① 如何降低污水中的C0D
污水处理中如何去除COD,方法有多种,大致上分为吸附法、化学混凝法、电化学法、氧化法、生物法、微电解等。最终的目的都是脱除或分解掉污水里的有机物。
一、絮凝剂法去除COD:
采用化学混凝法能够有效地去除废水中的有机物,很大程度上降低废水的COD。所谓化学混凝法是指通过向废水中投加絮凝剂,利用絮凝剂的吸附架桥,压缩双电层及网捕作用,使水中胶体及悬浮物失稳、相互碰撞和凝聚转而形成絮凝体,再用沉淀或气浮工艺使颗粒从水中分离出来以达到净化水体的方法。
二、氧化剂法去除COD:
(氧化剂在使用时,不要与其易燃他物质混杂,容易引起爆炸燃烧,要单独储存)凡是能氧化分解有机物为二氧化碳和水的氧化剂:臭氧、高锰酸钾、次氯酸钠、芬顿氧化、过硫酸盐、双氧水等等。臭氧的分子式O3,是氧的一种同素异形体,与氧具有无色、无臭、无味及无害等特性不同,它是淡蓝色的,且具有特殊的“新鲜”气味,在浓度稍高时具有毒性。
三、微生物法去除COD:
生物法是靠微生物酶来氧化或还原有机物分子,破坏其不饱和键及发色基团,从而达到处理目的的一种废水处理方法。由于微生物繁殖速率快、适应性强、成本低廉,近年来在煮练废水的处理中得到了广泛的应用。根据生物处理的反应机制,生物法可分为好氧生物法和厌氧生物法。
四、电化学法去除COD:
电化学法处理废水的实质,就是直接或间接地利用电解作用,把水中污染物去除,或把有毒物质变成无害或低毒物质。用电解法或电化学法处理废水,按照去除对象以及产生的电化学作用来区分,又可分为电化学氧化,电化学还原,电气浮等法。
五、电解法去除COD:
微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法。它是在不通电的情况下,利用填充在废水中的微电解材料自身产生1.2V电位差对废水进行电解处理,以达到降解有机污染物的目的。
六、吸附法去除COD:
可以通过活性炭、大孔树脂、膨润土等活性吸附材料,吸附处理污水里的颗粒有机物、色度。可以作为前处理,降低比较容易处理的COD。
② 双氧水厂会造成什么污染.怎么治理
该厂在运行初期,因为设计和管理经验不足,造成了装置内的生产用水流失严重,每天的污水量高达26.4t,超出了设施的处理能力,使一部分污水未进行处理便直接排出厂外,污染了周围环境,对集团公司污水总排造成严重影响,处理污水的费用也大幅上升。
针对装置内废水量大的问题,该厂加强生产管理,实行预防和生产过程控制,严格消耗定额,积极进行技术改造,全面推行清洁生产,以节能降耗、减污为目的,提高对装置的技术管理水平和资源的综合利用率,大大消减了污染物的排放置。回收措施如下:
1 浓品工段产生的凝液其水质与脱盐水基本相当,含有微量的过氧化氢,可作为稀品生产用水。浓品工段运行时,已回收进纯水配制槽使用。
2 稀品工段氧化系统排出的氧化残液,内含过氧化氢30%左右。经过了管道改造,同浓品残液(含过氧化氢20%左右)混合进入双氧水残液储槽。少部分用于污水处理,其余部分联系用户外售,创造了可观的经济效益。
3 蒸碱、蒸芳烃的蒸汽冷凝液水质较好,已同污水分离直接排入雨水管网。今后,将进一步改造,回收使用。
4 稀品工段的水环真空泵利用循环水作为密封水,其水质较好,已同污水分离,将其循环使用或排入雨水管网。
改造后,加强了对污水源头的控制,减少跑、冒、滴、漏情况,及时回收工作液地下回收槽内的工作液,消减了污染物的排放量,保持了污水水质及水量的相对稳定,每天污水的产生量已从26t降至3t左右,污水中的COD已从10000mg/L除至600~2000mg/L,污水处理成本大幅下降。
③ 芬顿深度处理化工废水后双氧水对出水COD的干扰怎么去除
一方面 操作中避免过量;另一方面可以曝气、加碱等消除(双氧水具有两性,在酸版碱中性质不稳定)。权
可以采用微电解联合芬顿,双氧水投加量更少,无需人工投加硫酸亚铁,同时运行效果更稳定,出水指标优于单一的芬顿法(二八五零六零八七二,主要是微电解断环能力比较强)。
④ 如何快速去除废水 中少量的双氧水
双氧水在高温环境下不稳定,容易分解产生氧气。因此,可以通过加热废水的方法来去除其中的双氧水。在加热过程中,双氧水分解成水和氧气,最终只剩下水。值得注意的是,操作过程中需要控制好温度,避免温度过高导致其他物质分解。
具体操作步骤如下:首先,确保废水容器干净无杂质,然后将废水缓慢倒入加热设备中。加热设备应具备温度控制功能,以确保加热过程稳定。开始加热,待温度上升到一定数值后,持续加热一段时间,确保双氧水充分分解。加热完成后,让废水自然冷却,观察是否有气泡产生,如果有气泡,说明还有双氧水未分解完全,需要再次加热。
另外,为了避免加热过程中产生有害气体,建议在通风良好的环境中操作,或使用通风橱等设备。操作人员需佩戴适当的防护装备,如手套和防护眼镜,以确保安全。同时,加热设备应放置在平稳且不易滑动的表面上,防止意外倾倒。
值得注意的是,加热分解双氧水的方法适用于小规模废水处理。对于大规模废水处理,建议采用专业的化学处理方法或物理处理方法,如活性炭吸附、臭氧氧化等。这些方法能够更有效地去除废水中的双氧水,同时减少对环境的影响。
在处理废水时,应严格遵守相关环保法规和标准,确保废水处理过程安全、环保。处理后的废水需经过检测,确保各项指标符合排放标准后,方可排放到环境中。
⑤ 废水处理工艺-芬顿详解
芬顿氧化法可作为废水生化处理前的预处理工艺,也可作为废水生化处理后的深度处理工艺。该方法主要适用于含难降解有机物废水的处理,如造纸工业废水、煤化工业废水、石油化工废水、精细化工废水、发酵工业废水、垃圾渗滤液等废水,以及对工业园区集中废水处理厂等废水的处理。
芬顿反应原理
1893年,化学家Fenton发现,过氧化氢(H2O2)与二价铁离子的混合溶液具有强氧化性,可以将当时很多已知的有机化合物如羧酸、醇、酷类氧化为无机态,氧化效果十分显著。但此后半个多世纪中,这种氧化性试剂却因为氧化性极强而没有太被重视。
进入20世纪70年代,芬顿试剂在环境化学领域中找到了它应有的位置。芬顿试剂具有去除难降解有机污染物的功能,在印染废水、含油废水、含酚废水、焦化废水、含硝基苯废水、二苯胺废水等废水处理中得到了广泛应用。当年,芬顿发现该试剂时,并不清楚过氧化氢与二价铁离子反应到底生成了何种氧化剂,只知道该氧化剂具有很强的氧化能力。二十多年后,有人假设可能反应中产生了羟基自由基,否则氧化性不会有如此强。因此,人们采用了一个领域内较广泛使用的化学反应方程式来描述芬顿试剂中发生的化学反应:
Fe2+ + H2O2 → Fe3++ OH· +OH
芬顿氧化法是在酸性条件下,其H2O2在Fe2+存在下生成强氧化能力的羟基自由基OH·,并引发更多其他活性氧,以实现对有机物的降解,其氧化过程为链式反应。其中以OH产生作为链的开始,而其他活性氧和反应中间体构成了链的节点,各活性氧被消耗,反应链终止。其反应机理较为复杂,这些活性氧仅供有机分子并使其转化为CO2 和H20等无机物,从而使Fenton 氧化法成为重要的高级氧化技术之一。
芬顿塔结构图
进水水质要求
01,芬顿氧化法进水应符合以下条件
(1)在酸性条件下易产生有毒有害气体的污染物(如硫离子、氰根离子等)不应进入芬顿氧化工艺单元;
(2)进水中悬浮物含量宜<200mg/ L;
(3)应控制进水中 Cl-、H2PO3-、HC03-、油类和其他影响芬顿氧化反应的无机离子或污染物浓度,其限制浓度应根据试验结果确定。
02,芬顿氧化法进水不符合条件时
应根据进水水质采取相应的预处理措施:
(1)芬顿氧化法用于生化处理预处理时,可设置粗、细格栅、沉砂池、沉淀池或混凝沉淀池,去除漂浮物、砂砾和悬浮物等易去除污染物;芬顿氧化法用于废水深度处理时,宜设置混凝沉淀或过滤工序进行预处理;
(2)进水中溶解性磷酸盐浓度过高时,宜投加熟石灰,通过混凝沉淀去除部分溶解性磷酸盐;
(3)进水中含油类时,宜设置隔油池除油;
(4)进水中含硫离子时,应采取化学沉淀或化学氧化法去除;进水中含氰离子时,应采取化学氧化法去除;
(5)进水中含有其他影响芬顿氧化反应的物质时,应根据水质采取相应的去除措施,以消除对芬顿氧化反应的影响。芬顿氧化法用于生化处理的预处理时,若进水水质水量变化较大,芬顿氧化工艺前应设置调节池。芬顿的影响因素
温度
温度是芬顿反应的重要影响因素之一。一般化学反应随着温度的升高会加快反应速度,芬顿反应也不例外,温度升高会加快OH·的生成速度,有助于OH·与有机物反应,提高氧化效果和COD的去除率。但对于芬顿试剂这样复杂的反应体系来说,温度升高不仅会加速正反应的进行,也加速副反应,同时会加速H2O2的分解,而分解得到的02和H20,不利于OH·的生成。不同种类工业废水中的芬顿反应,其适合的温度,也存在一定差异。处理聚丙烯酰胺水溶液时,温度应控制在30℃至50℃;洗胶废水处理时温度为85℃;处理三氯(苯)酚时,当温度低于60℃时, 有助于反应的进行,当高于60℃时,则不利于反应。
pH值
一般来说,芬顿试剂是在酸性条件下发生反应的,在中性和碱性的环境中,Fe2+不能催化氧化H202 产生OH·,而且会产生氢氧化铁沉淀,从而失去催化能力;当溶液中的H+浓度过高,Fe3+不能顺利的被还原为Fe2+ ,催化反应受阻。多项研究结果表明芬顿试剂在酸性条件下,特别是pH在3—5 时氧化能力很强,此时有机物降解速率快,能够在短短几分钟内降解,有机物的反应速率常数正比于Fe2+和过氧化氢的初始浓度。因此,在工程上采用芬顿工艺时,建议将废水调节到2—4,理论上pH值在3—5时为最佳。
有机物
对不同种类的废水,芬顿试剂的投加量、氧化效果是不同的。因为不同类型的废水中,其有机物的种类是不同的。对于醇类(甘油)及糖类等碳水化合物,在羟基自由基作用下,分子发生脱氢反应,然后产生C-C键的断链;对于大分子的糖类,羟基自由基使糖分子链中的糖苷键发生断裂,降解生成小分子物质;对于水溶性的高分子及乙烯化合物,羟基自由基使得C-C键断裂;并且羟基自由基可以使得芳香族化合物开环,形成脂肪类化合物,从而消除降低该种类废水的生物毒性,改善其可生化性。
针对染料类,羟基自由基可以打开染料中官能团的不饱和键,使染料氧化分解,达到脱色和降低COD的目的。用芬顿试剂降解壳聚糖的实验表明,当介质pH值在3—5时,聚糖、H202及催化剂的摩尔比在240:1—2 或24:1—2时,芬顿反应可以使壳聚糖分子链中的糖苷键发生断裂,从而生成小分子的产物。
过氧化氢与催化剂投加量
芬顿工艺在处理废水时需要判断药剂投加量及经济性。H202的投加量大,废水COD 的去除率会有所提高,但是当H202投加量增加到一定程度后,COD的去除率会慢慢下降。因为在芬顿反应中,H202投加量增加,OH·的产量就会随之增加,而COD的去除率会相应降低。但是当H2O2的浓度过高时,双氧水会发生分解,并不产生羟基自由基。
催化剂的投加量也有与双氧水投加量相同的情况。一般情况下,增加Fe2+的用量,废水COD的去除率会增大,当Fe2+增加到一定程度后,COD的去除率开始下降。这是因为当Fe2+浓度较低时,随着Fe2+浓度升高,H202 产生的OH·会增加;但当Fe2+的浓度过高时,也会导致H2O2发生无效分解,释放出02。