阳离子交换树脂在前面 主要原因是因为水中的弱碱性阴离子在和阴离子树脂交换时专置换出氢氧根离子,属阻止交换继续进行,而先经过阳离子交换树脂后能置换出氢离子, 再经过阴离子交换树脂时置换出来的氢氧根离子会和氢离子结合成水,不会影响继续交换。 还有就是因为阴离子交换树脂容易被污染,阳离子抗污染能力要好一点。
2. 阴阳离子交换树脂的原理是什么
阴阳离子交换树脂是一种重要的工业原料,这种材料的本质是高分子材料的酸碱多聚物,是一种很复杂的物质,有很多的种类,主要是随着不同的酸碱而变化的。阴阳离子交换树脂在运输的时候有非常多的注意点,对于存储环境要求高,使用环境的要求也是很高。下面小编就来给大家介绍一下阴阳离子交换树脂的原理是什么,以及阴阳离子交换树脂是什么。
阴阳离子交换树脂的原理
(1)强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2)弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3)强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。
(4)弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。
阴阳离子交换树脂的简介
在其网状结构的骨架上有许多可电离、可被交换的基团,如磺酸基(—SOH)、羧基(—COOH)及季胺基(—NROH)等,正由于这些基团的存在,才使树脂具有离子交换能力。
离子交换树脂的种类很多,常用的是聚苯乙烯型离子交换树脂。它是以苯乙烯和二乙烯苯聚合而成球形网状结构,其中二乙烯苯是交联剂。
如果用其它基团代替磺酸基,就可以得到一系列阳离子交换树脂。例如—COOH、—OH等。这些基团上的氢离子可被样品溶液中的阳离子交换。
离子交换树脂内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。如贮存过程中树脂脱了水,应先用浓食盐水(-10%)浸泡,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。
在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。树脂在贮存或运输过程中,应保持在5-40°C的温度环境中,避免过冷或过热,影响质量。若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。
阴离子交换树脂具有与阳离子交换树脂同样的有机骨架,只是在骨架上引入了可离解的碱性基团,如—NH、—NH、—NHR等。这类树脂若用NaOH溶液处理,则发生交换反应而转变为—OH型阴离子交换树脂。其反应如下:
R—N(CH)Cl+OH======R—N(CH)OH+C1
这些基团上的氢氧根离子可被样品溶液中的阴离子交换。
阳树脂分弱树脂和强树脂两大类。分子式H-R(当然也可以是Na-R型),H就是氢离子。树脂高度约0.8米到1.6米。当水从上向下,通过树脂层时,水中的阳离子与树脂的H离子发生交换,树脂最上层是铁钙镁离子,接着是钾钠氨离子。
出水水质是酸性的,PH值一般小于3。当运行约一天左右时,出水开始出现钠离子,表示反应到了终点,需要用酸(HCl)反洗,将钠钙离子再置换出来。
阴阳离子交换树脂的原理是什么,还有阴阳离子交换树脂是一种什么样的物质,这些小编都已经在上文中给大家做了详细的介绍了。阴阳离子交换树脂是一种有机物,这种有机物是重要的工业原理,在日常生活中的很多领域都有使用。阴阳离子交换树脂是有酸碱物质结合的,性能是非常的特殊的在使用的时候要求比较的高,但是使用效果却是很出色。
3. 为什么要把离子交换法放在最后
要把离子交换法放在最后的原因:阳离子交换树脂对碱金属的吸附能力随其水化物离子半径的减小而增强。
磷酸铝在水溶液中能吸附铷、铯,其分离系数比合成树脂还高。交换柱上的铷、铯可分别用稀硝酸及高于1mol/LHNO3洗脱。
在硝酸溶液中,铷、铯可被磷钼酸铵吸附,与钾、钠、锂分离,再用2mol/L和6mol/LNH4NO3溶液洗脱铷、铯。当氧化钾含量低于50mg时,铷、铯回收率均在90%以上。
简介
水溶液中的一些阳离子进入反离子层,而原来在反离子层中的阳离子进入水溶液,这种发生在反离子层与正常浓度处水溶液之间的同性离子交换被称为离子交换作用。
离子交换主要发生在扩散层与正常水溶液之间,由于黏土颗粒表面通常带的是负电荷,故离子交换以阳离子交换为主,故又称为阳离子交换。离子交换严格服从当量定律,即进入反离子层的阳离子与被置换出反离子层的阳离子的当量相等。
以上内容参考:网络-离子交换
4. 阳离子交换
1.阳离子交换
按质量作用定律,阳离子交换反应可以表示为
水文地球化学基础
式中:KA—B为阳离子交换平衡常数;A和B为水中的离子;AX和BX为吸附在固体颗粒表面的离子;方括号指活度。
在海水入侵过程中,准确模拟阳离子交换作用是预测阳离子在含水层中运移的前提条件。按照质量作用定律可以用一个平衡常数把离子交换作为一种反应来描述。例如Na+、Ca2+的交换:
水文地球化学基础
平衡常数为:
水文地球化学基础
式(3—115)表明,交换反应是等当量的,是个可逆过程;两个Na+交换一个Ca2+。如果水中的Na+与吸附在固体颗粒表面的Ca2+(即CaX)交换,则反应向右进行;反之,则向左进行。如果反应向右进行,Ca2+是解吸过程,而Na+是吸附过程。所以,阳离子交换实际上是一个吸附—解吸过程。Na+、Ca2+的交换是一种最广泛的阳离子交换。当海水入侵淡水含水层时,由于海水中Na+远高于淡水,而且淡水含水层颗粒表面可交换的阳离子主要是Ca2+,因此产生Na+、Ca2+之间的离子交换,Na+被吸附而Ca2+被解吸,方程(3—115)向右进行;当淡水渗入海相地层时,则Na+被解吸而Ca2+被吸附,反应向左进行。
2.质量作用方程
描述离子交换反应的方程式有多种,通常主要是通过对实验数据的最佳拟合来决定选择哪一种方程式,众多的研究者很难达成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因为目前并没有一个统一的理论来计算吸附剂上的离子活度,而前面提到的迪拜—休克尔方程、戴维斯方程都是适用于水溶液中的离子活度计算。
交换性阳离子活度有时用摩尔分数来计算,但更为常用的是当量分数作为交换位的数量分数或者作为交换性阳离子的数量分数。在一种理想的标准状态下,交换剂只被一种离子完全占据,交换离子的活度等于1。对于等价交换使用哪一种方程式没有区别,但是对于非等价交换影响十分显著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函数形式:
水文地球化学基础
即为交换位浓度(单位质量吸附剂的摩尔数)与无单位函数
海水入侵过程中的交换反应主要为Na+与Ca2+之间的交换,通常写作:
水文地球化学基础
X为—1价的表面交换位,交换位X的总浓度为
水文地球化学基础
式中:S指每单位质量固体的总交换位浓度,mol/g。这种情况下S的量等于阳离子交换容量(只要单位换算统一即可)。
水文地球化学基础
式(3—120)的书写方式符合Gaines—Thomas方程式,Gaines(盖恩斯)和Thomas(托马斯)(1995)最先给出交换性阳离子热动力学标准态的严格定义。它使用交换性阳离子的当量分数作为吸附离子的活度。若式(3—120)使用摩尔分数,则遵守Vanselow(1932)公式。
如果假定吸附阳离子的活度和被离子占据的交换位的数目成正比,反应式(3—115)则可写成
水文地球化学基础
式(3—122)符合Gapon(加蓬)方程式。在Gapon方程式中,摩尔分数和当量分数是一样的,都是电荷为—1的单一交换位。
还有一种交换形式为:
水文地球化学基础
Y指交换位的电荷为—2,这种反应式同样是交换反应的一种有效热力学描述。它假定交换位Y的总浓度为
水文地球化学基础
S则为阳离子交换容量的二分之一。Cernik(采尔尼克)等根据当量分数利用反应式(3—123),将交换系数表示为:
水文地球化学基础
3.质量作用方程拟合
利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式对在砂样中进行的试验所获得的数据进行拟合,根据拟合结果作出 Na+、Ca2+、Mg2+、K+吸附等温线(刘茜,2007),如图3—4~图3—7所示。
图3—4 Na+吸附等温线和拟合数据
由吸附等温线可以看出,砂样对Na+、Mg2+、K+的吸附量均随着溶液中离子浓度的增加而逐渐增加,而Ca2+发生解吸。图3—4中,砂样对Na+的吸附量随溶液中离子浓度的增加而缓慢增加。图3—5中,在Ca2+浓度较低时,解吸量迅速增大,当Ca2+浓度较高时,随浓度增加解吸量增加缓慢,逐渐趋于平稳状态。
图3—6中Mg2+浓度较低时,吸附量增加较慢,在较高浓度时增加较快,但并没有出现Ca2+的解吸等温线中的平稳状态,依然为直线型,且直线的斜率大于低浓度状态时的斜率,说明Na+、Mg2+的吸附速率在低浓度(海水含量为20%左右)时较小,在高浓度时,吸附速率变大;Ca2+的解吸在高浓度时基本达到平衡,而Na+、Mg2+还有增长趋势,也较好证明了试验所用砂样的交换位主要为Ca2+所占据。图3—7中K+实测值的吸附等温线则没有出现Ca2+、Na+、Mg2+的规律,虽然整体上随着溶液离子浓度的增加,吸附量也是增长趋势,但并没有出现直线规律。究其原因,主要是阳离子交换吸附作用不大,主要是化学吸附,因为K+的水化膜较薄,所以有较强的结合力,K+被吸附后,大多被牢固吸附在黏土矿物晶格中。
图3—5 Ca2+吸附等温线和拟合数据
图3—6 Mg2+吸附等温线和拟合数据
图3—7 K+吸附等温式和拟合数据
由吸附等温线模拟图(图3—4~图3—7)及公式与试验数据拟合的相关系数(表3—17)看出,GT方程式拟合效果较好,能够很好地预测离子交换趋势。因此,在多组分离子交换模拟计算中采用Gaines—Thomas方程,为阳离子交换的定量研究提供了依据。
表3—17 GT、GP、VS方程式拟合的相关系数
所以根据Gaines—Thomas方程式(3—126)~式(3—131)计算离子交换系数(表3—18)。由于 9 种配比浓度的离子强度不同,所以各自的交换系数也有所差别。对比
水文地球化学基础
表3—18 试验土样不同浓度下的交换系数
5. 阳离子交换能力大小顺序
阳离子交换能力大小顺序:Fe3+>Al3+>Ca2+>Mg2+>K+≈NH4+>Na+>Li+。
离子交换树脂对水中各种离子的交换能力是不同的,即有些离子易被离子交换树脂吸着,但吸着后要把它解吸下来就比较困难;反之,有些离子则难被离子交换树脂吸着,但易被解吸,这种性能称为离子交换树脂的选择性。这种选择性影响到离子交换树脂的交换和再生过程。
含义
如水中的K+会被岩土吸附,而置换岩土吸附的Na+到水中。但是当某种离子的相对浓度增大,则其交替吸附能力也随之增大,如海水入侵陆相沉积物(淡水含水层)时,水中的Na+将置换岩土吸附的部分Ca2+,形成富含Ca2+的地下水。
以上内容参考:网络-阳离子交换作用
6. 阳离子交换质量作用方程
(一)阳离子吸附亲合力
就特定的固相物质而言,阳离子吸附亲合力是不同的。影响阳离子吸附亲合力的因素主要是;(1)同价离子,其吸附亲合力随离子半径及离子水化程度而差异,一般来说,它随离子半径的增加而增加,随水化程度的增加而降低;离子半径越小,水化程度越高。例如Na+、K+、NH4+的离子半径分别为0.98、1.33和1.43Å,其水化半径分别为7.9、5.37和5.32Å;他们的亲合力顺序为NH4+>K+>Na+。(2)一般来说,高价离子的吸附亲合力高于低价离子的吸附亲合力。
按各元素吸附亲合力的排序如下:
水文地球化学基础
上述排序中,H+是一个例外,它虽然是一价阳离子,但它具有两价或三价阳离子一样的吸附亲合力。
值得注意的是,上述排序并不是绝对的,因为阳离子交换服从质量作用定律,所以吸附亲合力很弱的离子,只要浓度足够大,也可以交换吸附亲合力很强而浓度较小的离子。
(二)阳离子交换质量作用方程
按质量作用定律,阳离子交换反应可表示为:
水文地球化学基础
式中,KA-B为阳离子交换平衡常数,A和B为水中的离子,Ax和Bx为吸附在固体颗表面的离子,方括弧表示活度。
以Na-Ca交换为例,其交换反应方程为:
水文地球化学基础
(1.146)式表明,交换反应是等当量交换,是个可逆过程;两个钠离子交换一个钙离子。如果水中的Na+交换已被吸附在固体颗粒表面的Ca2+(即Cax),则反应向右进行;反之,则向左进行。如反应向右进行,那么,就钙离子而言,是个解吸过程;就钠离子而言,是个吸附过程。所以,阳离子交换反应,实际上是一个吸附-解吸过程。
在地下水系统中,Na-Ca交换是一种进行得最广泛的阳离子交换。例如,当海水入侵到淡水含水层时,由于海水Na+远高于淡水,而且淡水含水层颗粒表面可交换性的阳离子主要是Ca2+,因此产生海水中的Na+与颗粒表面的Ca2+产生交换,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右进行。又如,如果在某个地质历史里,淡水渗入海相地层,按上述类似的机理判断,则产生Na+被解吸Ca2+被吸附的过程,方程(1.146)向左进行。
Na-Ca交换反应方向的判断,以及对地下水化学成分的影响,仍至对土壤环境的影响,是水文地球化学及土壤学中一个很重要的问题,后面将作更详细的介绍。
上述(1.145)式中都使用活度,水中的A和B离子活度可以按第一节所提供的方法求得,但如何求得被吸附的阳离子(Ax和Bx)的活度,目前还没有太满意的解决办法。万赛罗(Vanselow,1932)〔7〕提出,规定被吸附离子的摩尔分数等于其活度。
摩尔分数的定义为:某溶质的摩尔分数等于某溶质的摩尔数与溶液中所有溶质摩尔数和溶剂摩尔数总和之比。其数学表达式如下
水文地球化学基础
式中,xB为B组分的摩尔分数,无量纲;mA为溶剂的摩尔数(mol/L);mB、mC、mD、……为溶质B、C、D……的摩尔数(mol/L)。就水溶液而言,溶剂是水,1mol H2O=18g,lL H2O=1000g,所以l升溶剂(H2O)的摩尔数=1000/18=55.56mol/L。
按照上述摩尔分数的定义,Ax和Bx的摩尔分数的数学表达式为:
水文地球化学基础
式中,NA和NB分别为被吸附离子A和B的摩尔分数;(Ax)和(Bx)分别为被吸附离子A和B的摩尔数(mol/kg)。
以摩尔分数代替被吸附离子A和B的活度。则(2.145)的交换平衡表达式可写成:
水文地球化学基础
式中,
从理论上讲,
在研究阳离子交换反应时,人们关心的问题是,在地下水渗流过程中,从补给区流到排泄区,由于阳离子交换反应,地下水中的阳离子浓度将会产生何种变化?为了简化问题起见,假定其他反应对阳离子浓度的变化都可忽略,那么从理论上讲,地下水从原来的地段进入一个具有明显交换能力的新地段后,必然会破坏其原有的阳离子交换平衡,而调整到一个新的交换平衡条件。达到新的平衡后,其阳离子浓度的变化主要取决于:(1)新地段固体颗粒表面各种交换性阳离子的浓度,以及它们互相间的比值;(2)进入新地段地下水的原有化学成分,特别是阳离子浓度。随着地下水的不断向前流动,阳离子交换平衡不断被打破,又不断地建立新的平衡。其结果是,不但水的阳离子浓度变化了,含水层固体颗粒表面有关的交换性阳离子浓度也改变了。为了定量地说明上述理论上的判断,特列举下列例题的计算。
例题1.8
在某一地下水流动系统中,有一段具有明显阳离子交换能力且含有大量粘土矿物的地段,试利用阳离子交换质量平衡方程(2.150),计算地下水达到新的交换平衡后,水中Ca2+和Mg2+浓度的变化,含水层粘土矿物颗粒表面交换性阳离子(被吸附的阳离子)浓度的变化。
假定:(1)含粘土矿物地段的阳离子交换容量为100meq/100g,交换性阳离子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)进入该地段前,地下水中的Ca2+和Mg2+浓度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)该含水层地段的有关参数:孔隙度n=0.33;固体颗粒密度ρ=2.65g/cm3;(4)地下水与该地段粘土矿物颗粒相互作用后,达到平衡时,选择系数
计算步骤:
(1)求新的地下水进入该地段前的NCa和NMg
按题意所给,Cax=Mgx=50meq/100g。把它们换算为以mol/g表示,则Cax=Mgx=0.25×10-8mol/g;将此数据代入(1.149)式,则
NCa=NMg=0.5
(2)求新的地下水刚进入该地段时,起始状态的
按质量作用定律,Ca-Mg交换方程为:
水文地球化学基础
交换平衡后,虽然各自的摩尔分数有所增减,但其总数仍然不变,即NCa+NMg=1。
设达到新交换平衡时,NCa=Y,那么,NMg=1-Y。
把上述假设代入(1.151)式,则
水文地球化学基础
因达到新的交换平衡时,
水文地球化学基础
因达到新交换平衡时,Cax和Mgx虽然有变化,那其总和仍然不变,即Cax+Mgx=0.5。设那时的Cax=Z,那么:
水文地球化学基础
把(1.154)式代入(1.153)式,得:
水文地球化学基础
由于达到交换平衡前后,固相中的交换性钙离子(Cax)和液相中的溶解钙离子的总和不变。就一升水及其所接触的岩土而论,达到交换平衡前,一升水的Ca2+为1mmol;岩土中的Cax=0.25mmol/g,-升水所占据的岩土体积=5379.5g。达交换平衡后,一升水的Ca2+摩尔数为x,岩土中交换性钙离子(Cax)浓度为Z。那么,其均衡方程为:
水文地球化学基础
式的左边,为交换平衡前固液相中钙离子总量(mmol);式的右边,为交换平衡后固液相中钙离子总量(mmol)。
整理(1.156)式,得:
水文地球化学基础
把(1.157)式代入(1.155)式,整理后得:
水文地球化学基础
解方程(1.158),得:
Z=0.250046,即交换平衡后,Cax=0.250046mmol/g
那么,Mgx=0.5-0.250046=0.249954mmol/L
按上述计算摩尔分数的方法,得:
NCa=0.50009,NMg=0.49991
把所算得的Z值代入(1.157),得:
x=0.7525,即交换平衡后,〔Ca2+〕=0.7525mmol/L
那么,〔Mg2+〕=2-0.7525=1.2475mmol/L
上述计算结果说明,当新的地下水通过交换地段,达到交换平衡时,吸附的阳离子(Ca2+和Mg2+)的浓度或摩尔分数的比值变化极小;相比之下,地下水中Ca2+和Mg2+的浓度变化很大,〔Mg2+〕/〔Ca2+〕从1约增至1.7。如果随后进入该地段的地下水〔Mg2+〕/(Ca2+)仍然是1的话,地下水再次破坏了刚建立起来的交换平衡,交换反应又继续进行,直至NMg/NCa=O.6为止。此时,新流入地下水的Ca2+和Mg2+的浓度才不会改变。然而,要达到此种状态,必需通过无数个孔隙体积的水,甚至要几百万年时间才能完成。
上述计算还说明,阳离子的交换方向,从左向右进行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不断被解吸。交换反应方向不仅取决于水中两种离子的浓度比,同时也取决于吸附离子的摩尔分数比。如若交换的起始条件为NMg=0.375和NCa=0.625,流入的水,其钙镁活度比为1,那么流过该地段的地下水,其Ca2+和Mg2+的浓度就没有变化了。如若交换的起始条件为NMg/NCa<0.6,其交换方向则与上述相反,从右向左进行(2.151式)。
(三)地下水系统中的Na-Ca交换
地下水中Na-Ca交换在地下水化学成分形成和演变过程中,是一个很重要的阳离子交换过程,它无论在深层地下水形成和演变,或者在浅层潜水水化学成分的改变,特别是硬度升高等方面,都具有重要意义;在土壤科学中,它对盐碱土的形成,也有重要作用。
地下水系统中,固液相间的Na-Ca交换也服从质量作用定律,但其质量作用方程的表达形式不同。其交换反应如下:
水文地球化学基础
(2.159)反应最常用的质量作用方程是Gappn方程:
水文地球化学基础
在Gapon方程的基础上,又有许多学者提出类似于此方程的各种表达式。例如,美国盐实验室〔17〕在研究灌溉水与土壤间的Na-Ca交换时,提出类似于Gapon方程的表达式:
水文地球化学基础
式中,Nax为达到交换平衡时土壤的交换性钠量(meq/100g);CEC为土壤的阳离子交换容量(meq/100g);Na+、Ca2+和Mg2+是达交换平衡时水中这些离子的浓度(meq/L);K为平衡常数。
(1.161)式左边项表示为:
水文地球化学基础
式中的ESR称为“交换性钠比”。
(1.16l)式右边项表示为:
水文地球化学基础
式中的“SAR”称为钠吸附比,它是Na-Ca交换中一个很重要的参数。(1.161)式可改写成:
水文地球化学基础
(1.164)式说明,ESR与SAR线性相关,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。许多学者通过岩土的Na-Ca交换试验,得出了有关回归方程,列于表1.20。
表1.20Na-Ca交换的回归方程
表1.20中的Na-Ca交换方程是实验方程,应用起来当然有其局限性。其中,美国盐实验室的回归方程是用美国西部12个土壤剖面59个土样试验得出的,所以其代表性较好。尽管有其局限性,但是,应用此类方程判断Na-Ca交换的方向,定量化计算其交换量,还是比较有效的。表1.21的数据充分说明这一推断。
表1.21Na-Ca试验中某些参数的变化〔2〕
表1.21中是一组Na-Ca交换试验数据,其中包括实测值与计算值的对比。表中的数据可说明以下几点;
(1)Na-Ca交换反应方向取决于水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分别为0.73和9.81的水淋滤ESR值为0.046的同一种土壤时,淋滤后,前者的(Cax+Mgx)从8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固体颗粒表面的交换性Na+解吸到水中,按(1.159)式,其交换反应方向朝左进行;相反,后者的(Cax+Mgx)从8.56减至7.52meq/100g,水中的Na+被吸附,而固体颗粒表面的交换性Ca2+和Mg2+解吸进入水中,按(1.159)式,其交换反应向右进行。如果起始条件已知,即水中的SAR值及岩土中的ESR值已知,也可判断其反应方向。例如,把表1.21中的SAR值0.73和9.81分别代入表1.20中的3号方程,ESR值的计算值分别为0.038和0.1379。前者的ESR计算值(0.038)小于土壤的起始ESR值(0.046,见表1.21),反应按(1.159)式向左进行;后者的SER计算值(0.1379)明显大于土壤的起始ESR值(0.046),反应按(1.159)式向右进行。也就是说;如果ESR计算值小于岩土的ESR值,反应向左进行;反之,则相反。当然,如果土壤的起始ESR值为0.038,与S4R值为0.73的水相互作用时,Na-Ca交换处于平衡状态,水中的Na+、Ca2+和Mg2+浓度不会改变。表1.22是现场试验结果,结果说明,SAR值越高,固体表面解吸出来的Ca2+和Mg2+就越多,水的硬度增加就越大。这些数据充分证明了上述理论。
表1.22SAR值不同的污水现场试验结果〔2〕
注:硬度以CaCO3计(mg/L)。
(2)把Na-Ca交换方程应用于实际是比较可靠的。表1.21中(Cax+Mgx)的实测值及计算值相差很小,说明了这一点。其计算方法如下:以计算SAR=0.73的水为例,将0.73代入表1.20中的方程3,求得ESR=0.038;将此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;将CEC值减去Nax值,即为(Cax+Mgx)值(因为土中吸附的阳离子主要是Na+、Ca2+和Mg2+),其值为8.63meq/100g。
SAR值不仅在研究Na-Ca交换反应中是重要的,而且它是灌溉水质的一个重要参数。前面谈到,SAR高的水,在水岩作用过程中,引起水中的Na+被吸附到固相颗粒表面上,2个Na+交换一个Ca2+或Mg2+(等当量交换)。因为2个Na2+的大小比一个Ca2+或Mg2+大,因而引起土壤的透气性减小,产生板结及盐碱化。有关SAR值的灌溉水质标准可参考有关文献。本书不详述。
7. 离子交换色谱法的阳离子滞留顺序
先通阳离子,缺困因为阳离子交换柱吸收阳离子释放H+,随后在阴离子柱吸收阴离子释答激放OH-,H+与OH-结合成水。
若先通阴离子,则生成的伏举念OH-与阳离子生成沉淀,污染阴离子柱。
8. 交换作用的土壤中阳离子的交换作用
土壤袭的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
1、土壤阳离子交换量是随着土壤在风化过程中形成,一些矿物和有机质被分解成极细小的颗粒。化学变化使得这些颗粒进一步缩小,肉眼便看不见。
2、这些最细小的颗粒叫做“胶体”。每一胶体带净负电荷。电荷是在其形成过程中产生的。它能够吸引保持带正电的颗粒
,就像磁铁不同的两极相互吸引一样。阳离子是带正电荷的养分离子,如钙(Ca)、镁(Mg)、钾(K)、钠(Na)、氢(H)和铵(NH4)。粘粒是土壤带负电荷的组份。
3、这些带负电的颗粒(粘粒)吸引、保持并释放带正电的养分颗粒(阳离子)
。有机质颗粒也带有负电荷,吸引带正电荷的阳离子。砂粒不起作用。
4、阳离子交换量(CEC)是指土壤保持和交换阳离子的能力,也有人将它称之为土壤的保肥能力。
9. 离子交换柱的阳、阴离子交换树脂顺序,哪个前哪个后若阳离子在前,那是为什么若阴离子在前,又是为什
阳离子交换树脂在前面 主要原因是因为水中的弱碱性阴离子在和阴离子树脂交换回时置换出氢氧根答离子,阻止交换继续进行,而先经过阳离子交换树脂后能置换出氢离子, 再经过阴离子交换树脂时置换出来的氢氧根离子会和氢离子结合成水,不会影响继续交换。 还有就是因为阴离子交换树脂容易被污染,阳离子抗污染能力要好一点,再一个价格也双较低,所以让阳树脂再前面
10. 阴阳离子交换树脂的工作原理
离子交换树脂原理即是离子交换树把溶液中的盐分脱离出来的过程:
离子交换树脂作用环境中的水溶液中,含有的金属阳离子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)与阳离子交换树脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,在水中易生成H+离子)上的H+进行离子交换,使得溶液中的阳离子被转移到树脂上,而树脂上的H+交换到水中,(即为阳离子交换树脂原理)。
水溶液中的阴离子(Cl-、HCO3-等)与阴离子交换树脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团,在水中易生成OH-离子)上的OH-进行交换,水中阴离子被转移到树脂上,而树脂上的OH-交换到水中,(即为阴离子交换树脂原理)。而H+与OH-相结合生成水,从而达到脱盐的目的。
(10)阳离子交换拖尾扩展阅读:
离子交换树脂使用方法:
1、预选。离子交换树脂的粒度一般控制在20-35目,有些可达到50目,因此在使用前要先干燥,粉碎,过筛,通常干燥时在烘箱中进行,亦可在装有五氧化二磷、氧化钙或者浓硫酸的干燥器中进行,粉碎时不要分得过细,否则影响实验收率。
2、预处理。强碱性离子交换树脂应先用20倍树脂体积的4%氢氧化钠水溶液处理,然后用10倍体积的水洗,再用10倍量4%盐酸处理,最后用蒸馏水洗至中性,然后将氯型转化成OH型,再转化成氯型,最后用10倍4%氢氧化钠水溶液处理。弱碱性离子交换树脂处理时只需用10倍量蒸馏水洗即可,不必洗至中性。
3、装柱。将处理好的树脂至于烧杯中,加水充分搅拌除掉气泡,静置几分钟待树脂大部分沉降后,倾去上层泥状颗粒;反复操作直至上层液澄清后,即可装柱。注意要在柱子底部放1cm后的玻璃丝,用玻璃棒将其压平,将树脂倒入柱子中,还要注意防止气泡产生。
4、树脂交换。将样品配制成一定浓度的水溶液,以适当流速通过柱子,亦可将样品溶液反复通过柱子,直到成分交换完全。用显色法检验成分是否交换彻底。
5、树脂洗脱。注意亲和力弱的成分先被洗下来,常用的离子交换树脂洗脱剂有强酸、强碱、盐类、不同pH缓冲溶液、有机溶液等,可选择梯度洗脱或者单一浓度洗脱。
6、树脂再生。