离子交换除硅原理 硅(SiO2)作为极弱酸,在水中以与硅酸氢根(HSiO3)离子平衡的形式存在.离子形态的硅可用强 碱阴树脂在OH型循环操作中除去.既然两种形
⑵ 离子交换除盐中为什么阳床漏钠阴床必漏硅
一RHSO。+H。O O)求,即为除盐水。除硅包括在除盐内,硅的危害2**H十*。S队一凡Sq+2*。O(2)很大,如沉积在高压锅炉内,其隔热性能比耐火 **N+*O一*O十*0(3)砖大数倍,必造成对锅炉的危害,在电子和集成 ROH+H;CO;一RHCO;+11。O(4)电路中则造成断路,因此不允许硅的泄漏超过 ROH+HSO;一RHSIO;+H。O(5)规定值。反应式门)和(2)是同时进行的,代表了 水的除盐有离子交换、电渗析、反渗透、蒸ROH与SO广交换的两种情况。当树脂主要是馏法、冷冻法、溶剂革取法、水合物法等,目前使ROH存在时,反应式(2)占优势;当水中H;SO。用最多的仍为阴、阳离子交换法,即用阳离子交 浓度超过树脂上 OH-时,主要是反应式(l)。因换树脂(简称“阳床”)去除水中的阳离子,用阴 此,运行刚开始时因都是ROH型,故是(2)式离子交换树脂(简称“阴床”)去除水中的阴离 反应;当树脂从上到下逐渐形成 R。SO。
⑶ 为什么强碱性阴树脂能有效去除水中硅化物
因为强碱阴树脂能有效去除强酸根阴离子和弱酸根阴离子,水中的硅化物就是一种硅酸盐,强碱阴树脂官能团上的OH根,能有效交换SiO3-,具体反映原理如下:
HSiO3- + ROH ➡️ RHSiO3 + OH-
当然,如果原水当中的硅化合物含量过高,也会导致强碱阴树脂硅污染中毒。一般情况下,阴床的强碱树脂再生不当、失效的树脂未及时再生或阴树脂再生不彻底,会发生硅酸在树脂颗粒内部聚合的现象,而难以再生,这种现象是硅在树脂内的积聚,不属于硅的污染。硅的污染是指再生过程中,已从树脂上再生出来的硅酸盐,由于再生液pH值的降低,大量的硅酸以胶体状态析出,严重时再生液可以变成胶冻状,被覆于树脂表面,影响树脂的交换容量,并造成出水SiO2含量增高。
顺流再生固定床和移动床一般不会发生硅的污染。硅的污染主要发生于原水中硅的含量与总阴离子含量(不包括碱度)比值高的对流再生单床,尤其是在弱、强型阴离子交换树脂联合应用的设备和系统中。
清洗二氧化硅污染可用烧碱,建议用量为130~160g/L,浓度为2.0%,处理温度为50℃~60℃。树脂床须先浸泡,如条件不允许,可将溶液以2个床体积/小时的流速通过树脂床,这方法的关键是保持较高温度及接触时间。
防止硅污染的主要措施有:
①阴床失效后要及时再生,不在失效态备用。
②再生碱液应加热,Ⅰ型树脂不高于40℃,Ⅱ型树脂不高于35℃。
③降低再生液的浓度至2%NaOH。
④再生液的流速不低于5m/h,但应保持进再生液的时间不少于30min。
⑤联合应用系统中要从设计上保证弱型阴树脂先失效。
希望以上回答还不能解答您的疑问,欢迎追问或主动联系(点击我头像可获得联系资料)。
⑷ 离子交换色谱法的原理,装置及应用
原理:
离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固定离子基团及可交换的离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。
装置:
(1)分离柱 装有离子交换树脂,如阳离子交换树脂、阴离子交换树脂或螯合离子交换树脂。为了减小扩散阻力,提高色谱分离效率,要使用均匀粒度的小球形树脂。最常用的阳离子交换树脂是在有机聚合物分子(如苯乙烯-二乙烯基苯共聚物)上连接磺酸基官能团(─SO3─)。最常用的阴离子交换剂是在有机聚合物分子上连接季铵官能团(─NH4)。这些都是常规高交换容量的离子交换树脂,由于它们的传质速度低,使柱效和分离速度都低。C.霍瓦特描述了一种薄膜阴离子交换树脂,它是在苯乙烯-二乙烯基苯共聚物核心上沉淀一薄层阴离子交换树脂,就象鸡蛋有一薄层外皮那样,离子交换反应只在外皮上进行,因此缩短了扩散的路径,所以离子交换速度高,传质快,提高了柱效。同样,在小颗粒多孔硅胶上涂一薄层离子交换材料也可得到相同类型的树脂。螯合离子交换树脂具有络合某些金属离子而同时排斥另一些金属离子的能力,因此这种树脂具有很高的选择性。除了离子交换柱外,其他高效液相色谱柱也可用于分离离子。
(2)抑制柱和柱后衍生作用 常用的检测器不仅能检测样品离子,而且也对移动相中的离子有响应,所以必须消除移动相离子的干扰。在离子色谱中,消除(抑制)移动相离子干扰的常用方法有两种。
①抑制反应,用抑制反应来改变移动相,使移动相离子不被检测器测出。离子色谱通常使用电导检测器。在抑制反应中??缍匝衾胱佣?裕?把高电导率移动相的氢氧化物转变成水,而样品离子则转变成它们相应的酸:
NaOH+H+─→Na++H2O
NaX+H+─→HX+Na+
在装有强酸性阳离子交换树脂的柱中进行抑制反应,使用一段时间后,这种树脂就需要再生,很不方便。改用连接有磺酸基(─SO3H)的离子交换膜(阳离子交换膜)或用连接有铵基(─NH4)的离子交换膜(阴离子交换膜),就可以连续进行抑制反应。例如,阳离子交换膜可使阳离子通过它扩散过去,而阴离子则不能扩散过去。
1981年,T.S.史蒂文斯和斯莫尔等报道了中空纤维抑制法。这种纤维是由阳离子交换膜材料拉制而成。用这种方法不仅不需要再生抑制柱而且减小了峰的加宽,提高了柱效。一种比较新的膜技术是加一电场以加速离子的传递,该法与中空纤维法比较,其优点是反应时间短、交换能力高,并且可以用于阳离子和阴离子两者。
②柱后衍生作用,将从柱子流出的洗出液与对被测物有特效作用的试剂相混合,在一反应器中生成带色的络合物(见配位化合物)。对衍生试剂最重要的要求是它们与被测物能生成络合物,但不与移动相生成络合物。柱后衍生法能用于测定重金属离子,所用的衍生试剂有茜素红S等。
(3)检测器 分为通用型和专用型。通用型检测器对存在于检测池中的所有离子都有响应。离子色谱中最常用的电导检测器就是通用型的一种。紫外-可见分光光度计是专用型的检测器,对离子具有选择性响应。可变波长紫外检测器与电导检测器联用,能帮助鉴定未知峰,分辨重叠峰和提供电导检测器不能测定的阴离子,如硫化物及亚砷酸中的阴离子的检测。
在离子色谱中,电导检测法总是和抑制反应配合使用。这种检测器对分子不响应,如水、乙醇或者不离解的弱酸分子等。对于电导检测器,一个重要的条件是温度要稳定,所以检测池要放在恒温箱中,1982年H.萨托设计一种双示差电导检测器,消除了温度变化对检测的影响,可测定10-9摩尔的阴离子。
应用:
离子色谱主要用于测定各种离子的含量,特别适于测定水溶液中低浓度的阴离子,例如饮用水水质分析,高纯水的离子分析,矿泉水、雨水、各种废水和电厂水的分析,纸浆和漂白液的分析,食品分析,生物体液(尿和血等)中的离子测定,以及钢铁工业、环境保护等方面的应用。离子色谱能测定下列类型的离子:有机阴离子、碱金属、碱土金属、重金属、稀土离子和有机酸,以及胺和铵盐等。
⑸ 什么叫离子交换树脂的选择性与什么因素有关
什么是离子交来换源树脂的选择性?
离子交换树脂的选择性是指离子交换树脂能吸附的金属离子,污水中有很多金属离子而离子交树脂不可能可以把所有的金属离子都吸咐干净的,有一些金属离子树脂对它的吸附能力是比较弱的而有一些则比较强,也就是说离子交换树脂只能针对性的吸附某一些金属离子,这就是离子交换树脂的选择性。
离子交换树脂的选择性怎样?
离子交换反应和其他化学反应一样,完全服从质量作用定律。离子交换亲和力,也就是离子交换树脂对水中金属离子的吸附能力。离子交换树脂对离子的吸附能力与离子半径大小和离子所带的电荷数有关。离子交换树脂的吸附能力与金属离子的电荷数、价态和金属离子的半径成正比。
离子交换树脂的选择性:
经过实验证明,低浓度、常温下,离子交换树脂对不同离子的吸附能力顺序有下列规律。
阳离子交换树脂对金属离子的吸附顺序是:
Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+。
强碱性阴离子树脂对阴离子的吸附顺序是:
SO42->NO3->CI->HCO3->OH-。
弱碱性阴离子树脂对阴离子的吸附顺序是:
OH->柠檬酸根3->SO42->酒石酸根2->草酸根2->PO43->NO2->Cl->醋酸根-
>HCO3-。
⑹ 离子交换:一般采用阳离子→阴离子→阴阳离子混合型→这个顺序过滤。请问为什么要先用阳离子树脂再阴离子
首先是阳床出水显强酸性,酸册慧性条件下二氧化碳就很容易在其后面的除碳器中去除了,减小阴床的压力。其次,如果先用阴床,那么出水是强碱性的,这样水中的钙镁离子会生成氢氧化镁和碳酸钙沉淀,沉积州森答在树脂表面,影响离子交换。第三,碱性水会影响除硅效率。春岩
⑺ 除硅酸盐的离子交换树脂
硅酸盐为弱酸根阴离子,强碱阴树脂有较好的去除能力。比如凝胶型强碱阴树脂201x7和大孔专型强碱阴树脂D201。
但是您属的问题没有详细描述是什么样的工况下去除硅酸盐,原水中硅酸盐浓度有多少,需要降到多少?一般阴树脂都是结合阳树脂一起使用,阳树脂在前,阴树脂在后,因为阴树脂在酸性介质中具有更佳的交换能力。如果要想进一步降低硅酸盐残留浓度,可以增加阳阴混床树脂,一般产水硅残留可以控制到20PPb以下。
如果是另外的运行工况,则另议,本处不展开分析回答了。