导航:首页 > 废水污水 > 酸性废水电导率一般是在多少

酸性废水电导率一般是在多少

发布时间:2024-12-26 21:40:00

⑴ 煤矿酸性水水化学特征及其环境地球化学信息研究

摘 要 以水化学数据为依据,应用相关分析,结合地质、水文勘探资料,对煤矿酸性矿排水( AMD) 的水化学特点及其成因进行了研究。煤矿 AMD 在一定的物质条件和环境条件下形成,只要条件适宜,不管是高硫煤还是低硫煤均可产生酸性水; 低 pH、高 Eh、高 TDS 及高硬度是煤矿 AMD 的重要特征,水中的 SO42 -与其 EC 之间以及 Fe3 +/ Fe2 +比值与其 Eh 值走势具有良好的一致性,水中微量元素及重金属来源较复杂,如 Ni、Cu、Co、Zn 等来源于黄铁矿的氧化溶解,但 Pb、Sr 等主要来自 AMD 对煤系地层中煤及岩石中矿物的淋滤作用。

任德贻煤岩学和煤地球化学论文选辑

一、引言

煤矿在开采过程中,因含煤地层中所含硫化物( 主要为黄铁矿) 的赋存环境变化而自发进行氧化还原反应,可导致产生酸性矿排水( AMD) 。AMD 的低 pH 值和较高的矿化度特征,说明其有很强的溶解性和侵蚀性,这种矿排废水能携带大量的重金属及有害化学物质进入环境。煤矿酸性矿井水在我国分布广泛,北方主要分布在陕、晋、鲁和内蒙等省区,南方分布在川、桂、贵、浙、闽等省区。目前,对 AMD 的研究多集中在金属矿床、矿尾库等的酸性矿排水治理方面,而对含煤地层环境下产生的 AMD 的水化学数据中所蕴含的丰富环境地球化学信息的解读还不多见。煤矿 AMD 的化学特征在一定程度上反映了相应地区的物质组成、主要水—岩反应和水中组分的相互作用等环境信息,对这些信息的研究可了解煤矿AMD 的产生、变化过程及可能产生的环境效应,为煤矿环境治理及模拟预测提供可靠依据。笔者通过对福建省永安及上京两个矿区的井下现场勘查,系统采集和测试了煤层、顶底板岩石、黄铁矿以及矿井中的酸性水样品,通过综合分析这些数据,试图总结煤系酸性水的水化学特征,并探讨其中所反映的环境信息。

二、研究区地质环境

区内地层主要由上石炭统船山组、下二叠统栖霞组、文笔组、童子岩组、上二叠统翠屏山组及第四系残坡积物层组成。下二叠统童子岩组为主要含煤地层,由一套海陆过渡相岩性组成,以泥质岩为主,次为粉砂岩和砂质岩,砂岩多为钙质胶结。普遍含形态各异、含量不等的菱铁矿和黄铁矿结核。童子岩组内由下而上分为第 1、第 2、第 3 段,其中第 1 和第 3 段为含煤段。在永安矿区,第 3 段为主要含煤段,自上而下有 0 ~11 号煤层,其中 1 号、2 号、5 +6 号、9 号为主采煤层。在上京矿区,第 1 段为主要含煤段,煤层自上而下为 22 ~ 49 号煤,其中 33、34、38、45、48 等 16 层煤层为可采煤层。

研究区沟谷发育,植被茂盛,海拔最高点标高为809m,最低点为300m。本区为亚热带潮湿气候区,年平均降雨量和气温分别为1565mm、18.9℃,气温最高39.2℃,全年相对湿度平均79%。水文地质条件属简单—中等类型,下部栖霞灰岩富水性较强,但远离煤层(距煤层200m左右),正常情况下对煤层没有影响。大气降水是矿坑水的直接或间接补给水源。另外煤系构造裂隙发育,但富水性弱,岩性为砂岩,钻孔涌水量Q=0.57~4.5L/s,渗透系数K=0.073~0.15m/d。裂隙水水质为HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,总矿化度0.016~0.15g/L,属低矿化度具侵蚀性水。

三、样品采集与检测

为全面了解永安矿区童子岩组内整个含煤地层酸性水的情况,在永安矿区东坑仔矿的0号、1号、9号和上京矿区小华煤矿的34、38、48号等主采煤层的顶底板、煤和水及部分黄铁矿进行采样。在井下现场测定了水样温度、Eh值和pH值,其余水质项目按取样标准处理后送核工业北京地质研究院测定。用等离子质谱法(ICP-MS)测定水中阳离子及痕量元素含量;离子色谱法(IC)测定氯离子、氟离子、溴离子、硝酸根离子和硫酸根含量;采用容量法测定碳酸根、重碳酸根、氢氧根的浓度。对煤样、煤层顶底板岩样及黄铁矿样品进行了X射线衍射(XRD)分析和等离子质谱分析。

四、结果与讨论

1.井下AMD的环境特征

在井下调研时发现,大量褐红色氧化铁沉淀物与酸性水伴生,可视其为存在酸性水或曾经有酸性水产出的标志。酸性水常常出现在松散、破碎的煤层顶板处及平巷上部的采空区下方,这些现象表明酸性水明显受环境条件的控制,这可能与含氧水的进入有关。在无破碎区,地表水中有限溶解氧在缓慢的下渗过程中,被浅部地层中的物质消耗,不足以氧化较深部的含硫矿物而产生酸性水。

地质勘探资料表明,本区煤系由以铝、硅酸盐矿物为主的泥岩、粉砂岩及砂岩组成,地层中碳酸盐岩组分相对很少,CaCO3仅以脉状或钙质胶结物形式产出。有关黄铁矿氧化动力学实验表明[1],在有碳酸盐岩存在时,产酸能力受到抑制。Holmstrom[2]等的研究表明,尾矿是否产生酸性排水和释放重金属主要取决于碳酸盐矿物的含量,而不是硫化物的含量。永安矿区煤中总硫含量小于1%,为低硫煤,但却产生了pH值低达2.75的酸性水,这一事实表明不管是高硫煤还是低硫煤均可产生酸性水。

2.煤层AMD的水化学特征

所取水样有3种类型:煤层酸性水样、煤层非酸性水样、地表水样。各水样的化学组成检测结果见表1,样品中除JS8为地表水外,其余为井下矿排水。

根据矿井原钻孔资料,未经淋滤的地层裂隙水的水质为HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,总矿化度0.016~0.15g/L。而经淋滤煤层后形成的酸性水的组成变化很大,按库尔洛夫表达式计算后,水质类型变为SO4-Ca-Mg(如DS2)和SO4-Mg-Fe-Ca(如HS5)型水,TDS为1.64~4.398g/L,为高矿化度水。

表1 永安矿区煤层矿井水水化学常量组分含量w单位:mg·L-1

注:-为未检出;表中硬度以CaCO3计。

由表1可以得出本区煤矿酸性有如下特点:

(1)pH值变化范围较大,可从5点几至2点几,而在pH≤3.00的水中,HCO3含量均为未检出。根据水中碳酸系统平衡关系,此时水中的碳酸盐组分以H2CO3或游离CO2形式存在,即水的总碱度趋于零,具有较强的侵蚀性。

(2)酸性水具有SO42-高、总硬度高和TDS高的三高特征。SO2-4含量在阴离子中占绝对优势,表1中HS7水样硫酸根离子浓度达3239.9mg/L,煤矿酸性水水化学类型一般为SO2-4-Ca、Mg(Fe、Al)型。酸性水使地层中碳酸盐类及铝硅酸盐类矿物大量溶解,而造成水的高硬度和高TDS,TDS>1g/L。如,HS7的TDS达4398.5mg/L。酸性水中硫酸盐是其矿化度主要贡献者,水中SO2-4离子浓度与其电导率(EC)具有良好的对应关系(图1)。

(3)煤矿酸性水的Eh范围在600~800mv,是一种高氧化态水,水中的多价态元素以高价态存在,如Fe3+、V5+、Mn4+、Cr6+等。检测结果表明,Fe3+/Fe2+比值在多数情况下与环境的Eh值有良好的相关性(图2),Eh随Fe3+/Fe2+值增加而增加,Fe3+/Fe2+比值在井下酸性水环境中起到决定电势作用。

图1 电导率与SO42-含量走势相关图

图2 Eh与Fe3+/Fe2+走势相关图

3.AMD中微量组分来源分析

造岩矿物及矿石矿物中的微量元素通常以类质同象形式存在,而天然水中微量元素的分布通常受环境中水—岩相互作用控制。对永安矿区酸性矿坑水样中50多种微量元素进行了ICP—MS测定。对7个矿井水样中含量100×10-9以上的微量元素与水样中的主要特征元素进行了相关分析(表2)。综合分析上述数据,并结合煤、岩及黄铁矿样品的XRD分析结果,可得出以下初步结论:

(1)pH值与大多数组分呈负相关,说明各组分的溶解度随介质pH的降低而增大,尤其对Fe和Al溶解度影响较大。同时也可能与它们在pH增大时易形成氢氧化物胶体而沉淀有关。胶体形成后对其他微量元素的吸附产生共沉淀是pH对微量元素含量的一个间接影响。

(2)Ni、Co、Zn、Y等与Fe、SO2-4高度相关,相关系数大于0.94,说明它们的来源与黄铁矿的氧化溶解密切相关。Ni、Co、Zn均为过渡元素,常在黄铁矿中与铁形成类质同象替代,而在黄铁矿风化过程中被释放进入溶液;与Fe、SO2-4有较高相关性的还有Na、Cu、Mg、Mn元素,这些元素在地球化学上与铁元素常亲密共生,说明黄铁矿是其部分来源,或是黄铁矿的氧化溶解对它们的释放迁移有重要影响。

(3)水中Pb-K和Pb-Al的相关系数分别为0.77和0.64,而与Fe和SO2-4的相关系数较低,分别为0.39和0.41。ICP-MS对煤、岩、矿的分析结果表明,大多数煤样品中的Pb含量高于同层位中黄铁矿的Pb含量,且由于本区为低硫煤,因此黄铁矿对矿井水中Pb的贡献相对较小,即本区酸性水样中的Pb除来源于黄铁矿的氧化溶解外,还来源于地层中的含铅矿物,如钾长石、黑云母的水解反应:

任德贻煤岩学和煤地球化学论文选辑

(4)锶是广泛存在于地下水中的一种微量元素。它在造岩矿物中的分配主要受钙和钾的互带性控制[3],Sr2+主要是以类质同象的形式存在于含钙、钾的铝硅酸盐矿物中,随着含锶的钙长石、钾长石、白云母等矿物的水解,锶被释放而进入地下水中。

本研究水样中锶含量在几百~上千μg/L,Sr与Ca呈正相关,相关系数为0.79,与K的相关系数仅为0.27。本水样中的锶可能主要来源于钙长石的水解反应。赵广涛(1998)[4]对崂山矿泉水的研究得出Ca-Sr的相关系数为0.6636,而K-Sr的正相关则不明显。这一结论与本文结果较为吻合,但是否具有代表性还有待研究。

表2 永安酸性煤矿坑水中特征组分及微量元素间的相关系数矩阵

五、结论

(1)煤矿AMD可产生于高硫煤或低硫煤层中,含氧水沿破碎带入渗和地层中相对少量的碳酸盐岩是产生煤矿AMD的重要条件。

(2)低pH、高矿化度和高硬度是煤矿AMD的水化学的典型特征。水中的硫酸盐是其矿化度的主要贡献者;煤矿酸性水中的SO2-4含量与其电导率具有良好的对应关系;Eh随Fe3+/Fe2+比值的增加而增加,Fe3+/Fe2+比值决定着煤矿酸性水的电势。

(3)煤矿AMD中含有众多重金属及其他微量元素。其中Ni、Co、Zn、As等主要有害微量元素来源于黄铁矿的氧化分解,而Pb、Sr等则来源于酸性水对地层中物质的溶滤作用。煤矿酸性水的酸度大大增加了环境中有害化学物质的出溶率和迁移性。

参 考 文 献

[1] Nicholson R V,Gillham R W,Reardon E J. Pyrite oxidation in carbionate buffered solution: 1. Experimental Kineti- ca. Geochim Cosmochim Acta,1988,52: 1007 - 1085

[2] Holmstrom H,Salmon U J,Carlsson E et al. Geochemical investigations of sulfide-bearing tailings at Kristineberg,north- ern Sweden,a few years after remediation. The Science of the Total Environment,2001,( 273) : 111 - 133

[3] 文冬光,沈照理,钟佐 . 水-岩互相作用的地球化学模拟理论及应用 . 中国地质大学出版社,1998

[4] 赵广涛,李玉瑛,曹钦臣等 . 青岛西北地区矿泉水的水化学特征与形成机理 . 青岛海洋大学学报,1998,28( 1) :135 - 141

The environment geochemistry information of the coal mine acid mining drainage

YUE Mei1,2,ZHAO Feng-hua1,REN De-yi1

( 1. Department of Resource & Earth Sciences,University of China Mining & Technology( Beijing) ;

Key Laboratory of Coal Resource,Ministry of Ecation,Beijing 100083,China;

2. Anhui University of Sciences & Technology,Huainan 232001,China)

Abstract: The chemical characteristic and its formation of the coal acid mining drainage are discussed in this paper based on the spot investigation,samples examination,applied the cor- relation analysis method,and combined w ith the geology and hydrogeology background informa- tion. Coal AMD formed in the specific substance and environment condition. And w hen the con- dition is meet,the AMD can be proced in both high or low sulfur in the coal. Low pH and high Eh,TDS,hardness are the important characteristic of coal AMD. There are good relation betw een SO2 -4and EC,Fe3 +/ Fe2 +radio and Eh. Some trace elements and harmful heavy metal such as Ni、Cu、Co、Zn in the AMD come from pyrit dissolution w hile some others like Pb、Sr are mainly come from the AMD eluviation to the coal and rocks.

Key words: coal AMD; chemical characteristic; trace elements; correlation analysis

( 本文由岳梅、赵峰华、任德贻合著,原载《煤田地质与勘探》,2004 年第 32 卷第 3 期)

⑵ 水的纯净度多少可以饮用

国家生活饮用水(自来水)标准规定的含盐量是1000以下,换算成电导率约2000左右 国家瓶装及桶装纯净水规定的电导率是8以下。
自来水的好坏直接影响人们的身体健康,自来水与人们生活息息相关,自来水也是城乡基础建设的重要标准,由于全国各地的自来水厂和基础设施存在差异性,各地自来水水质也有所差,教你怎样判断自家使用的自来水水质的好坏?消费者可以根据以下几个方面来分辨:
一、水的浑浊度:由于自来水中含有胶体和悬浮状态的微粒,使的原是无色无味的水产生浑浊的程度称为浊度。浑浊度是一种光学效应,是光线透过液体时受到阻碍的程度,表示液体对于光线散射和吸收的能力。
二、水的色度:水的色度是对天然水或处理后的各种水进行颜色定量测定时的指标。产生颜色的原因是由于溶于水的腐殖质、有机物或无机物造成。工业废水也可能使水体产生各种各样的颜色。例如:粘土-黄色,铁的氧化物-褐色,硫化物-浅蓝色,藻类-绿色,腐败的有机物-黑褐色。
三、水的臭味:水中的微生物、水生动物、植物的繁殖和腐烂而发出的臭味;水中有机物质的腐败分解而散发的臭味;水的溶解性气体如H2S、NH3、SO2;溶解性盐类或泥土的气味、排入水体的工业废水所含如石油、酚类等臭味、消毒水过程加入氯气的气味。
四、水的硬度:水中有些金属阳离子,同一些阴离子结合在一起,在水被加热的过程中,由于蒸发浓缩,容易形成水垢,附着在受热面上而影响热传导,我们把水中这些金属离子的总浓度称为水的硬度。由于其它的金属离子在水中的浓度很低,故通常把水中的钙、镁离子的浓度看作是水的硬度。
五、水电导率(T.D.S):水的导电性即水的电阻的倒数,通常用它来表示水的纯净度。由于水中含有各种溶解性盐类,并以离子的形态存在。当水中有电极存在时,这些离子就可以使水产生导电作用,故水的导电能力的强弱程度就称为电导率。
六、水的酸碱性:以水的氢离子浓度对数的负值表示水的酸碱度,即水的PH值大小,小于7是碱性,等于7是中性,大于7是酸性。可以通过感官直接来分辨自来水的水质可以通过水的色度、浑浊度、气味等,水是无色透明的,无嗅无味。水质好坏的准确测量时需要专业的工具,陶氏净水器提示:像TDS笔等来检测水的含金属值。如果水质比较浑浊,说明水含杂质较多,不能饮用;水有异味,除了本身的带氯气的气味,有其他的味道也不能饮用。水煮沸后,如果容易结垢说明水质硬度很高,容易让人产生结石等。

⑶ 热电厂水处理节能减排措施

化学除盐制水系统一般采用阳、阴离子进行除盐,失效后用盐酸液碱进行再生。再生过程所产生废酸液、废碱液一般是中和处理达到环保要求PH6-9这个范围向外排放。
废液呈酸性加碱,呈碱性加酸的中和方式。这样即浪费优质资源,又增加工人劳动强度,即不经济,又给周围环境造成污染。
酸碱废液不采取合理利用,对环境造成污染,对企业增加费用开支。酸碱废液合理利用,能够发挥其自身应有作用,减少优质资源消耗,减少水资源费、污染费开支。
酸碱废液合理利用使得企业排入周围环境的污染物总量大大减少,有明显的环境效益,同时酸碱废液合理利用的实施,符合国家提倡节约用水,废水资源化的大方向,
能够提升企业的社会形象,有很好的社会效益。
热电厂除盐制水系统于2002年6月投入运行,制水工艺阳床+脱碳+阴床,到2003年12月周期制水量由最初阳床500-600吨降至350-450吨。阴床350-400吨降至180-220吨,
阳床、阴床周期产水量明显减少,再生极为频繁,酸碱耗量明显增加,酸碱废水排量大增,经济环保效益越来越差。为了切实解决上述问题,经过反复论证和大量试验,
从2004年1月6日开始在1#阳床经行试验性改进,然后又对1#阴床进行改进。阳、阴床经过无数次改进,直到2008年4月运行至今,才算取得很好的制除盐水经济环保效果。
某热电厂水质分析报告,年补充除盐水14万吨:
项目 Ca2+ Mg2+ Fe+ Na+ K+ Ci- F- SO4^2- HCO2- NO3- 电导率us/cm

单位 117.0 14.41 0.0242 20.7 0.445 47.3 0.18 50.5 283.65 60 784(mg/L)

化学除盐制水系统采用无顶压逆流再生床(Φ1800、H5960)新改进工艺已安全、经济、环保稳定运行,从2008年4月18日运行至今下面是改进前后数据对比
改前 784us/cm 一、改后 784us/cm 二、改后 784us/cm
水质指标
电导率us/cm <10 < 10 < 10
二氧化硅 ≤100 ≤100 ≤100
PH 7.5-9 7.5-9 7.5-9
消耗指标
盐酸30%kg/t 3.68 1.54 0.4
氢氧化钠30%kg/t 4.32 1.46 0.5
水耗 26% 3% 0.75%
周期制水量(t/h) 阳床 400 1400 5800
阴床 220 1200 5400
最大制水量 t/h 53 53 53
废水排量(t/h) 阳床 350(次) 100(次) 25(次)
阴床 637(次) 117(次) 25(次)
制水成本 元/吨 4.5 1.2 0.8
再生一个床消耗除盐水(吨)54-75 20-30 20-30
再生一个床排放废水(吨) 54-75 20-30 20-30
经济环保社会效益:
一、改后:
酸140000*(3.68-1.54)=299.6(吨)
碱140000*(4.32-1.86)=344.4(吨)
少用除盐水(350+637)*54-(100+117)*30
53298 - 6510 =46788
少用酸6788*2.14=100(吨) 少用碱46788*2.46=115(吨)
总计少用酸399.36吨 碱459.4吨
二、改后:
节约酸碱: 酸 140000*(3.68-0.4)=459.2(吨)
碱 140000*(4.32-0.5)=534.8(吨)
少排废水: (350+637)*54-(25+25)*30=51798(吨)
少用再生除盐水51798吨; 少用酸碱:51798*3.28=169.9(吨)
51798*3.82=197.87(吨)

总计少用酸碱: 酸:629.1(吨) 碱:732.67(吨)

由于阳、阴床同时分流合理利用,基本上达到酸碱废液零排放。

QQ:562108650

⑷ 工业废水治理中的指标都有哪些

工业废水治理中常用的指标包括以下几个方面:

这些指标的选择和监测依赖于废水的特性、处理目标和适用的法规要求。对于特定行业和地区的工业废水治理,还可能有其他特定的指标和要求。因此,在工业废水治理中,需要根据具体情况选择适当的指标,并建立相应的监测和控制措施,以确保废水处理的效果和达到环境要求。

如果水天蓝环保的回答对您有所帮助,希望能够获得您的采纳!感谢支持!

⑸ 水的电离程度

不同的弱电解质在水中电离的程度是不同的,一般用电离度和电离常数来表示。电离度——弱电解质在溶液里达电离平衡时,已电离的电解质分子数占原来总分子数(包括已电离的和未电离的)的百分数。即电离度表示弱酸、弱碱在溶液中离解的程度。

自来水电导率= 0.5~5.0x10-2 S/m。

工业废水电导率= 1 S/m。

一般自来水的电导率介于125~1250 μs/cm之间。

电导率是用来描述物质中电荷流动难易程度的参数。在公式中,电导率用希腊字母κ来表示。电导率σ的标准单位是西门子/米(简写做S/m),为电阻率ρ的倒数,即σ=1/ρ。

电导和电阻也有关系,如果R是一个组件和设备的电阻(单位欧姆Ω),电导为G(单位西门子S),则:G = 1/R。

拓展资料

电导率,物理学概念,也可以称为导电率。

在介质中该量与电场强度E之积等于传导电流密度J。

自来水是指通过自来水处理厂净化、消毒后生产出来的符合相应标准的供人们生活、生产使用的水。生活用水主要通过水厂的取水泵站汲取江河湖泊及地下水,地表水,由自来水厂按照《国家生活饮用水相关卫生标准》,经过沉淀、消毒、过滤等工艺流程的处理,最后通过配水泵站输送到各个用户。

阅读全文

与酸性废水电导率一般是在多少相关的资料

热点内容
斐讯空气净化器a1用什么软件 浏览:650
净水器滤芯堵是什么原因 浏览:812
车子换空调滤芯一般要多少钱 浏览:822
超纯水跟自来水有什么区别 浏览:516
姬存希黄瓜胶与蒸馏水配比 浏览:150
污水处理测试多少以上合格 浏览:189
跑胶时蒸馏水代替缓冲液后果 浏览:414
金日饮水机多少钱一台 浏览:808
PALL超滤管15ml 浏览:621
纳滤电 浏览:114
10寸颗粒碳滤芯怎么样 浏览:23
成熟的植物细胞相当于半透膜 浏览:595
反渗透严重堵塞怎么洗 浏览:820
溴水中分离单质溴能不能用蒸馏 浏览:347
901树脂的固化剂和促进剂的作用 浏览:740
安吉尔净水机一直排废水 浏览:318
不用的废水井能留粪便吗 浏览:942
工业废水的达标测试 浏览:307
饮水机加热杯坏了怎么办 浏览:937
老款五菱宏光空调滤芯怎么换视频 浏览:303