㈠ 纯化生物产品的得率是如何计算的
生物药物的提取纯化技术
第一节 概述
一、生物药物的特点及纯化方法
许多生物药物具有生物活性,其稳定性受pH,一温度、离子强终提取过程所使用的溶剂和表面活性剂、金属离子等方面的严件物药物对剪切力很敏感,分子量越大,其稳定性就越差,在甘离纯化过程中,条件就应当越温和。一些组分的浓度非常低。但是生物药物产品的纯度却要求很高,含量要达到95%甚至98%以上。结晶态产品最好,药物还应具有正常的颜色、稳定性和溶解速率。
生物药物的制备,如蛋白质制备,涉及物理、化学和生物学知识。其主要原理有两个方面:一是利用混合物中组分分配率差别,把它们分配于可机械分离的两个或几个物相中,如盐析、有机溶剂提取、层析和结晶等;二是将混合物置于单一物相中,经物理力场作用使各组分分配于不同区域而达分离目的,如电泳、超离心、超滤等。相互分离主要利用蛋白间各种性质的微小差别,诸如分子形状、分子量大小、带电性质、溶解度、生物功能专一性等,制备方法可按这些主要因素进行分类。按分子大小和形态分差速离心、超滤、分子筛及透析等方法;按溶解度分为盐析、溶剂抽提、分配层析、逆流分配及结晶等;按电荷差异分为电泳、电渗析、等电点沉淀、离子交换层析及吸附层析等;按生物功能专一性有亲合层析法等。
蛋白分离纯化比较困难。需要研究目的物质的微细特征,巧妙联用各种方法并进行严密的操作,并有必要了解精制过程的精制程度和回收率。具有活性的蛋白可利用吸收光谱等物理性质或以相当于单位氮活性增加进行追踪;其他蛋白可用电泳、超离心、层析、扩散及溶解等测定纯度;不稳定蛋白,如分离SH-酶时,使用试剂及缓冲液等要确认不含重金属离子(特级试剂也需检定)。
蛋白质纯化的操作如脱盐、浓缩干燥等均与低分子物不同,须经独特的繁琐操作。
提纯蛋白和酶时常混有核酸或多糖,一般可用专一性酶解、有机溶剂抽取及选择性部分沉淀等法处理。小分子物质常在制备中经多次液相与固相转化被分离或最后用透析法除去。而同类物质分离,情况则复杂得多。主要采用盐析、有机溶剂沉淀,等电点沉淀、吸附、结晶、电泳、超离心及柱层析法等。其中,盐析、等电点及结晶法用于蛋白质和酶的提纯较多;有机溶剂抽提和沉淀用于核酸提纯较多;柱层析、梯度离心对蛋白和核酸的提纯应用十分广泛。
蛋白分离纯化方法很多。 Bonnerjea 等人对有关蛋白和酶的分离纯化方法及其特征进行了分析,发现主要有10种方法,它们的出现频率为:
离子交换 75%
亲和过程 60%
沉 淀 57%
凝胶过滤 50%
其 它 <33%
目前尚无一种方法可用以纯化各种蛋白质,但每种蛋白质都可设法分离纯化。选择纯化方法,需要考虑到纯度、活性、得率等。
二、提取纯化的单元操作和基本工艺流程
生物药物的提取和纯化可分为5个主要步骤:预处理、固液尹离产缩、纯化和产品定型(干燥,制丸,挤压,造粒,制片)每一步骤都可采用各种单元操作。在提取纯化过程中,要尽可能减少操作步骤,因为每一操作步骤都不可避免带来损失。操作步骤多,总收率就会下降。生物药物提取工艺流程的基本模式如1-1所示。根据主要分离因素排列的单元分离范围见图1-2。
图1-1 生物药物提取工艺流程的基本模式
表1-1根据主要分离因素排列的单元分离范围
三、提取纯化单元操作技术的特点
现代生物制药领域提取纯化技术的进步得益于生化分析分离技术开拓性工作的成果汾离纯化技术的特点之一是各种技术产互交叉,新型的分离纯化方法不断涌现。如沉淀技术和亲和技梦相结合•形成了亲和沉淀技术;超滤和亲和技术相结合,形成了严和超滤技术;萃取与载体膜相结合,形成了液膜载体萃取法。这种新方法取长补短,使分离纯化过程更加科学合理、快速有效、经济实用。尽管有些方法仍处于实验室的试验阶段,要用于工业规模还需要进一步探索,有的甚至没有实用价值,但都可为今后的产展提供新的思路。
生物药物提取纯化技术的另一特点是注重新材料的研制开发如膜分离介质,层析介质,亲和配基,新型萃取剂等在最近几年来发展非常快。提取纯化设备方面推陈出新,在设备的计算机控制及生产自动化,连续化及GMP规范化等方面取得很大的成就。
膜过滤技术发展很快,分为微滤、超滤和纳滤,不仅用于细胞的分离,还用于蛋白质的浓缩。超滤技术的主要特点是节能,对生物大分子类药物无破坏作用。液一液萃取广泛应用于抗生素及小分子量药物的提取。溶剂选择的余地大,且易实现大规模生产。高速离心式液体萃取机是目前效率最高,使用最广的装置。液一液萃取技术还衍生出许多新的萃取技术,如双水相萃取,亲和萃取,超临界萃取等。双水相萃取蛋白质类药物是大规模提取高纯度蛋白质类药物的有效技术。而超临界界萃取利用超临界流体的物理特性,即通过压力和温度的改变控制溶质在溶剂中的分子扩散能助,控制溶质的溶解度,从而实现分离。
层析(色谱)技术是最近几十年来发展最快的纯化技术。层析装置的种类很多,且分离纯化机理也各不相同,适应于许多药物产品的分离纯化。离子交换色谱是应用最广,且易于实现大规模生产的方法。应用于抗生素、氨基酸、核昔酸、蛋白质的提取和纯化。分子筛层析根据分子量大小不同的原理,适应于蛋白质类药物的纯化。层析分离技术的最高层次当属基于分子识别的技术如亲和层析。这一技术已衍生出一大批新的技术,如免疫亲和层析、染料亲和层析、金属离子鳌合层析。疏水性层析是基于分子的疏水性能来分离纯化的。高效液相色谱法本是分析化学的常用手段,现已将其扩展到生物药物的分离纯化的应用中。有些设备仅可进行分析,有的还可用于分离纯化,在新药开发的过程中,缩短了分离纯化所需时间。
与层析技术同步发展的各种分离介质是层析分离的技术保障,商品化的预装柱、缓冲剂、计算机程序控制还使操作变得简单易学。置换层析与洗脱层析不同,是指吸附在层析柱上的一种组分被另一种置换剂(与层析上的介质的亲和力大于原被吸附的组分)置换出层析柱的层析技术。该技术有上样量高,分辨率高的特点。被分离的样品在分离过程中还有浓缩作用。
总之,随着科技的发展,新的分离、提取、纯化技术还将不断得到改进。
四、提取纯化的工艺论证
我国1992年修订了GMP,要求从1993年3月1日以后新建或改建的药厂,均要符合GMP的要求。1994年开始了各项验证,其中工艺论证是关键的一个不可缺少的组成部分.产品的纯化是生产过程中关键的一步。这涉及到药物的质量。所谓工艺验证,就是通过系统的方法得到关于生产工艺的书面材料,证明并保证生产过程能始终如一地生产出特定的高质量的产品。提取纯化处理工艺验证的范围包括:厂房设施、工程仪表、机械设备、生产环境、工艺条件、计算机软件、介质、原材料、半成品、成品、操作人员素质和测试方法等。以上各个部分都要有验证材料或试验数据,根据这些材料和数据写出验证报告。当工艺的某一部分有较大变动时(如大修、工艺条件变化),要进行重新验证,即再验证.再验证是针对某一部分的行动,而不是整个工艺过程的验证.因此比较简单、快速、易行。验证的实施过程包括以下步骤:提出验证要求,组织验证小组,制定验证方案,实施验证试验,写出验证报告,再验证等。
现以生物制药纯化最常用的层析工艺为例,说明验证试验的过程。首先对层析设备进行安装验证,即在不通电源的情况下,根具设备说明书查看安装是否正确,并对接线、管路连接、安放地点、输人电压等逐项检查,无误后,再进行运转试验.接通电源后,观察电机、泵、监测器、信号系统、阀、压力、温度等是否正常.泵的输出流量要经过校正,监测波长也要校正,运转3-5次后,未见漏液、气泡等,一切正常,方可正式运转。层析柱是整个层析工艺的关键设备,要根据出厂标准,逐项验证,如载体外观、颗粒大小(用显微镜测量)、柱效率、分辨率、回收率、有无污染等.如更变层析柱或层析柱填料,要对新层析柱进行重新验证。总之,工艺验证是一项技术性很强,无固定章程可循,既费力,又耗时、耗材的工作.
高科技生物药物的生产工厂,已有“交钥匙工程”。所谓交钥匙工程,就是将整个工厂组装在高强度的,便于运输的钢制建筑结构内,整个建筑要达到洁净标准,所有的生产设备和公用设施都安装到位。在用户在场的情况下,要对整个工厂进行发货前的试运转及鉴定。然后,整个工厂的生产设备和公用设施直接运输到用户的厂址,在各车间组装后,与当地的水、电、下水道等系统及仓库对接,立即就可以投人生产。
五、生物药物生产的屏蔽防护技术
(Containment technology)
一些药物,如抗癌药,往往对生物活细胞具有毒性,因此必须对中试或大生产的全过程设置屏蔽防护装置.1984年,Flickinger等就提出了中试和生产规模细胞毒素剂的安全生产装置的设计概念,其基本要求是:人员进出口要加以控制;在工作场所保持负压(一级、二级或三级生物密封室):空气的排放必须通过HEPA过胜器;对有烟雾产生的设备要有附加的屏蔽防护装置;有适当的个人防护措施;生产过程中所排放的废物要有生物学或化学的除污方法;对工作人员进行医疗监测;环境监测。
六、纯化工艺过程的质量控制
生物药物纯化工艺技术要求高,应尽可能选用高质量的设备,并要求有清洁的各级GMP厂房。纯化方法的设计应考虑到尽可能去除污染病毒、核酸、宿主细胞杂蛋白、糖及其他杂质;要防止纯化过程中带人有害物质.如采用柱层析技术纯化,应提供填料的质量认证证明(IS09001证书),并证实从柱上不会掉下有害物质。样品上样前应除热原质等。若用亲和层析技术(以单克隆抗体品作为配基),应有检测可能污染此类外源性物质的方法,不应含有可测出的异种免疫球蛋白,柱层析配制溶液用水一律用超纯水(Milli Q水)。
关于纯度的要求,可视产品的来源、用途和用法而制定,例如经反复多次使用的真核细胞表达的制品,要求纯度达到98%以上;多次使用的原核细胞表达的制品要达95%以上;外用制品的纯度可降低要求。用于健康人群或用于重症患者,对纯度要求各不相同.
纯化工艺的每一步均应测定纯度,计算提纯倍数收率等。纯化工艺过程中应尽量避免加人对人体有害的物质,若不得不加人,应设法除尽;并在最终产品中检测残留量,残留量应远远低于危害剂量,还要考虑到多次使用的积蓄作用。
附:基因工程α一型干扰素制备及质,控制要点
干扰素是一组多功能的细胞因子,分为干扰素α、干扰素β、和干扰素γ。干扰素α为多基因产物。分为许多亚型,都是由许多氨基酸残基组成的多肤。人干扰素γ是一种免疫干扰素,是由100多个氨基酸残基组成的多肽,天然产品是一种糖蛋白,两处有糖基化位点.
发酵后可用离心法或其他方法收集菌体,要求尽可能缩小操作的范围,凡接触过菌液的用具,如离心杯、转头和玻璃器皿等应浸泡新洁尔灭杀菌1h以上,才可清洗。离心后的废弃液经杀菌后才能倒人下水道。收获的菌种如在24h内破菌裂解,可放在4-80C,否则应冻存于_30'C以下的冰箱中,在一300C保存的菌体可使用6个月。将收获的菌体用适当的缓冲液做成所需浓度的均匀悬液,可用物理、化学或生物学方法进行裂解,裂解后的菌液,可用高速离心沉淀或其他适当方法分离,上清液即为粗制干扰素。不得用对人体有害的化学试剂裂解菌体,用加酶或其他蛋白裂解菌体时,应在半成品内证明此种蛋白的含量在允许的范围内,对制品安全及效果没有影响,并提供检测方法.
浓缩与纯化方法应能去除绝大部分非干扰素物质。一般要用不同原理多步骤的纯化方法,并使干扰素浓缩至一定程度,应详细说明浓缩纯化的全过程。在纯化过程中不得加人对人体有害的物质,加入的物质应能在以后的纯化过程中被去除或证明其浓度在允许的范围内,不得影响制品的安全与效果。如用异种抗体亲和层析纯化,应说明其来源及纯度,并提供此种抗体微量IgG的检测方法,在半成品检定中应测定IgG的含量,并确定允许浓度。制备注射用制品时浓缩纯化过程应特别注意去除热原质,并采取措施防止溶液、试剂和容器污染,而造成制品热原质增加。
浓缩纯化最后所得的纯化干扰素即为“半成品原液”,取样供作纯度检定后,立即加人人白蛋白,使其最终含量为2%,称为加“白蛋白半成品”,取样测定干扰素效价,保存在一300C,应尽量避免冻融,直到制剂配制时才取出融化、合并、离心、除菌过滤、制备成品,“加白蛋白半成品”在一300C下保存不得超过半年。
制剂配制:除菌过滤采用0.3μm薄膜,过滤后样品应做无菌试验,并取样测定干扰素效价,根据除菌样品的效价测定结果,将让述无菌试验合格的“加白蛋白半成品”用无菌的2 %白蛋白缓冲液稀释至所需浓度,不得加防腐剂,稀释后的“加白蛋白半成品”需做热原测定、效价测定和无菌试验。
冷冻干燥:冻干工艺应不损害干扰素的活性,并使冻干后制品的水分达到一定的标准。
基因工程干扰素分注射用和外用两种.其质量标准不同,应分别予以规定。每种制品又分为半成品和成品检定.
㈡ 蛋白质层析、超滤常用技术手段
在分离分析特别是蛋白质分离分析中,层析是相当重要、且相当常见的一种技术,其原理较为复杂,对人员的要求相对较高,这里只能做一个相对简单的介绍。
一、 吸附层析
1、 吸附柱层析
吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。
2、 薄层层析
薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。
3、 聚酰胺薄膜层析
聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。
二、 离子交换层析
离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。`
三、 凝胶过滤
凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。
四、 亲和层析
亲和层析的原理与众所周知的抗原一抗体、激素一受体和酶一底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力。正如在酶与底物的反应中,特异的废物(S')才能和一定的酶(E)结合,产生复合物(E-S')一样。在亲和层析中是特异的配体才能和一定的生命大分子之间具有亲和力,并产生复合物。而亲和层析与酶一底物反应不同的是,前者进行反应时,配体(类似底物)是固相存在;后者进行反应时,底物呈液相存在。实质上亲和层析是把具有识别能力的配体L(对酶的配体可以是类似底物、抑制剂或辅基等)以共价键的方式固化到含有活化基团的基质M(如活化琼脂糖等)上,制成亲和吸附剂M-L,或者叫做固相载体。而固化后的配体仍保持束缚特异物质的能力。因此,当把围相载体装人小层析柱(几毫升到几十毫升床体积)后,让欲分离的样品液通过该柱。这时样品中对配体有亲和力的物质S就可借助静电引力、范德瓦尔力,以及结构互补效应等作用吸附到固相载体上,而无亲和力或非特异吸附的物质则被起始缓冲液洗涤出来,并形成了第一个层析峰。然后,恰当地改变起始缓冲 液的PH值、或增加离子强度、或加人抑③剂等因子,即可把物质S从固相载体上解离下来,并形成了第M个层析峰(见图6-2)。显然,通过这一操作程序就可把有效成分与杂质满意地分离开。如果样品液中存在两个以上的物质与固相载体具有亲和力(其大小有差异)时,采用选择性缓冲液进行洗脱,也可以将它们分离开。用过的固相载体经再生处理后,可以重复使用。
上面介绍的亲和层析法亦称特异性配体亲和层析法。除此之外,还有一种亲和层析法叫通用性配体亲和层析法。这两种亲和层析法相比,前者的配体一般为复杂的生命大分子物质(如抗体、受体和酶的类似底物等),它具有较强的吸附选择性和较大的结合力。而后者的配体则一般为简单的小分子物质(如金属、染料,以及氨基酸等),它成本低廉、具有较高的吸附容量,通过改善吸附和脱附条件可提高层析的分辨率。
五、 聚焦层析
聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为多缓冲剂,固定相为多缓冲交换剂。
聚焦层析原理可以从PH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。
1、PH梯度溶液的形成
在离子交换层析中,PH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子 剂进行层析时,制备PH由高到低呈线性变化的梯度溶液的方法是,在梯度仪的混合室(这层析柱者)中装高PH溶液,而在另一室装低PH极限溶液,然后打开层析柱的下端出口,让洗脱液连续不断地流过柱体。这时从柱的上部到下部溶液的PH值是由高到低变化的。而在聚焦层析中,当洗脱液流进多缓冲交换剂时,由于交换剂带具有缓冲能力的电荷基团,故PH梯度溶液可以自动形成。例如,当柱中装阴离子交换剂PBE94(作固定相)时,先用起始缓冲液(配方见表了一2)平衡到PHg,再用含PH6的多缓冲剂物质(作流动相)的淋洗液通过柱体,这时多缓冲剂中酸性最强的组分与碱性阴离子交换对结合发生中和作用。随着淋洗液的不断加人,住内每点的PH值从高到低逐渐下降。照此处理J段时间,从层析柱顶部到底部就形成了PH6~9的梯度。聚焦层析柱中的PH梯度溶液是在淋洗过程中自动形成的,但是随着淋洗的进行,PH梯度会逐渐向下迁移,从底部流出液的PH却由9逐渐降至6,并最后恒定于此值,这时层析柱的PH梯度也就消失了。
2.蛋白质的行为
蛋白质所带电荷取决于它的等电点(PI)和层析柱中的PH值。当柱中的PH低于蛋白质的PI时,蛋白质带正电荷,且不与阴离于交换剂结合。而随着洗脱剂向前移动,固定相中的PH值是随着淋洗时间延长而变化的。当蛋白质移动至环境PH高于其PI时,蛋白质由带正电行变为带负电荷,并与阴离子交换剂结合。由于洗脱剂的通过,蛋白质周围的环境PH 再次低于PI时,它又带正电荷,并从交换剂解吸下来。随着洗脱液向柱底的迁移,上述过程将反复进行,于是各种蛋白质就在各自的等电点被洗下来,从而达到了分离的目的。
不同蛋白质具有不同的等电点,它们在被离子交换剂结合以前,移动之距离是不同的,洗脱出来的先后次序是按等电点排列的。
供静脉注射的25%人胎盘血白蛋白(即胎白)通常是用硫酸铵盐析法、透析脱盐、真空浓缩等工艺制备的,该工艺流程硫酸铵耗量大,能源消耗多,操作时间长,透析过程易产生污染。改用超滤工艺后,平均回收率可达97.18%;吸附损失为1.69%;透过损失为1.23%;截留率为98.77%。大幅度提高了白蛋白的产量和质量,每年可节省硫酸铵6.2吨,自来水16000吨。目前国外生产超滤膜和超滤装置最有名的厂家是美国的Milipore公司和德国的Sartorius公司。
随着现代生物技术的发展, 通过基因工程生产蛋白质药物在治疗人类面临的重大疾病如癌症等方面展示出巨大的潜力. 为满足生物技术产品工业化生产的需要, 开发高通量、低成本、高效的分离纯化方法已引起人们的高度关注. 超滤技术由于具有通量高, 操作条件温和, 易于放大等特点, 特别适合生物活性大分子的分离. 在生物技术领域, 超滤技术目前已广泛应用于细胞收集分离、除菌消毒、缓冲液置换、分级( fract ionatio n) 、脱盐及浓缩[ 1] . 近年来越来越多的研究表明, 通过选择适当的膜或膜表面改性,以及对分离过程进行优化, 充分利用和调控膜—蛋白质以及蛋白质—蛋白质之间的静电相互作用, 可以实现分子量相近的两种蛋白质的高选择性超滤分离[2- 7] .
为克服常规蛋白质超滤分离过程优化中存在的实验蛋白质消耗多、工作量大、费时以及费用高等缺点, 我们相继开发了脉冲进样技术( Pulsed sampleinject ion technique ) [8]和参数连续变化超滤技术( Parameter scanning ultraf ilt ration) [9]. 并以此为基础, 结合载体相超滤技术( Carrier phase ult rafil—t rat ion) [10]进一步提出了一种蛋白质超滤分离快速优化新方法[11], 实现了人血浆白蛋白—免疫球蛋白[12]、人源化单克隆抗体( A lemtuzumab) 单体— 二聚体[13]的超滤分离过程快速优化和高选择性分离,并在膜的筛选及其适用性快速评估方面展现出巨大的潜力. 该方法的主要特征是与AKTA Prime 系统联用, 采用脉动进样技术显著减少了蛋白质的用量;而利用双缓冲体系( 类似梯度洗脱) 的参数连续变化超滤技术, 在pH 或离子强度连续变化的情况下考查pH 或离子强度对蛋白质透过率或截留率的影响, 进一步缩短了实验时间, 降低了蛋白质的用量,极大地减少了实验量, 加快了过程优化进程; 另外,载体相超滤技术的应用则可保证超滤分离自始至终在设定的条件下进行, 从而最大限度地保证超滤过程的稳定性.
㈢ 陶瓷膜过滤器操作压力一般多少高了或者低了又有什么影响陶瓷膜应用广么
这个问题需要有实际运行经验,南京博滤来回答你吧!陶瓷膜分离设备(有时称之为过滤版器,是由权于其除杂功能)在大生产中典型标准操作压力为0.3-0.4Mpa,一般最高不超过1.0Mpa。超压力会造成膜系统的不稳定运行,而低压力会造成陶瓷膜通量降低,也就是生产效益降低
, 所以针对一个项目的实施,前期需要考察物料的状况和上实验机上模拟。至于陶瓷膜工艺应用液非常广泛,多用于各气相、液相处理,目标是实现分离、纯化、浓缩、提取等诸多工艺。应用领域涵盖了食品饮料、药酒、生物制品、发酵液、动植物提取、水处理工业、医药化工、石化等领域,还有超细粉体洗涤也是陶瓷膜系统的优势领域之一
㈣ 亲水膜的过滤技术是什么
忽悠人的呗
亲水就是指一个物质会被水浸润,实际上你能见到的石头木头包括回你的手脚都是亲水的答。如果不亲水,就像荷叶一样,水滴在上面会形成一个水滴滚来滚去的,那样就过滤不了水喽。
因此啊,所有用来过滤水的膜都是亲水膜,不亲水那是过滤油的嘿嘿。
膜好不好是看过滤精度和过滤速度的。
一般有50纳米以下的超滤膜就可以过滤所有的细菌和病毒了。但是要过滤重金属以及自来水中的氯离子等有异味的酸根,最好还是加个硅藻土或者活性炭的。有这两个基本上就可以满足使用了。
㈤ 通用超滤膜可以过滤的物质有哪些
有机物,胶体,大的悬浮物,颗粒,细菌等
㈥ 蛋白质的分离方法有哪些它们各依据蛋白质的什么性质或特点
(一)水溶液提取法
稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解.提取的温度要视有效成份性质而定.一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间.但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作.为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等).
下面着重讨论提取液的pH值和盐浓度的选择.
1、pH值
蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH
范围内.用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液.
2、盐浓度
稀浓度可促进蛋白质的溶,称为盐溶作用.同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔.升浓度为宜.缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液.
(二)有机溶剂提取法
一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液.但必须在低温下操作.丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活.另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料.
二、蛋白质的分离纯化
蛋白质的分离纯化方法很多,主要有:
(一)根据蛋白质溶解度不同的分离方法
1、蛋白质的盐析
中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出.盐析时若溶液pH在蛋白质等电点则效果更好.由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀.
影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行.一般温度低蛋白质溶介度降低.但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析.(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低.(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象).因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%.
蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等.
其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性.硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节.
蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行.此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短.
2、等电点沉淀法
蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用.
3、低温有机溶剂沉淀法
用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行.
(二)根据蛋白质分子大小的差别的分离方法
1、透析与超滤
透析法是利用半透膜将分子大小不同的蛋白质分开.
超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质.
2、凝胶过滤法
也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一.柱中最常用的填充材料是葡萄糖凝胶(Sephadex
ged)和琼脂糖凝胶(agarose gel).
(三)根据蛋白质带电性质进行分离
蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开.
1、电泳法
各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开.值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质.
2、离子交换层析法
离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT
FACE="宋体"
LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来.(详见层析技术章)
(四)根据配体特异性的分离方法-亲和色谱法
亲和层析法(aflinity
chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高.这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合.其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)
和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用.
细胞的破碎
1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度.此法适用于动物内脏组织、植物肉质种子等.
2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织.
3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施.对超声波敏感和核酸应慎用.
4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎.
5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好.
无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取.
浓缩、干燥及保存
一、样品的浓缩
生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩.常用的浓缩方法的:
1、减压加温蒸发浓缩
通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩.
2、空气流动蒸发浓缩
空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩.
3、冰冻法
生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的.如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液.
4、吸收法
通过吸收剂直接收除去溶液中溶液分子使之浓缩.所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开.常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积.
5、超滤法
超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点.应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用.另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响.Diaflo
超滤膜的分子量截留值:
膜名称分子量截留值孔的大的平均直径
XM-300300,000140
XM-200100,00055
XM-5050,00030
PM-30 30,00022
UM-2020,00018
PM-1010,00015
UM-21,00012
UM05500 10
用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动.然后将纤维管浸入待透析的蛋白质溶液中.当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能.这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍.
二、干燥
生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥.真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素.在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体.操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去.此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存.
三、贮存
生物大分子的稳定性与保存方法的很大关系.干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点.
1、样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性.
2、一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等.蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性.此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用.核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中.
3、贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定.