Alcoa/SCT公司开发的商品名为Membralox的陶瓷膜管,能承受反冲,可采用错流(CrossFlow)操作[2]。用无机膜进行超滤,比常规的分离技术更加经济有效。目前工业所用的无机膜几乎全部是多孔陶瓷膜或以多孔陶瓷为支撑体的复合膜。随着粉末技术的发展,很多优质价廉的烧结金属微孔管投入市场,它具有易于和金属构件组合、加工等优点。近年来,国外还有人烧结不锈钢微孔管内壁烧结孔径为0.1纳米的TiO2薄层,构成Scepter不锈钢膜[3]。
近30年是超滤技术迅速发展的时期,超滤技术被广泛地应用于饮用水制备、食品工业、制药工业、工业废水处理、金属加工涂料、生物产品加工、石油加工等。
1 工业废水处理中的应用
目前膜法水处理技术在环境过程中的应用,主要是超滤、反渗透、渗析和电渗析等方法用于处理各工业废水。超滤技术因其操作压力低、能耗低、通量大、分离效率高,可以回收和回用有用物质和水,特别是通量大的特点,使得超滤成为废水处理工程采用的主要膜分离技术。
1.1 电泳漆废水
国外超滤技术的较大规模应用开始于70年代,当时就是主要用于电泳涂漆工业。废水中的漆料是使用漆料总量的10%~50%,采用超滤技术处理电泳漆废水不仅可以减少漆的损失和回用废水,而且可以使有害无机盐透过超滤膜从而提高了电泳漆的比电阻,调节和控制、漆液的组成,保证电泳涂漆的正常运行。70 年代初期主要用CA膜管式超滤器处理阳极电泳漆废水,70年代后期,改用框式、卷式、中空纤维式超滤器处理阴极电泳漆废水。国内一些汽车厂、电泳漆行业也采用超滤技术,如长春汽车轿车厂从Aomicon公司引进中空纤维式阴极电泳漆专用超滤器,由30根直径7.62cm的膜组件并联而成,总膜面积约75 cm2,处理能力为1.5 t/h,装有循环液定时自动换向系统,以减少膜污染,延长膜清洗周期。北京某汽车厂原排放电泳漆废水量为200 m3/d,工件带出漆液量19.13 L/h,经用超滤法处理后,保证了电泳槽漆液的电阻率大于500 Ω/cm,维持了电泳漆的固体含量稳定,对电泳漆的截留率为97%~98%,排水量降到5 m3/d,节省了大量补充的去离子水[4]。中国科学院生态环境研究中心研制出荷正离子的中空纤维膜组件,对比实验表明结果良好,与进口膜性能相近,可以用于生产。无锡超滤设备厂对有关的超滤膜进行开发,以共聚丙烯腈为膜材料,二甲基乙酰胺为溶剂,添加适量致孔剂制取的荷正电荷超滤膜透液量大,性能稳定,油漆截留率高,抗污染性能好,也已用于生产。我国许多厂家引进国外超滤装置,所以用性能优良的国产荷电超滤膜装置取代进口装置成为现在的新目标。
1.2 化纤、纺织工业废水
化纤工业中有多种废水可用超滤法处理与回收。如回收聚乙烯醇(PVA),国外不少工厂已用于生产。日本某工厂采用8 cm2的管式超滤器将PVA原液由0.1%浓缩到10~15倍,进口压力为3.92×105 Pa,出口压力为1.96×105 Pa,进料温度55~66℃,膜的水通量为100~140 L/ (cm2·h),对PVA的分离率为98.2%,每天回收PVA 20 kg,运行良好[5]。
染料废水种类繁多,组成复杂,主要包括含盐、有机物的有色废水;氯化及溴化废水;含有微酸和微碱的有机废水;含有铜、铅、铬、锰、汞等阳离子的有色废水;含硫的有机物废水。废水量大,浓度高,色度高,毒性大,是治理难度最大的工业废水之一。上海印染厂最早采用醋酸纤维外压管式超滤装置处理还原染料废水并回收染料获得成功,中科院环境化学所也完成了用聚砜超滤膜管式和中空纤维式装置处理染料废水的现场实验,脱色率为95%~98%,COD去除率60%~90%,浓缩液含染料15~20 g/L,并被印染厂引用于生产[6]。
洗毛废水是纺织工业污染最严重的废水之一,洗毛废水中含有大量的悬浮物、油脂和合成洗涤剂,其中主要污染物是羊毛脂。羊毛脂是日用化工、医药工业的原料,也是很好的防腐剂和润滑剂,具有较高的经济价值。传统回收羊毛脂的方法回收率较低,而采用超滤技术处理洗毛废水取得了好的效果。国内的许多毛纺厂和洗毛厂采用超滤法处理洗毛废水工艺,该工艺包括预处理、超滤浓缩、离心分离和水回用四个系统,比传统的离心工艺羊毛脂回收率提高1~2倍。具体操作工艺条件为[7]:料液温度50 ℃,操作压力0.12~0.35 MPa,膜表面流速3 m/s,膜平均水通量40 L/(cm2·h),浓缩倍数为3~6倍,结果油脂截留率为98%~99%,COD截留率为90%~98%。
1.3 造纸工业废水
造纸工业耗水量极大,造纸废水主要来源于去皮、浆化、洗净、漂白、抄纸等工序。用超滤技术处理造纸废水既可以对废水中某些有用成分进行浓缩回收,又可将透过水回用。开山屯化纤浆厂是国内制浆造纸行业中第一家引进了具有国际80年代先进水平的大型超滤设备,并成功地用于亚硫酸盐制浆废液的处理,在此基础上又用自制聚砜膜代替进口膜而取得成功,实验证明达到了DDS公司生产的FSN61PP超滤膜的水平。工艺为:将废液预热升温到50~70℃,打开进料阀,废液经过过滤器进入储罐内,超滤始终控制入口压力0.6 MPa,出口压力0.3 MPa,膜的工作温度60~65 ℃,膜工作面积2.25 cm2。结果成品的木质素磺酸浓度大于95%,还原物去除率大于85%,固形物的率大于30%,达到了对废液中高分子木质素磺酸的有效分离、纯化以及浓缩的目的。日本于1981年采用NTU-3508超滤组件建成了日处理4000 m3的管式膜装置,是世界上最大规模的装置。我国目前已具备生产此类超滤和反渗透膜组件的能力,并迅速推广[8]。
1.4 印钞废水
我国印钞业擦板废液的处理一直是困扰印钞行业的老大难问题。中科院上海原子核研究所与上海印钞厂、南昌印钞厂、西安印钞厂等合作,从1993年开始进行了用板式超滤器处理擦板废液的工作,并对原有的HPL-Ⅱ(A)型超滤器进行了改进,研制成功适用于处理印钞擦板废液的HPL-Ⅱ(B)型板式超滤器。经超滤处理后,透过膜的清液不含油墨,碱的含量不变,对COD的去除率为99%以上,对固含量为3%的擦板废液可浓缩至12%,废液的回收率为75%,且比采用中和法处理废液省力省大量资金。
1.5 酿造工业废水
味精废液是含大量菌体等有机物、氯化物的粘性液体,COD高达70 000 mg/L,废液的排放对环境造成严重的污染,同时废液中还含有一些价值很高的代谢副产物。味精厂用CA、PS、PVC等超滤膜对味精废液进行处理,其操作条件为:操作压力0.25MPa,操作温度25℃,超滤浓缩倍数5~6倍,处理结果表明:透过液清澈透明,菌体去除率达98%以上。透过液经管道输入酱油厂用来生产味精酱油;对浓缩液进行超滤可得到含蛋白质和脂肪及核酸的价值很高的代谢副产物;超滤谷氨酸发酵液,透过液清澈透明,用来提取谷氨酸可提高纯度和提取率[9]。
1.6含油废水的处理
乳化油废水是一种常见的工业废水,超滤法处理乳化油废水应用已有20多年。在1979年,西德已有超过250个超滤设备被用于浓缩乳化油,所用膜组件为管式、卷式和板式,1989年膜生产单位提高为能处理乳化油废水的系列膜设备。采用荷电中空纤维膜处理含有氢氧化钠、磷酸盐、碳酸钠、硼酸钠、亚硝酸钠和非离子或阴离子表面活性剂的乳化油废水时,在温度50℃,进口压力0.12 MPa,出口压力0.10 MPa时,透过液通量达25~33 L/(cm2·h),透过液含油量仅十几mg/L。对于含有氢氧化钠、盐等水溶液和部分表面活性剂的透过液稍加调整即可回用脱脂。浓缩液进入油-水分离器,分离出来的油品可回收形成无排放体系。目前,上海宝钢采用Abcor公司管状膜的大型超滤设备来处理乳化油废水。中科院上海原子核研究所选用PSF100型超滤膜采用3块HPM型隔板并联成板式超滤器,在料液流速1.6 m/s,平均压力0.3 MPa,自然升温等运行条件下,先后进行2次连续浓缩运行,结果表明:油分截留率大于99%,COD的去除率达到95%,体积浓缩比高,超滤平均通量为30 L/(cm2·h),处理乳化油废液效果很好[10]。
含原油废水中含油量通常为100~1000 mg/L,超过国家排放标准(10 mg/L),故排放前必须进行除油处理。可采用中空纤维超滤膜组件和超滤设备,在操作压力为0.10 MPa,废水温度40℃,膜的透水速度可达60~120 L/(cm2·h),可以把含原油100~1000 mg/L的废水处理达到环境排放标准10 mg/L以下,也使处理后的水质达到了低渗透油田的注水标准[11]。
金属加工过程中产生大量的含有切削油、悬浮物和洗涤剂的废水,必须进行处理才能排放。超滤处理可把废水分离成两部分:浓缩液中含有油和悬浮颗粒,透过液中几乎不含油。用超滤与微滤联合进行处理,先用微滤把油浓缩至10%,其中微滤膜的透水能力为250 L/(cm2·h),在进行超滤处理,可回收85%的清洗剂。用超滤处理钢厂冷压车间的压延油废水时,先用80目筛网过滤后,含油废水进入循环槽,再经60目筛网过滤后进入超滤膜,超滤浓缩液进入油-水分离器,分离出的油含油量大于90%,可进行燃烧处理,分离出的水返回循环槽进行超滤处理。超滤透过液可循环使用,超滤过程中的透水量和透过液的油分浓度都很稳定,不受供给水中油分浓度的影响。
处理石油开采产生的含油废水,可在油田用膜分离器中进行超滤与反渗透(或纳滤)的组合操作。先使分离出的水进入中空纤维超滤膜,透过液再进入反渗透膜(或纳滤膜),不但去除了悬浮物,还去除了溶解盐和溶解油,以满足特殊水质的要求。
用超滤处理各种乳化油废水的开发还在进行,分离效率已基本解决,而要攻克的难关是膜的污染与清洗问题[12]。
1.7 制革工业废水
制革工业脱毛用的原料主要是Na2S和石灰,其废水产生量约占皮革污水总量的10%,且毒性大,硫化物含量达2 000~4 000 mg/L,悬浮物和浊度值都很大,是皮革工业中污染最为严重的废水。在对废水进行处理时,用超滤法分离其中蛋白质,采用磺化聚砜类膜进行超滤,把浸灰废液的浓度提高5~10倍,膜不会出现堵塞现象,其处理效果优于一般净化技术。
超滤可回收40%的Na2S、20%的石灰和68%~70%的液体,回收大量的蛋白质,据估算,每吨盐腌皮可获得30~40 kg的角蛋白,因而具有较好的经济效益[13]。
1.8食品工业废水
生产大豆分离蛋白质会产生大量的高浓度有机废水,用超滤法处理起废水,既可回收经济价值很高的可溶性蛋白和低聚糖,又解决了环保问题,并且与传统的处理方法相比,运行费用低,产出效益高,回收产品质量稳定,操作简便。
马铃薯生产淀粉的废液有机物含量高,COD通常在10 000 mg/L左右,国外应用超滤技术去除马铃薯淀粉排放废水中的COD并浓缩回收可溶性蛋白质,国内也用膜装置为聚砜(PS)和聚丙烯腈(PAN)中空纤维超滤膜组件进行实验,工艺条件为:操作压力0.10 MPa,进料流量70 L/h,室温,超滤前调整料液pH 3.5左右(接近蛋白质等电点,截留率高)。实验结果表明超滤效果较好,废水的COD值由8 175 mg/L降为3 610mg/L,COD去除率为55.8%。膜污染后用40 ℃、0.1 mol/L的NaOH溶液来清洗,恢复率在90%左右[14]。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
D. 生活污水超滤膜能做到cod达标排放吗
是不可以的。超滤可以很容易的去除水中的有机物,这是一种误解。
E. 超滤膜能去除水中有机物吗
是不可以的。超滤可以很容易的去除水中的有机物,这是一种误解。
1.关于水中有机物的形态
按形态来分,水中有机物也和水中无机物一样,可以分为悬浮态、胶态和溶解态三大类。
对溶解态有机物的定义,是依据测定方法来理解。目前普遍应用的测定方法是将水样通过0.45μm(或0.15μm)滤膜过滤,通过滤膜后的水中有机物作为溶解态有机物,没有通过滤膜的有机物作为悬浮态和胶态有机物。有人选用0.15μm滤膜,这是因为在无浊度水制备中将透过0.15μm滤膜的水作为零浊度水。试验表明,水通过0.45μm或0.15μm滤膜后,对水中有机物量影响不大,所以目前一般均将通过0.45μm滤膜的水中有机物作为溶解态有机物。
根据这种观点,水分析中测定的COD,也可以分为悬浮态和胶态有机物的COD和溶解态有机物的COD二部分。原水都是先经过混凝、澄清、过滤之后才作为离子交换的进水,反渗透的进水在过滤之后还要再经过二次混凝或细砂过滤,这样的水,应该说其中的悬浮态和胶态有机物已大部分去除,水的COD中大部分是溶解态有机物的COD。试验表明,原水在混凝、澄清、过滤阶段,对水中溶解态有机物去除甚微,有时甚至为0,而对水中悬浮态和胶态有机物去除率可以达到90%以上。
所以,我们笼统讲某种处理方法可以去除水中多少有机物,即COD去除率为多少是不确切的,也不全面的。水处理中面临的困难不是总的有机物(COD)的去除率能提高到多少,因为在悬浮态和胶态有机物含量高的水中,应用一般的混凝、澄清、过滤的方法,就可以把总有机物(COD)去除率提高到很高的数值。
因此,反渗透(或离子交换)进水中的有机物主要是溶解态有机物,反渗透(或离子交换)进水的COD指标也主要是指溶解态有机物的COD。要使反渗透(或离子交换)进水的COD达到标准,其主要任务也是降低水中溶解态有机物的量。
2.水中溶解态有机物分类
天然水中有机物有的来源于工业排放,也有的来源于生活污水的排放或其它来源,但不管来源为何,排到天然水体中后,都会在微生物作用下大部分(或一部分)转变为腐殖质类化合物,这种转变可以在几小时至几百小时内完成。腐殖质类物质不是一种单一物质,而是多种有机物的混合物,我们现在所说的腐殖酸和富里酸就是用一个简单办法(在稀酸中溶和不溶)把腐殖质分为二类,这种方法是粗略的,简单的。
由于水中有机物种类繁多,结构复杂,对水中有机物目前尚不能像无机物一样按种类来区分和测定浓度。
目前对水中有机物常用的分类方法是将水中溶解态有机物按分子量大小来分,即所谓的水中溶解态有机物分子量分布。水中溶解态有机物分子量分布的测定方法目前有二类:一类是凝胶色谱法(GPC),一类是超滤法。超滤法比较简单,是目前常用的方法,超滤法就是用不同孔径(截留分子量)大小的超滤膜来将水中有机物按分子大小进行筛分。
超滤膜的截留分子量,是用不同分子量的球状蛋白来做试验,当某个分子量的球状蛋白有90~95%以上被这个超滤膜截留时,就将这个蛋白质的分子量定义为超滤膜的截留分子量。
F. 污水cod超标怎么处理
1、物理法:是利用物理作用来分离废水中的悬浮物或乳浊物,可去除废水中的COD。常见的有格栅、筛滤、离心、澄清、过滤、隔油等方法。
2、化学法:是利用化学反应的作用来去除废水中的溶解物质或胶体物质,可去除废水中的COD。常见的有中和、沉淀、氧化还原、催化氧化、光催化氧化、微电解、电解絮凝、焚烧等方法。
3、物理化学法:是利用物理化学作用来去除废水中溶解物质或胶体物质。可去除废水中的COD。常见的有格栅、筛滤、离心、澄清、过滤、隔油等方法。
污水中的cod超标反应了水中还原性物质受污染的程度,cod的含量越高,则水中的需要消耗的溶解氧就越多,从而造成水中缺氧,而水中缺氧就会导致大量水中的动植物因缺氧而死亡,加速水质恶化。
企业生产过程中cod的产生可是不可避免的,例如食品厂中多余食物的残留与水体、化工厂中还原性物质S离子和氯离子等及电镀废水在酸洗过程中都是污水COD超标原因。
(6)超滤能不能去除cod扩展阅读:
人类生产活动造成的水体污染中,工业引起的水体污染最严重。如工业废水,它含污染物多,成分复杂,不仅在水中不易净化,而且处理也比较困难,工业废水为工业污染引起水体污染的最重要的原因。
生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。历史上流行的瘟疫,有的就是水媒型传染病。
在水资源中,有机物带入蒸汽系统和凝结水中,使pH降低,造成系统腐蚀,在循环水系统中有机物含量高会促进微生物繁殖。因此,不管对除盐、炉水或循环水系统,COD都是越低越好,但并没有统一的限制指标。
G. 如何处理化工生产污水COD达标排放
水量倒不是很大,但COD很高,用你所说的处理工艺可行性不高。
砂滤主要去除废水中的SS,而对SCOD去除不明显,一般要求进水SS小于100mg/l。如果你要处理的废水中SS较高,占COD的比例高,则砂滤很容易形成板结,除非处理前对废水进行稀释;同样活性碳吸附、超滤、RO法等对SS也是有要求的。
另外,如果废水中SS不高,那么你所说的这些深度处理方法对如此高的COD负荷,其去除效果很值得怀疑,更重要的是,处理和维护成本也很高。建议你向专业的生产厂家作相关询问,看这些处理方法适合于怎样的水质条件。
根据你提供的信息,建议你再测一下原水中的SS、BOD和电导率,如果BOD/COD>0.3,完全可以先上一个小型的厌氧反应器或延时曝气系统,将BOD降低后再根据出水要求考虑深度处理,处理难度和成本可大大降低。
1、你所要处理的化工生产废水主要成分是哪些?可生化性如何?
2、处理的来水COD有多高?水量是多少?前端是否有厌氧或好氧生物处理工艺?
3、你所说的COD达标排放是国家一级排放标准还是二级排放标准?是排至市政污水管网还是直排入河,还是生产回用?
4、砂滤主要去除SS;活性碳、超滤、膜过滤能去除一部分COD,可作为深度处理工艺的选择,但COD负荷毕竟有限,且需考虑到成本的问题;如来水COD高的话,前端需要生化处理工艺;就我所知,PTA化工生产废水经过厌氧和好氧生物处理,其COD是能够降至100mg/l以下的,甚至可以达到60mg/l以下!