导航:首页 > 净水问答 > 阴离子交换色谱哪里可以测

阴离子交换色谱哪里可以测

发布时间:2023-07-23 12:06:58

A. 用离子色谱分析水样中的阴离子时,宜选用何种检测器、分离柱、抑制柱和洗提液为什么

分析离子时,
分离柱填充低容量阴离子交换树脂
抑制柱填充强酸性阳离子交换树脂,
洗涤
液用
NaOH
稀溶液或
Na2CO3-NaHCO3
溶液,当将水样注入洗涤液并流经分离柱时,基于不同
阴离子对低容量阳离子交换树脂的亲和力不同而彼此分开,在不同时间随洗涤液进入抑制
柱,
转换成高电导型酸,
而洗涤液被中和转为低电导的水或碳酸,
使水样中的阴离子得以依
次进入电导测量装置测定。

B. 简述离子交换色谱法

离子交换色谱法(ion exchange chromatography,IEC)
离子色谱分析法出现在20世纪70年代,80年代迅速发展起来,以无机、特别是无机阴离子混合物为主要分析对象。
离子交换色谱利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱的固定相一般为离子交换树脂,树脂分子结构中存在许多可以电离的活性中心,待分离组分中的离子会与这些活性中心发生离子交换,形成离子交换平衡,从而在流动相与固定相之间形成分配。固定相的固有离子与待分离组分中的离子之间相互争夺固定相中的离子交换中心,并随着流动相的运动而运动,最终实现分离。
表达式
离子交换色谱的分配系数又叫做选择系数,其表达式为:

K_s=\frac{[RX^+]}{[X^+]}

其中[RX + ]表示与离子交换树脂活性中心结合的离子浓度,[X + ]表示游离于流动相中的离子浓度

分离原理
离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固定离子基团及可交换的离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。

阳离子交换:

阴离子交换:

式中"--"表示在固定相上,Kxy和Kzm是交换反应的平衡常数,Z+和X-代表被分析的组分离子。M+和Y-表示树脂上可交换的离子团。

离子交换反应的平衡常数分别为:

阳离子交换:

阴离子交换:

平衡常数K值越大,表示组分的离子与离子交换树脂的相互作用越强。由于不同的物质在溶剂中离解后,对离子交换中心具有不同的亲合力,因此具有不同的平衡常数。亲合力大的,在柱中的停留时间长,具有高的保留值。

固定相
离子交换色谱常用的固定相为离子交换树脂。目前常用的离子交换树脂分为三种形式,一是常见的纯离子交换树脂。第二种是玻璃珠等硬芯子表面涂一层树脂薄层构成的表面层离子交换树脂,第三种为大孔径网络型树脂。它们各有特点,例如第二种树脂有很高的柱效,但它的柱容量不大;第三种树脂适用于非水溶液中物质的分离,因为它们的孔径和内表面积大,不需要用水溶胀,便可满意地使用。

典型的离子交换树脂是由苯乙烯和二乙烯基苯交联共聚而成:

其中,二乙烯基苯起了交联和加牢整个构型的作用,其含量决定了树脂交联度大小。交联度一般控制在4%~16%范围内,高度交联的树脂较硬而且脆,也较渗透,但选择性较好。在基体网状结构上引入各种不同酸碱基团作为可交换的离于基团。

按结合的基团不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂。阳离子交换树脂上具有与样品中阳离子交换的基团。阳离子交换树脂又可分为强酸性和弱酸性树脂。强酸性阳离子交换树脂所带的基团为磷酸基(一),其中和有机聚合物牢固结合形成固定部分,是可流动的能为其他阳离子所交换的离子。

阴离子交换树脂具有与样品中阴离子交换的基团。阴离子交换树脂也可分为强碱性和弱碱性树脂。

阴离子交换树脂属强碱性,它是由有机聚合物骨架和一季胺碱基团所组成,它带有正电荷。而与相反的是可以移动的部分,它能被其它阴离子所交换

流动相
离子交换色谱的流动相最常使用水缓冲溶液,有时也使用有机溶剂如甲醇,或乙醇同水缓冲溶液混合使用,以提供特殊的选择性,并改善样品的溶解度。

离子交换色谱所用的缓冲液,通常用下列化合物配制:钠、钾、被的柠檬酸盐,磷酸盐,甲酸盐与其相应的酸混合成酸性缓冲液或氢氧化钠混合成碱性缓冲液等。

C. 离子交换色谱法的原理装置及应用

原理:离子交换色谱以离子交换树脂伍知作为固定相,树脂上具有固定离子基团及可交换的离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。

应用: 离子色谱主要用于测定各种离子的含量,特别适于测定水溶液中低浓度的阴磨橘离子,例如饮用水水质分析,高纯水的离子分析,矿泉水,雨水,各种废水和电厂水的分析,纸浆和漂白液的分析,食品分析,生物体液尿和血等中的离子测定,以及钢铁工瞎橘团业,环境保护等方面的应用。离子色谱能测定下列类型的离子:有机阴离子,碱金属,碱土金属,重金属,稀土离子和有机酸,以及胺和铵盐等。

装置:分离柱,抑制柱和柱后衍生作用,检测器。

D. 高效液相色谱法的原理与适用范围及采样要求

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。
特点

1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。
2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。
3. 高效:近来研究出许多新型固定相,使分离效率大大提高。
4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。
5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。

高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。
高效液相色谱法的主要类型及其分离原理
根据分离机制的不同,高效液相色谱法可分为下述几种主要类型:

1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography)

流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式:

式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。

a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。

b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。

c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。

2 .液 — 固色谱法

流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下:

Xm + nSa ====== Xa + nSm

式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。

当吸附竞争反应达平衡时:

K=[Xa][Sm]/[Xm][Sa]

式中:K为吸附平衡常数。[讨论:K越大,保留值越大。]

3 .离子交换色谱法(Ion-exchange Chromatography)

IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。

以阴离子交换剂为例,其交换过程可表示如下:

X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中)

当交换达平衡时:

KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-]

分配系数为:

DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-]

[讨论:DX与保留值的关系]

凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。

4 .离子对色谱法(Ion Pair Chromatography)

离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原理可用下式表示:

X+水相 + Y-水相 === X+Y-有机相

式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X+Y---形成的离子对化合物。

当达平衡时:

KXY = [X+Y-]有机相/[ X+]水相[Y-]水相

根据定义,分配系数为:

DX= [X+Y-]有机相/[ X+]水相= KXY [Y-]水相

[讨论:DX与保留值的关系]

离子对色谱法(特别是反相)发解决了以往难以分离的混合物的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如核酸、核苷、生物碱以及药物等分离。

5 .离子色谱法(Ion Chromatography)

用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。

以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程):

抑制柱上发生的反应:

R-H+ + Na+OH- === R-Na+ + H2O

R-H+ + Na+Br- === R-Na+ + H+Br-

可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H+Br-,可用电导法灵敏的检测。

离子色谱法是溶液中阴离子分析的最佳方法。也可用于阳离子分析。
6 .空间排阻色谱法(Steric Exclusion Chromatography)

空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。

高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。

1.进样系统

一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。

2.输液系统

该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4X107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。

3.分离系统

该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。

另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。

再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。

4.检测系统

高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种。

(1)紫外检测器

该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。其特点:使用面广(如蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。

(2)示差折光检测器

凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统。这一系统通用性强、操作简单,但灵敏度低(检测下限为10-7g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。

(3)荧光检测器

凡具有荧光的物质,在一定条件下,其发射光的荧光强度与物质的浓度成正比。因此,这一检测器只适用于具有荧光的有机化合物(如多环芳烃、氨基酸、胺类、维生素和某些蛋白质等)的测定,其灵敏度很高(检测下限为10-12~10-14g/ml),痕量分析和梯度洗脱作品的检测均可采用。

(5)数据处理系统

该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。

E. ic离子色谱仪与液相色谱仪hplc的区别

1. 离子色谱法 ion chromatography, IC 狭义地讲,是基于离子性化合物与固定相表面离子性功能基团之间的电荷相互作用实现离子性物质分离和分析的色谱方法;广义地讲,是基于被测物的可离解性(离子性)进行分离的液相色谱方法。1975年Small发明的离子色谱是以低交换容量离子交换剂作固定相、用含有合适淋洗离子的电解质溶液作流动相使无机离子得以分离,并成功地用电导检测器连续测定流出物的电导变化。但随着色谱固定相和检测技术的发展,非离子交换剂固定相和非电导检测器也广泛用于离子性物质的分离分析。根据分离机理,离子色谱可分为离子交换色谱、离子排斥色谱、离子对色谱、离子抑制色谱和金属离子配合物色谱等几种分离模式(方式)。其中离子交换色谱是应用最广泛的离子色谱方法,是离子色谱日常分析工作的主体,通常要采用专门的离子色谱仪进行分析。离子色谱法已经广泛地用于环境、食品、材料、工业、生物和医药等许多领域。

2. 抑制型离子色谱法 suppressed ion chromatography, SIC 又称双柱离子色谱法,是在柱流出物进入检测器之前通过化学抑制等方法将较高的流动相背景电导降低到一定程度后再进行电导检测的离子色谱法。例如,当以强电解质(如碳酸盐)作流动相分析无机阴离子时,流动相背景电导很高,难以直接检测到被测阴离子或检测灵敏度很低,如果将柱流出物通过一个抑制器,使流动相中被测离子的反离子(阳离子)得以除去,流动相的背景电导就会大大降低,同时被测阴离子在抑制器中转变成灵敏度更高的酸形式,从而获得很高的检测灵敏度。因为离子色谱发展初期的抑制器是与分离柱类似的柱形抑制器(抑制柱),柱内填充与分离柱填料带相反电荷的离子交换树脂,因而早期又称双柱离子色谱法。

3. 双柱离子色谱法 al column ion chromatography 又称抑制型离子色谱法,是在分离柱之后连接抑制柱(或其他类型抑制器)的离子色谱法。参见“抑制型离子色谱法”

4. 非抑制型离子色谱法 non-suppressed ion chromatography, NSIC 又称单柱离子色谱法,是不采用抑制器抑制背景电导,而将柱流出物直接导入检测池进行电导检测的离子色谱法。当以弱电解质(如有机羧酸或其盐)作流动相时,因流动相本身的电导率较低,不使用抑制器也能获得较高的检测灵敏度。一般而言,非抑制型离子色谱法的检测灵敏度比抑制型离子色谱法低约一个数量级。

5. 单柱离子色谱法 single column ion chromatography 又称非抑制型离子色谱法,是只使用分离柱,而不在分离柱后连接抑制柱的离子色谱法。参见“非抑制型离子色谱法”

6. 离子交换色谱法 ion exchange chromatography, IEC 以离子交换剂(如聚苯乙烯基质离子交换树脂)作固定相,基于流动相中溶质(样品)离子和固定相表面离子交换基团之间的离子交换作用而达到溶质保留和分离的离子色谱法。分离机理除电场相互作用(离子交换)外,还常常包括非离子性吸附等次要保留作用。其固定相主要是聚苯乙烯和多孔硅胶作基质的离子交换剂。离子交换色谱法最适合无机离子的分离,是无机阴离子的最理想的分析方法。 7. 阴离子交换色谱法 anion exchange chromatography, AEC 以阴离子交换剂作固定相进行阴离子分离分析的离子色谱法。最常用的固定相是以季铵基为功能基团的阴离子交换剂,最常用的流动相是碳酸(氢)盐、有机羧酸盐。可以用于无机阴离子、阳离子的配阴离子、羧酸和烷基磺酸等无机和有机阴离子的分析。

8. 阳离子交换色谱法 cation exchange chromatography, CEC 以阳离子交换剂作固定相进行阳离子分离分析的离子色谱法。最常用的固定相是以磺酸基和羧酸基为功能基团的阳离子交换剂,最常用的流动相是稀的无机酸溶液和有机羧酸。可以用于金属阳离子、有机胺、生物碱等无机和有机阳离子的分析。

9. 离子排斥色谱法 ion exclusion chromatography, ICE 基于溶质和固定相之间的Donnan排斥作用的离子色谱法。在固定相与流动相的界面存在一个假想的Donnan膜,游离状态的离子因受固定相表面同种电荷的排斥作用而无法穿过Donnan膜进入固定相,在空体积(排斥体积)处最先流出色谱柱。而弱离解性物质可以部分穿过Donnan膜进入固定相,离解度越低的物质越容易进入固定相,其保留值也就越大。于是,不同离解度的物质就可以通过离子排斥色谱法得以分离。在离子排斥柱上还存在体积排阻和分配作用等次要保留机理。最常用的离子排斥色谱固定相是具有较高交换容量的全磺化交联聚苯乙烯阳离子交换树脂,这种阳离子交换树脂一般不能用于阳离子的离子交换色谱分离。离子排斥色谱对于从强酸中分离弱酸,以及弱酸的相互分离是非常有用的。如果选择适当的检测方法,离子排斥色谱还可以用于氨基酸、醛及醇的分析。因为其英文名称也可写作ion chromatography exclusion,故常以ICE作为其简写形式,以与离子交换色谱法的简写形式(IEC)相区别。

10. 离子对色谱法 ion pair chromatography, IPC 又称离子相互作用色谱法或流动相离子色谱法,是基于溶质(样品)离子与流动相中的离子对试剂形成电中性的离子对化合物之后,通过吸附与分配等相互作用在固定相中保留和分离的一种色谱方法。固定相是普通高效液相色谱中最常用的极性或非极性键合相。离子对色谱采用的是普通高效液相色谱的分离体系。离子对色谱在生物医药样品中离子性有机物的分析、工业样品中离子性表面活性剂以及环境与农业样品中过渡金属离子配合物的分析方面非常有用。

11. 离子相互作用色谱法 ion interaction chromatography, IIC 又称离子对色谱法或流动相离子色谱法。参见“离子对色谱法”

12. 离子抑制色谱法 ion suppression chromatography, ISC 通过控制流动相pH值,使弱酸性或弱碱性溶质的离解得到抑制,以未离解的分子状态在固定相上分配或吸附,从而达到保留与分离的液相色谱方法。其分离机理和离子对色谱法相似,也是将溶质离子转变成中性的、具有一定疏水性的分子状态。离子抑制色谱主要用于有机弱酸弱碱的分析。离子抑制色谱也采用通常的高效液相色谱分离体系。因为它的分析对象是具有一定离子性的有机弱酸弱碱,所以有时在离子色谱法中也提及该方法。

13. 液态离子交换剂 liquid ion exchanger 具有离子交换功能基团,可以用于离子交换分离的液体有机化合物(如高分子胺)。它们大多是离子对试剂,将它们溶于流动相后动态涂渍到多孔硅胶或非极性键合相上,形成动态包覆离子交换层,可进行动态离子交换色谱分离。

14. 金属配合物离子色谱法 metal complex ion chromatography, MCIC 又称金属络合物色谱法,是使被测金属离子与适当的有机配位体作用,形成金属配合物(中性分子、配阴离子或配阳离子)后,采用通常的高效液相色谱体系分离和检测的一种色谱方法。因为它的分析对象是金属离子,所以也可以作为一种离子色谱法讨论。

15. 离子色谱仪 ion chromatograph 离子色谱分析所使用的专门仪器。它和一般的液相色谱仪的基本构造和工作原理一样,最基本的单元组件也是高压输液泵、进样器、色谱柱、检测器和数据处理系统(记录仪、积分仪或色谱工作站)。此外,还可根据需要配置流动相在线脱气装置、梯度洗脱装置、自动进样系统、流动相抑制系统、柱后反应系统和全自动控制系统等。专用离子色谱仪不同于普通液相色谱仪的主要之处是使用的常规检测器不是紫外检测器,而是电导检测器,所用的分离柱不是液相色谱所用的吸附型或分配型柱,而是以离子交换剂作填料的分离柱,而且柱容量比通常的高效液相色谱柱小得多。另外,在离子色谱中,特别是在抑制型离子色谱中往往用强酸性或强碱性物质作流动相,因此,仪器的流路系统耐酸耐碱的要求更高一些。

16. 淋洗剂 eluent 在离子色谱分析所用流动相溶液中,能提供与溶质离子在离子交换位置进行离子交换竞争反应的淋洗离子的物质。如阴离子交换色谱分析中常用NaHCO3水溶液作流动相,NaHCO3就是淋洗剂。参见“淋洗离子”。

17. 淋洗离子 eluent ion 在离子色谱流动相中,与溶质离子在离子交换位置相互竞争,将溶质离子从固定相洗脱出来的那种离子。如NaHCO3作为阴离子交换色谱分析的淋洗剂时,它所提供的阴离子HCO3-就是淋洗离子。

18. 去离子水 deionized water 用离子交换分离等技术去除了离子性物质的纯水。离子色谱中配制流动相和样品都要用去离子水,以避免水中所含离子性成分被干扰.

建议您可以到行业内专业的网站进行交流学习!

分析测试网络网,分析行业的网络知道,基本上问题都能得到解答,有问题可去那提问,网络上搜下就有。

F. 离子色谱的应用普遍吗离子色谱常用的检测器都有那些

离子色谱(Ion Chromatography,简称IC)是由经典的离子交换色谱发展起来的新型液相色谱分析技术,具有快速、灵敏、选择性好、且可同时测定无机或亲水性有机阴、阳离子等多种组分的特点。IC已被广泛用于环境、电力、半导体、生物、医药、化工等多个领域,目前离子色谱作为色谱的一个大类,在色谱领域的应用和使用量,在高效液相色谱和气相色谱之后,列第三位。近年来IC的发展速度迅速,超过了高效液相色谱和气相色谱的发展速度。

阳离子交换柱用于分离阳离子样品,阴离子交换柱用作分离阴离子样品。缓冲溶液作为洗脱液,经泵输送入色谱柱后,其阳离子或阴离子最终将色谱柱中所有可交换的离子置换出来,同时由检测器转换为恒定的信号——基线。然后,进样少量样品,样品离子即被树脂柱所接受,并与等同数量的洗脱液离子交换。如果样品中所有离子的浓度大于洗脱液的离子浓度,那么在柱顶端的总离子浓度就将增加,这就产生了一个脉动,当它沿着柱移动并通过电导检测器时即得到一个正峰;反之,则获得负峰。进样后,洗脱液离子继续不断地经泵输入色谱柱,对树脂的可交换部位与样品离子进行竞争,并且使样品离子沿着柱子移动。由于样品离子对交换树脂有不同的亲和能力,因而不同的样品离子沿柱以不同的速度移动,最后完成分离。

一般情况下,离子交换色谱分离时淋洗液的背景电导比较高。现代离子色谱技术,采用一些新技术,可以使离子色谱的淋洗背景降低,并使被测样品的电导值提高,从而有效提高分析灵敏度。
离子色谱主要分为抑制型离子色谱和非抑制型离子色谱两大类。

A)抑制型离子色谱(Suppressed IC)又称为双柱型离子色谱(Double Column IC,SCIC):由H.Small等最早提出,后作为美国Dionex公司专利并生产。其原理为:由于离子交换分离的洗脱液几乎都是强电解质,其电导一般要较待测离子高二个数量级,会完全掩盖待测离子的信号。为提高检测灵敏度,采用在分离柱后串联抑制柱的办法,可使洗脱液转变成低电导组分。具体方法就是采用弱酸盐作为淋洗液(如OH-,碳酸盐和硼酸盐等),通过抑制器后,将它们转化为对应的弱酸(如H2O,碳酸和硼酸等),以降低来自洗脱液的背景电导。另外也可将样品离子转变成相应的酸或碱,以增加其电导。

最初的抑制柱内填充与分离柱填料相反电荷的离子交换树脂。当分析阴离子时,要用苯乙烯系列的强酸型(H+)树脂装柱;而分析阳离子时,则用苯乙烯系列的强碱型(OH-)树脂装柱。抑制柱须定期再生。抑制技术的发展经历了树脂填充型、微膜型、平板膜型、电化学自再生型抑制器等过程,使离子色谱抑制更为方便、有效。

对于阳离子来说,分离柱装有阳离子交换填料,抑制单元则为羟基阴离子交换剂,洗脱液中典型的是H+,通过抑制单元后转变为H2O。抑制型离子色谱仪虽然价格昂贵,使用也较复杂,但灵敏度比较高,随着部分专利逐渐到期,大多数离子色谱将采用这种技术。

抑制型离子色谱因为对淋洗液的背景电导进行抑制,因此这种离子色谱灵敏度比较高,可以测定检测下限比较低,可以测定ng/ml,甚至ng/L级含量的阴、阳离子,对于阴离子分离所采用的淋洗通常为氢氧化物、碳酸盐或硼酸盐等弱酸盐的稀溶液,也可以采用两性离子。阳离子分离通常采用酸或含苯胺类化合物,背景电导通常为1~20μS。

B、非抑制型离子色谱(Unsuppressed IC)又称为单柱离子色谱(Single Column IC,SCIC):由美国衣阿华州立大学J.S.Fritz教授等人提出,它是一种不用抑制器,直接用电导等电化学检测器测定阴离子和阳离子的液相色谱方法。其特点是:采用足够低交换容量的分离柱,以及很稀浓度的洗脱液。进行阴离子分析时,树脂的交换容量为0.005~0.10Meq/g,典型的洗脱液是1.0×10-4~4.0×10-4mol/L的苯甲酸、羟基苯甲酸或邻苯二甲酸的钠盐或钾盐,这些洗脱液都足够稀,从而使背景电导率相当低;大部分样品阴离子的当量电导比洗脱液阴离子要高,因此,样品浓度即使低至mg/L级也能测得。

G. 液相的柱压不稳定,总是上下波动且幅度很大,可以怎么解决

当液相柱压不稳定时可以进行以下操作:

1、检查是否脱气,压力不稳定很可能是管路中有气泡。

2、更换密封垫,泵密封垫损坏,会把空气带进泵内。

3、打开泵的排气阀,按purge健排气,或者以大流速(2ml/m)排气,流动相真空脱气或者超声脱气。

4、换下双泵,冲洗阀的过滤芯,将流动相混合均匀后,超声20min后,真接单泵分析就可。

5、检查是否是柱子久用引起的柱压不稳,用异丙醇:甲醇=10:90冲,流速要调低。

(7)阴离子交换色谱哪里可以测扩展阅读

在选择色谱柱之前,先多了解自己的样品和杂质,他们的类型结构、极性、酸碱性、分子量大小等等。

1.样品是极性的且弱酸性的,就可以选择C18在100%酸性水溶液条件下检测,即要选择承受100%纯水且对极性化合物保留很好的色谱柱。

2. 如果样品极性太强,或酸性太强,可以选择CN,NH2,或硅胶柱,HILIC(亲水色谱),也有使用C18+强阴离子对试剂或强阴离子交换色谱柱。

(缺点是离子对试剂平衡时间长,对流动相pH要求比较精密,否则很难重复实验,另外离子对试剂很难洗下来,基本上用了离子对的色谱柱就不能再用于其它实验)。

3. 若样品是碱性的,可选择高纯硅胶柱(高纯硅胶缺少金属杂质,且硅胶端基封尾)或一些经过修饰的C18柱(如极性嵌入技术或碱去活技术等)。

他们都会减少碱性化合物的拖尾,一般会选择中性或偏碱的条件下做,因为这样可增加碱性样品的保留。

4.如果碱性化合物的极性太强,或碱性太强,可以选择宽pH的C18色谱柱在高pH值检测(优点是方法开发简单,缺点是目前实 现这一技术的色谱柱品牌比较少,价格也高)。

或者选用HILIC色谱柱(硅胶柱在反相条件下使用,这也是很经典的检测碱性样品的方法)选择强离子交换柱也有使用C18+强阴离子对试剂或强阴离子交换色谱柱。

H. 离子色谱法测定水中阴离子

离子色谱是色谱法的一个分支,离子色谱法是利用被分离物质在离子交换树脂上交换能力的不同,从而连续对共存多种阴离子或阳离子进行分离、定性和定量的方法。

二、注意事项:

1、查淋洗液与分离柱是否一 致:是否过期,是否满足当天的需要,废液桶的容量。

2、接通气路并调节气压至操作压力:压缩气瓶的输出压力、淋洗液瓶的压力。

3、排除气泡:根据实际情况进行,淋洗液加压后旋松废液阀,开泵冲洗1 ~2分钟后,停泵,旋紧废液阀。

阅读全文

与阴离子交换色谱哪里可以测相关的资料

热点内容
纯水机废水流不停是什么原因 浏览:225
ro反渗透水处理设备报价 浏览:924
大型喷漆过滤机械 浏览:679
纯水的蒸汽压与什么有关 浏览:645
铸造树脂和脉纹添加剂的关系 浏览:222
纯水机怎么加麦饭石 浏览:942
净水器盒子怎么打开换滤芯 浏览:986
小米净化器怎么提示滤芯寿命 浏览:286
污水处理如何核实项目情况 浏览:518
哪个厂家的净水器比较好 浏览:31
在线数据处理与交易edi 浏览:577
过滤水是多少目 浏览:530
反渗透膜串联示意图 浏览:449
400G反渗透膜多少钱 浏览:760
废水树脂吸附塔 浏览:811
ro反渗透膜怎样缠紧 浏览:478
污水池体包括什么 浏览:668
环氧树脂粘结剂的长处 浏览:280
空气滤芯着火怎么处理 浏览:157
污水厂储泥槽怎么处理 浏览:605