❶ 醋酸钠在污水处理工作里能派上哪些用场
醋酸钠在污水处理中具有多种重要作用。
它常作为碳源使用。在污水处理的生物脱氮除磷工艺里,微生物的生长和代谢需要合适的碳氮磷比例。当污水中碳源不足时,添加醋酸钠可为反硝化细菌提供充足的碳源,促进其生长繁殖,从而有效提高反硝化作用的效率,将硝酸盐氮还原为氮气,达到去除污水中氮元素的目的,降低水体富营养化风险。
在调节污水的pH值方面,醋酸钠也能发挥作用。它是一种弱酸强碱盐,水解呈碱性。当污水pH值过低时,加入醋酸钠可以适当提高pH值,为后续的生化处理创造适宜的酸碱环境,保障微生物的活性和处理效果。
此外,在污泥处理环节,醋酸钠有助于改善污泥的沉降性能。适量添加醋酸钠可以改变污泥的表面性质,使污泥颗粒间的相互作用发生变化,从而提高污泥的凝聚性和沉降性,便于污泥的分离和后续处理。
❷ 污水处理总氮超标怎么办
水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。地表水中氮、磷物质超标时,微生物大量繁殖,浮游生物生长旺盛,出现富营养化状态。
第一、折点加氯氧化法,通过加入次氯酸钠或者漂白粉进行氧化,将氨氮转化为氮气释放,目前市场上常见的氨氮去除剂基本以漂白粉为主。其反应方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除废水中的氨氮,其原理是硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。首先通过硝化细菌和亚硝化细菌将氨氮转化为亚硝酸盐和硝酸盐,然后再进行反硝化,将硝酸盐转化为氮气。其反应原理结构式如下所示:
2NH3+3O2→HNO2+H2O+能量(亚硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
注:总氮,简称为TN,水中的总氮含量是衡量水质的重要指标之一。总氮的定义是水中各种形态无机和有机氮的总量。包括NO3-、NO2-和NH4+等无机氮和蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。常被用来表示水体受营养物质污染的程度。
第一、折点加氯氧化法,通过加入次氯酸钠或者漂白粉进行氧化,将氨氮转化为氮气释放,目前市场上常见的氨氮去除剂基本以漂白粉为主。其反应方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除废水中的氨氮,其原理是硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。首先通过硝化细菌和亚硝化细菌将氨氮转化为亚硝酸盐和硝酸盐,然后再进行反硝化,将硝酸盐转化为氮气。其反应原理结构式如下所示:
2NH3+3O2→HNO2+H2O+能量(亚硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
注:总氮,简称为TN,水中的总氮含量是衡量水质的重要指标之一。总氮的定义是水中各种形态无机和有机氮的总量。包括NO3-、NO2-和NH4+等无机氮和蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。常被用来表示水体受营养物质污染的程度。
水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污
❸ 怎么去除废水氨氮,废水中的氨氮怎么去除
1传统生物脱氮法
相信很多环保人对生物A/O脱氮工艺都不陌生了,这里也不做过多的赘述。
该工艺是将有机物降解、硝化作用以及反硝化作用三个阶段独立开来,每一阶段后面都有各自独立的沉淀池和污泥回流系统。
需要注意的是,在实际的运行过程中需要控制适当的硝化液回流比,使系统脱氮达到看得到的效果。
2MAP沉淀法
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,在一定作用下可生成磷酸铵镁(MAP),达到除去废水中的氨氮的效果。
目前,投加镁盐的费用仍成为限制这种方法推行的主要因素。
3 化学药剂法
直接在污水中投加氨氮去除剂,利用强氧化作用将氨氮直接氧化成氮气进行脱除的一种方法。
基于成本控制、操作要求、去除效果等因素的考虑,该方法也是使用较为普及的一种方法。
❹ 工业污水处理一般需要哪些化工药剂、需要详细的
包括:氨基三甲叉膦酸(ATMP),羟基乙叉二膦酸(HEDP),聚合氯化吕,聚丙版烯酸钠(PAAS),液氯,权次氯酸钙,二氯三氯,三聚六偏等等,还有一些无机药剂。
如果是现场操作, 还需要制定一系列的加药方案:
1、水质情况、污水系统参数、循环水补充水质、药剂的选择、需要做静态阻垢实验等、
2、杀菌剂及清洗药剂的筛选由于循环冷却水系统是一个特殊的生态环境,很多种类的微生物都适宜在这一水系统中快速生长繁衍,其结果必然阻碍系统正常运行,造成污泥大量沉积、水力输送阻力增加、传热效率急剧下降、水质组成严重恶化、过水金属表面腐蚀加剧等一系列问题,为了保证系统正常运行并延长系统运行寿命,应投加杀菌灭藻剂以达到预期效果
根据上面的水质分析补充水和循环水的水质阻垢实验进行药品的选择。
3、循环冷却水系统药剂消耗的计算包括:阻垢缓蚀剂的投加量、循环水系统日常运行管理
4、清洗过后的预膜处理,
以及过程中紧急情况的处理。
使用的药剂很多,但要综合考虑,不同区域的水质及不同浓缩保有水量加药剂量是不同的。
❺ 污水中氨氮含量高 怎么去除
氨氮/COD的去除在污水处理中多采用生物法,是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。
氨氮/COD超标主要是硝化反应控制不好所致。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:亚硝化:
2NH4++3O2→2NO2-+2H2O+4H+
硝化
:
2NO2-+O2→2NO3-
解决措施:控制好PH与温度。硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS?d);泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。为了能使微生物正常生长,必须增加回流比来稀释原废水;硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。
❻ 请问污水总氮超标加什么药剂能够降低总氮
总氮处理中总氮去除剂就是生物脱氮菌,包含氨化菌,亚硝化菌,硝化菌,反硝化菌,分别在对应的氨化反应、硝化反应、反硝化反应生化池中投加。