导航:首页 > 净水问答 > 阳离子交换作用的基本特性

阳离子交换作用的基本特性

发布时间:2023-05-29 09:37:40

㈠ 阳离子交换树脂和阴离子交换树脂的区别和用法

阳离子交换树脂:
1.
阳离子交换树脂是在交联为7%的苯乙烯,二乙烯共聚体上带有磺酸基(-
SO3
H)的阳离子交换树脂,是一种磺酸化苯乙烯系凝胶型强酸性阳离子交换树脂。它在碱性、中性、甚至酸性介质中都显示离子交换功能。本产品具有交换容量高、交换速度快、机械强度好等特点。主要用于锅炉硬水软化纯水制备,也用于湿法冶金、制糖、制药、味精行业,以及作为催化剂和脱水剂。
2.
阳离子交换树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+
而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类阳离子交换树脂亦是用酸进行再生(比强酸性树脂较易再生)。
阴离子交换树脂:
1.
阴离子交换树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
阳离子交换树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使阳离子交换树脂的功能基团回复原来状态,以供再次使用。如上述的阴离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

㈡ 阳离子交换

1.阳离子交换

按质量作用定律,阳离子交换反应可以表示为

水文地球化学基础

式中:KA—B为阳离子交换平衡常数;A和B为水中的离子;AX和BX为吸附在固体颗粒表面的离子;方括号指活度。

在海水入侵过程中,准确模拟阳离子交换作用是预测阳离子在含水层中运移的前提条件。按照质量作用定律可以用一个平衡常数把离子交换作为一种反应来描述。例如Na+、Ca2+的交换:

水文地球化学基础

平衡常数为:

水文地球化学基础

式(3—115)表明,交换反应是等当量的,是个可逆过程;两个Na+交换一个Ca2+。如果水中的Na+与吸附在固体颗粒表面的Ca2+(即CaX)交换,则反应向右进行;反之,则向左进行。如果反应向右进行,Ca2+是解吸过程,而Na+是吸附过程。所以,阳离子交换实际上是一个吸附—解吸过程。Na+、Ca2+的交换是一种最广泛的阳离子交换。当海水入侵淡水含水层时,由于海水中Na+远高于淡水,而且淡水含水层颗粒表面可交换的阳离子主要是Ca2+,因此产生Na+、Ca2+之间的离子交换,Na+被吸附而Ca2+被解吸,方程(3—115)向右进行;当淡水渗入海相地层时,则Na+被解吸而Ca2+被吸附,反应向左进行。

2.质量作用方程

描述离子交换反应的方程式有多种,通常主要是通过对实验数据的最佳拟合来决定选择哪一种方程式,众多的研究者很难达成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因为目前并没有一个统一的理论来计算吸附剂上的离子活度,而前面提到的迪拜—休克尔方程、戴维斯方程都是适用于水溶液中的离子活度计算。

交换性阳离子活度有时用摩尔分数来计算,但更为常用的是当量分数作为交换位的数量分数或者作为交换性阳离子的数量分数。在一种理想的标准状态下,交换剂只被一种离子完全占据,交换离子的活度等于1。对于等价交换使用哪一种方程式没有区别,但是对于非等价交换影响十分显著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函数形式:

水文地球化学基础

即为交换位浓度(单位质量吸附剂的摩尔数)与无单位函数

)和

)的乘积。这些函数依赖于溶液中阳离子的活度。

海水入侵过程中的交换反应主要为Na+与Ca2+之间的交换,通常写作:

水文地球化学基础

X为—1价的表面交换位,交换位X的总浓度为

水文地球化学基础

式中:S指每单位质量固体的总交换位浓度,mol/g。这种情况下S的量等于阳离子交换容量(只要单位换算统一即可)。

水文地球化学基础

式(3—120)的书写方式符合Gaines—Thomas方程式,Gaines(盖恩斯)和Thomas(托马斯)(1995)最先给出交换性阳离子热动力学标准态的严格定义。它使用交换性阳离子的当量分数作为吸附离子的活度。若式(3—120)使用摩尔分数,则遵守Vanselow(1932)公式。

如果假定吸附阳离子的活度和被离子占据的交换位的数目成正比,反应式(3—115)则可写成

水文地球化学基础

式(3—122)符合Gapon(加蓬)方程式。在Gapon方程式中,摩尔分数和当量分数是一样的,都是电荷为—1的单一交换位。

还有一种交换形式为:

水文地球化学基础

Y指交换位的电荷为—2,这种反应式同样是交换反应的一种有效热力学描述。它假定交换位Y的总浓度为

水文地球化学基础

S则为阳离子交换容量的二分之一。Cernik(采尔尼克)等根据当量分数利用反应式(3—123),将交换系数表示为:

水文地球化学基础

3.质量作用方程拟合

利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式对在砂样中进行的试验所获得的数据进行拟合,根据拟合结果作出 Na+、Ca2+、Mg2+、K+吸附等温线(刘茜,2007),如图3—4~图3—7所示。

图3—4 Na+吸附等温线和拟合数据

由吸附等温线可以看出,砂样对Na+、Mg2+、K+的吸附量均随着溶液中离子浓度的增加而逐渐增加,而Ca2+发生解吸。图3—4中,砂样对Na+的吸附量随溶液中离子浓度的增加而缓慢增加。图3—5中,在Ca2+浓度较低时,解吸量迅速增大,当Ca2+浓度较高时,随浓度增加解吸量增加缓慢,逐渐趋于平稳状态。

图3—6中Mg2+浓度较低时,吸附量增加较慢,在较高浓度时增加较快,但并没有出现Ca2+的解吸等温线中的平稳状态,依然为直线型,且直线的斜率大于低浓度状态时的斜率,说明Na+、Mg2+的吸附速率在低浓度(海水含量为20%左右)时较小,在高浓度时,吸附速率变大;Ca2+的解吸在高浓度时基本达到平衡,而Na+、Mg2+还有增长趋势,也较好证明了试验所用砂样的交换位主要为Ca2+所占据。图3—7中K+实测值的吸附等温线则没有出现Ca2+、Na+、Mg2+的规律,虽然整体上随着溶液离子浓度的增加,吸附量也是增长趋势,但并没有出现直线规律。究其原因,主要是阳离子交换吸附作用不大,主要是化学吸附,因为K+的水化膜较薄,所以有较强的结合力,K+被吸附后,大多被牢固吸附在黏土矿物晶格中。

图3—5 Ca2+吸附等温线和拟合数据

图3—6 Mg2+吸附等温线和拟合数据

图3—7 K+吸附等温式和拟合数据

由吸附等温线模拟图(图3—4~图3—7)及公式与试验数据拟合的相关系数(表3—17)看出,GT方程式拟合效果较好,能够很好地预测离子交换趋势。因此,在多组分离子交换模拟计算中采用Gaines—Thomas方程,为阳离子交换的定量研究提供了依据。

表3—17 GT、GP、VS方程式拟合的相关系数

所以根据Gaines—Thomas方程式(3—126)~式(3—131)计算离子交换系数(表3—18)。由于 9 种配比浓度的离子强度不同,所以各自的交换系数也有所差别。对比

可知3种离子的吸附亲和力顺序为Mg2+>K+>Na+。但是由于海水中Na+、Mg2+含量远远高于地下水,尤其是Na+的含量比地下水高出3个数量级,因此,海水入侵过程中以Ca2+、Na+交换为主,其次为Ca2+、Mg2+交换,交换量最少的为Ca2+、K+

水文地球化学基础

表3—18 试验土样不同浓度下的交换系数

㈢ 土壤中阳离子的交换作用

土壤的阳离子交换性能,是指土壤溶液中的阳离子与土壤固相阳离子之间所进行的交换 作用,它是由土壤胶体表面性质所决定。土壤胶体是土壤中粘土矿物和腐殖酸以及相互结合形成的复杂有机矿质复合体,其吸收的阳离子包括钾、钠、钙、镁、铵、氢、铝等。土壤交换性能对植物营养和施肥有较大作用,它能调节土壤溶液的浓度,保持土壤溶液成分的多样性和平衡性,还可保持养分免于被雨水淋失.

土壤盐基饱和度(BS)
Base Saturation
土壤胶体上的交换性盐基离子占全部交换性阳离子(总量)的百分比。
酸基离子:H+、Al3+
盐基离子:K+、Na+、Ca2+、Mg2+等
BS真正反映土壤有效(速效)养分含量的大小,是改良土壤的重要依据之一。

盐基饱和度是指土壤吸附交换性盐基总量的程度。土壤吸附性阳离子,根据其解吸后的化学特性可区分为致酸的非盐基离子(如氢和铝离子)与非致酸的盐基离子(如钙、镁、钠等)两大类。当土壤胶体所吸附的阳离子基本上属于盐基离子时,称为盐基饱和土壤,呈中性、碱性、强碱性反应;反之,当非盐基离子占相当大比例时,称为盐基不饱和土壤,呈酸性或强碱性反应。土壤盐基饱和度以土壤的交换性盐基总量占土壤阳离子代换量的百分比表示。盐基饱和度的大小,可用作施用石灰或磷灰石改良土壤的依据。

㈣ 离子交换色谱的原理以及阴阳离子交换树脂的特性

离子交换树脂的结构:

离子交换树脂主要由高分子骨架和活性基团两部分组成,高分子骨架是惰性的网状结构骨架,是不溶于酸或碱的高分子物质,常用的离子交换树脂是由苯乙烯和二乙烯苯聚合得到树脂的骨架。

而活性基团不能自由移动的官能团离子和可以自由移动的可交换离子两部分组成,可交换离子能够决定树脂所吸附的离子,比如可交换离子为H型阳离子交换树脂,那么这个树脂能够吸附的离子,就是H型阳离子,而官能团离子能够决定树脂的“酸"、“碱"性和交换能力的强弱,比如官能团离子是强酸性离子,那么树脂就是强酸性离子交换树脂。


离子交换树脂的内部结构:

1.凝胶型树脂是由纯单体混合物经缩合或聚合而成的,结构为微孔状,合成的工艺比较简单,孔径大概在1-2nm左右,凝胶型树脂的操作容量高,产水量高,物理强度好,且再生效率高,被广泛应用在食品饮料加工,超纯水制备,饮用水过滤,硬水软化,制糖业,制药等领域。

2.大孔型树脂的孔径一般在10nm左右,在树脂中孔径是比较大的,所以被称为大孔型树脂,且孔径不会随着周围的环境而变化,能够弥补凝胶型树脂不能在非水系统中使用的缺点,吸附能力非常强大,不易碎裂,耐氧化好,操作容量高,能够应用在医药领域、除重金属污染、药品纯化、水处理中除去碳酸硬度、冷凝水精处理等领域。

详情点击:网页链接

㈤ 弱酸性阳离子交换树脂有何特性

  1. 弱酸阳离子交换树脂在水中的特性类似弱酸。它与中性盐类作用的能力较弱(例如SO42—、CL—等强酸阴离子)。它仅能与弱酸性盐类(具有碱度的盐类)反应,反应后产生的是弱酸。用强酸H型离子交换树脂可处理碱度大的水,将水中的碱度所对应的阴离子除去后,再用强酸H型交换树脂来除去强酸根所对应的那部分阴离子。

  2. 由于弱酸性阳树脂对H 的亲和力较大,很容易再生,因此它可用强酸H型阴离子交换树脂的再生废液来进行再生。

  3. 弱酸性阳树脂的交换容量很大,约为强酸性阳树脂的2倍。由于弱酸性阳树脂的交联度低,所以其机械强度比强酸性阳树脂的要低。

  4. 盐型弱酸性阳树脂具有水解能力。

㈥ 阳离子交换作用

岩石颗粒的表面往往带负电荷,因此能吸附某些阳离子。当某种成分的地下水与岩石颗粒接触时,水中某些阳离子被岩石颗粒表面吸附,以代替原来被吸附的阳离子,而原来被吸附的阳离子则进入水中,改变了地下水的化学成分,这种作用称为阳离子交换吸附作用。

阳离子交换的强度取决于很多因素,其中主要的是岩石的粒度、交换阳离子的性质、介质的pH值和水中电解质的浓度。

1.粒度

一般岩石的粒度越细,它的交换性能越强。因此,在黏土和黏土岩中,阳离子交换对水化学成分的影响明显。

2.离子性质

不同阳离子的吸附能不同,在其他条件相同的情况下,吸附能的大小取决于它们的离子价,离子价越高吸附能越强,并易留在岩石上。如果阳离子的电价相同,吸附能随原子量的增加而增大。部分离子吸附能强弱的顺序如下:

H+>Fe3+>Al3+>Ba2+>Ca2+>Mg2+>K+>Na+

由上可见,Ca2+的吸附能大于Na+,因此在自然界中常可见到地下水中的Ca2+交换吸附岩石颗粒表面的Na+

水文地球化学基础

阳离子交换吸附作用在含水层中广泛地进行,并且对改变地下水的化学成分及地下水的性质有重大意义。这种作用使硬度大的地下水变为硬度小的软水,形成低矿化度的钠水,如SO4—Na型、HCO3—Na型以及一些其他过渡型水。

3.pH值

在阳离子交换反应中,氢离子有着特殊的作用。它的交换能量不仅高于一价的阳离子,还高于二价和三价的阳离子。介质的pH值影响阳离子的吸附数量,水中的氢离子越多,对其他阳离子进入胶状综合体的阻力越强。增加与土壤处于平衡状态的溶液pH值,土壤的交换性能增强。当介质的pH值由6增加到11时,交换容量增加1~2倍。

4.电解质浓度

离子交换吸附作用并不仅决定于离子的性质,在吸附交换过程中,水中电解质浓度也起着重要作用,浓度大的离子比浓度小的离子易被吸附。因此,如果钠的浓度相当大时,吸附综合体中的部分钙离子将被钠离子排挤出去,水中的Na+与岩石颗粒表面的Ca2+就发生交换吸附的现象,例如海水入侵过程中的Na+与Ca2+的交换吸附。

水文地球化学基础

天然水中的交换主要是阳离子交换,而不是阴离子交换。这是由于岩石和土壤的胶体成分主要是由SiO2、Al2O3和其他带负电的胶粒所组成,它们吸附带正电的阳离子。除阳离子吸附外,在某些情况下也能发生阴离子吸附作用(例如砖红壤),但是对这种过程研究很少。

㈦ 什么叫阳离子交换什么叫阴离子交换

、离子交换树脂的组成
离子交换树脂是一类带有功能基的网状结构专高分子化合物,其结构由三部分组成属:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。
阳离子交换树脂:骨架上结合有磺酸基(-SO3H)(强酸性阳离子交换树脂)或羧酸基(-COOH)(弱酸性阳离子交换树脂)。
阴离子交换树脂:骨架上结合有季铵基(强碱性阴离子交换树脂),伯胺基、仲胺基、叔胺基(弱碱性阴离子交换树脂)。
二、离子交换树脂的分类
按骨架结构不同:凝胶型(干态无孔,吸水后产生微孔)和大孔型(树脂内部无论干、湿或收缩、溶胀都存在着比凝胶型树脂更大、更多的孔)。
根据所带的功能基团的特性:阳离子交换树脂(带酸性功能基,能与阳离子进行交换)、阴离子交换树脂(带碱性功能基,能与阴离子进行交换)和其它树脂。

阅读全文

与阳离子交换作用的基本特性相关的资料

热点内容
净水机滤芯拽不出来怎么办 浏览:310
耐高温的离子交换树脂 浏览:625
污水处理污泥管理台账 浏览:267
污水活性氯指标 浏览:105
油水分离机排污水 浏览:205
宁波好口碑中空纤维超滤膜加工 浏览:500
水果净化器怎么出水 浏览:419
污水徐理实备多少钱 浏览:537
废水监测采样方法怎么填写 浏览:298
铝锅能用除垢剂 浏览:390
反渗透膜结垢是什么原因引起的 浏览:420
饮水机没有热水是不出水什么原因 浏览:64
蒸馏实验的讲解 浏览:488
换上ro膜后不出废水了怎么办 浏览:675
空气净化器怎么开能除甲醛 浏览:595
反渗透膜形成背压怎么办 浏览:448
美的饮水机怎么调节制冷 浏览:139
柏木浴盆怎么除垢 浏览:838
污水氨氮值升高的原因 浏览:933
国产大分子树脂 浏览:305