离子交换膜并不过滤东西,而是通过转换反应进行离子交换,即使用一种离子替换另一种离子。不同的材料针对的是不同的离子。当然不可能针对所有金属离子都有效的。交换钙离子一般用钠或钾。
❷ 溶液中的钠离子怎么去除拿其他的离子替换,比如 钾离子等等
直接加入钾就行了,置换反应后生成氯化钾和钠单质,因为金属活动强弱钾在钠前面,在金属活动顺序表中,前面的金属可以把后面的金属从它的化合物的溶液中置换出来。
❸ 化学问题什么是两性离子交换膜主要内容
两性离子交换膜在膜体结构中同时含有阳离子交换基团和阴离子交换基团的离子回交换膜。
这种膜对某答些离子具有高的选择性,主要用于分离和回收溶液中的微量金属,从非离子化物质溶液中除去浓度高的离子化杂质,如从糖液中除去氯化钠,从中草药溶液中除去铅离子,还可用于离子化物质的分离,如氯化钠与硫酸钠的分离。
❹ 离子色谱法测定锂、钠、钾、钙、镁、铵
方法提要
水样中阳离子Li+、Na+、NH+4、K+、Mg2+、Ca2+,随盐酸淋洗液进入阳离子分离柱,根据离子交换树脂对各阳离子的不同亲和程度进行分离。经分离后的各组分流经抑制系统,将强电解质的淋洗液转换为弱电解溶液,降低了背景电导。流经电导检测器系统,测量各离子组分的电导率。以相对保留时间和色谱峰(面积)定性和定量。
本法用电导检测器,在3~300μS测量量程,可达到线性范围分别为:Li+0.02~27mg/L;Na+0.06~90mg/L;K+0.16~225mg/L。10~300μS量程为:Mg2+1.2~35mg/L;Ca2+1.7~360mg/L。
仪器和装置
离子色谱仪(电导检测器)。
阳离子分离柱/保护柱(IopacCS12,CS14或同类产品)。
抑制器系统(抑制柱、膜抑制器或自动再生电解抑制器)。
滤膜(0.2μm)和过滤器。
试剂
本法需用电导率小于1μS/cm的纯水配制标准溶液和淋洗液。
淋洗液 盐酸c(HCl)=20mmol/L。
再生液 四甲基氢氧化铵c(CH3)4NOH=100mmol/L称取36.5g四甲基氢氧化铵,置于100mL容量瓶中,加水至刻度。
钠(Na+) 标准储备溶液ρ(Na+)=1.00mg/mL称取0.5084g经500℃灼烧1h,并在干燥器中冷却0.5h的NaCl,置于200mL容量瓶中,加入水溶解后稀释至刻度,摇匀。
钾(K+) 标准储备溶液ρ(K+)=1.00mg/mL称取0.4457g经500℃灼烧1h并在干燥器中冷却0.5h的K2SO4,置于200mL容量瓶中,加入水溶解后稀释至刻度,摇匀。
锂(Li+) 标准储备溶液ρ(Li+)=1.00mg/mL称取1.0648gLi2CO3置于200mL容量瓶中,加少量水湿润,逐滴加入(1+1)HCl,使碳酸锂完全溶解,再过量2滴。加入水至刻度,摇匀。
图81.65 种阳离子的色谱图
钙(Ca2+)标准储备溶液ρ(Ca2+)=1.00mg/mL称取0.4994g经105℃干燥的CaCO3置于200mL烧杯中,加入少量纯水,逐渐加入(1+1)HCl,待完全溶解后,再加入过量(1+1)HCl。煮沸驱除二氧化碳,定量地转移至200mL容量瓶中,加入纯水溶解后稀释至刻度。
镁(Mg2+)标准储备溶液ρ(Mg2+)=1.00mg/mL称取0.7836g氯化镁(MgCl2)置于200mL容量瓶中,加入纯水溶解后稀释至刻度。
阳离子混合标准溶液根据选定的测量范围,分别吸取适量各组分的标准储备溶液,定容至一定体积,以mg/L表示各组分浓度。
分析步骤
开启离子色谱仪,调节淋洗液和再生液流速,使仪器达到平衡,并指示稳定的基线。
校准。根据所选择的量程,将阳离子混合标准溶液和两次等比稀释的三种不同浓度的阳离子混合标准溶液依次进样。记录峰高或峰面积,绘制校准曲线。
将水样经0.2μm滤膜过滤注入进样系统,记录色谱峰高或峰面积。各种阳离子的质量浓度(mg/L)在标准曲线上直接查得。
各种阳离子的测定范围(mg/L)见表81.8及色谱图81.6。
表81.8 各种阳离子在不同量程的参考测定浓度
续表
❺ 高氟地下水的主要化学处理方法
高氟地下水化学处理的基本原理是根据氟的两个基本性质,即氟与其他元素存在配合趋势和胶体类物质对氟元素具有吸附作用,前者是指氟元素主要能与铝、钙、镁等元素有形成配合物的趋向,且形成的含氟配合物化学性质稳定,水解和电离均较弱,能有效降低氟对人体健康的危害;后者是指地理环境中一些具有吸收性能的物质如黏粒、黏土矿物、Al(OH)3、有机质等对环境中的氟离子具有吸着而使氟富集的性能,对空气中氟化物的吸附是分子吸附,而对溶液中氟的吸附则主要是离子交换吸附形式,其中以羟基OH-与F-的交换最为普遍。
1.含铝物质对高氟地下水的化学处理
铝是研究区普遍存在的一种元素,对广大高氟改水存在一定局限性的农村地区而言,使用铝物质降低饮用水中氟含量简便可行,可在高氟地下水区广泛使用,其中铝与氟的化学反应过程如下:
(1)铝离子与重碳酸盐反应生成氢氧化铝矾花:
河南省地下水中氟的分布及形成机理研究
(2)生成的氢氧化铝在混凝过程中与氟离子反应:
河南省地下水中氟的分布及形成机理研究
目前常用的含铝物质包括硫酸铝Al2(SO4)3·18H2O、明矾KAl(SO4)2·12H2O、三氯化铝AlCl3·6H2O、碱式氯化铝[Al2(OH)nCl6-n]m及活性氧化铝Al2O3等。上述物质均具备稳定的降氟效果,但高氟地下水经过处理后易残留一定量的Al3+、
2.含钙物质对高氟地下水的化学处理
石灰石在广大农村地区较为常见,这也是石灰石可作为广大氟病区中降低饮用水氟含量的基础,其原理是根据水中的CaCO3沉淀可作为载体使CaF2沉淀下来以达到降氟的目的,而氧化镁作为降氟化学药剂的功能跟石灰石类似,同样是先与水形成氢氧化镁沉淀后使氟一起沉淀下来,其中钙与氟的化学反应过程如下:
河南省地下水中氟的分布及形成机理研究
用含钙物质进行高氟地下水的化学处理的应用范围有限,仅限于高浓度氟的工业污水处理或氟含量为6~10mg/L的高氟地下水,同时必须在降氟过程中通入CO2气体,因此对研究区的广大氟病村而言并不适宜,但可以作为供水水源地的化学处理方法。
3.含羟基物质对高氟地下水的化学处理
含有羟基的物质种类较多,包括天然沸石、骨粉、蛇纹石、胶泥等各种有机物质。其基本原理是受到胶体物质对氟吸着作用的影响,其中溶液对氟的吸附主要体现为离子交换吸附,并以羟基OH-与F-的交换为主要形式,化学反应过程在天然沸石及骨粉骨炭的降氟作用下体现得最为明显:
(1)天然沸石与氟离子的离子交换吸附过程:
河南省地下水中氟的分布及形成机理研究
式中:Mn+表示阳离子,化合价一般为1~3价。
(2)骨粉与氟离子的离子交换吸附过程:
河南省地下水中氟的分布及形成机理研究
羟基物质的化学处理对水质的影响程度较前两者要轻,虽存在一定程度的残留污染离子,但降氟效果比较稳定,且上述降氟的物质在高氟地下水区易于得到,尤其较适合在僻远的农村高氟地下水区推广使用。
4.电化学方法中的膜分离技术
膜分离技术的基本原理是在外力的作用下,通过离子交换膜,将包括氟离子在内的阴离子与水中阳离子或溶剂进行分离,从而达到去除水中氟离子的目的。根据外力作用的不同形式,如电场或外加压力的作用可分为电渗析及反渗透两种类型,虽处理效果较好,且适合处理含多种有害成分的污染水,如反渗透系统对水质极差的SO4·Cl-Na·Mg型和SO4·Cl-Na型苦咸水中的溶解性总固体、总硬度、铁、锰、钙、镁、钾、钠、硫酸盐、氯化物、二氧化硅等无机盐的去除率达到96%~100%;总硬度、氯化物、硫酸盐、溶解性固体等指标去除率仍大于98%,出水水质优于国家和世界水质标准,但两者处理成本均很昂贵,设备投资大,因此对研究区而言,广大高氟地下水病村并不具备应用膜分离技术的条件,仅在为城镇提供饮用水水源时,可在饮用水处理厂使用该套设备对饮用水进行水质处理。
上述四类饮用水化学处理方法虽各具有不同特点,但均存在一些不足之处:
(1)化学处理的基本原理均与氟元素本身的物理化学性质有关,如铝、钙与氟的反应是由氟与上述元素的配合趋势决定的,而含有羟基的物质则由氟能被胶体物质吸附决定,尤其在溶液中的离子交换吸附以羟基和氟离子两者的交换吸附为主,这在含氟矿物的物质组成中体现较为明显,如在一些含羟基的硅酸盐和含羟基的铝硅酸盐中固定有大量的氟,原因是羟基被氟离子所替换,这在角闪石和云母族等矿物中较为普遍;而电化学处理的原理是由氟离子的离子类型决定,其离子交换膜及外力作用只是该处理方法的外部因素。
(2)在含铝、钙或羟基三种物质的化学处理方法中,处理后的高氟地下水不同程度残留有害离子,这不能满足研究区人民群众日常饮用水水质要求,因此往往要对高氟地下水进行二次处理才能使水质符合饮用标准;电化学法虽然效果较好,并不会产生二次污染的问题,但成本昂贵,使应用范围受限。
❻ 离子交换膜的原理是什么
离子交换膜又称离子选择透过性膜。
按其功能和结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合膜5种。离子交换膜的构造和离子交换树脂相同,但为膜的形式。
离子交换膜可制成均相膜和非均相膜两类。采用高分子的加工成型方法制造。①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。②非均相膜。用粒度为200~400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。为免失水干燥而变脆破裂,须保存在水中。
离子交换膜主要应用于海水淡化,甘油、聚乙二醇的除盐,放射性元素、同位素及氨基酸的分离,有机物及无机物纯化,放射性废液处理,燃料电池隔膜及选择性电极等。