⑴ 电镀废水怎么处理才能达标排放
电镀废水的处理与回用对节约水资源以及保护环境起着至关重要的作用。本文综述了各种电镀废水处理技术的优缺点,以及一些新材料在电镀废水处理上的应用。
01 化学沉淀法
化学沉淀法是通过向废水中投入药剂,使溶解态的重金属转化成不溶于水的化合物沉淀,再将其从水中分离出来,从而达到去除重金属的目的。
化学沉淀法因为操作简单,技术成熟,成本低,可以同时去除废水中的多种重金属等优点,在电镀废水处理中得到广泛应用。
1.碱性沉淀法
碱性沉淀法是向废水中投加NaOH、石灰、碳酸钠等碱性物质,使重金属形成溶解度较小的氢氧化物或碳酸盐沉淀而被去除。该法具有成本低、操作简单等优点,目前被广泛使用。
但是碱性沉淀法的污泥产量大,会产生二次污染,而且出水pH偏高,需要回调pH。NaOH由于产生污泥量相对较少且易回收利用,在工程上得到广泛应用。欣格瑞水处理专家
2.硫化物沉淀法
硫化物沉淀法是通过投加硫化物(如Na2S、NariS等)使废水中的重金属形成溶度积比氢氧化物更小的沉淀,出水pH在7~9,无需回调pH即可排放。
但是硫化物沉淀颗粒细小,需要添加絮凝剂辅助沉淀,使处理费用增大。硫化物在酸性溶液中还会产生有毒的HS气体,实际操作起来存在局限性。
3.铁氧体法
铁氧体法是根据生产铁氧体的原理发展起来的,令废水中的各种重金属离子形成铁氧体晶体一起沉淀析出,从而净化废水。该法主要是通过向废水中投加硫酸亚铁,经过还原、沉淀絮凝,最终生成铁氧体,因其设备简单、成本低、沉降快、处理效果好等特点而被广泛应用。
pH和硫酸亚铁投加量对铁氧体法去除重金属离子的影响,确定镍、锌、铜离子的最佳絮凝pH分别为8.00~9.80、8.00~10.50和10.00,投加的亚铁离子与它们摩尔比均为2~8,而六价铬的最佳还原pH为4.00~5.50,最佳絮凝pH则为8.00~10.50,最佳投料比为20。出水的镍含量小于0.5mg/L,总铬含量小于1.0mg/L,锌含量小于1.0mg/L,铜含量小于0.5mg/L,达到《电镀污染物排放标准》(GB21900—2008)中“表2”的要求。
化学沉淀法的局限性
随着污水排放标准的提高,传统单一的化学沉淀法很难经济有效地处理电镀废水,常常与其他工艺组合使用。
采用铁氧体-CARBONITE(一种具有物理吸附与离子交换功能的材料)联合工艺处理Ni含量约为4000mg/L的高浓度含镍电镀废水:先以铁氧体法控制pH为11.0,在Fe/Fe。摩尔比O.55,FeSO4·7H2O/Ni质量比21,反应温度35℃的条件下搅拌反应15min,出水Ni平均浓度从4212.5mg/L降至6.8mg/L,去除率达99.84%;然后采用CARBONITE处理,在CARBONITE投加量1.5g/L,pH=6.5,温度35℃的条件下反应6h,Ni去除率可达96.48%,出水Ni浓度为0.24mg/L,达到GB21900-2008中的“表2”标准。
采用高级Fenton一化学沉淀法处理含螯合重金属的废水,使用零价铁和过氧化氢降解螯合物,然后加碱沉淀重金属离子,不仅可以去除镍离子(去除率最高达98.4%),而且可以降低COD化学需氧量。
02 氧化还原法
1.化学氧化法
化学氧化法在处理含氰电镀废水上的效果尤为明显。该方法把废水中的氰根离子(CN一)氧化成氰酸盐(CNO-),再将氰酸盐(CNO-)氧化成二氧化碳和氮气,可以彻底解决氰化物污染问题。
常用的氧化剂包括氯系氧化剂、氧气、臭氧、过氧化氢等,其中碱性氯化法应用最广。采用Fenton法处理初始总氰浓度为2.0mg/L的低浓度含氰电镀废水,在反应初始pH为3.5,H202/FeSO4摩尔比为3.5:1,H202投加量5.0g/L,反应时间60min的最佳条件下,氰化物的去除率可达93%,总氰浓度可降至0_3mg/L。
2.化学还原法
化学还原法在电镀废水处理中主要针对含六价铬废水。该方法是在废水中加入还原剂(如FeSO、NaHSO3、Na2SO3、SO2、铁粉等)把六价铬还原为三价铬,再加入石灰或氢氧化钠进行沉淀分离。上述铁氧体法也可归为化学还原法。
该方法的主要优点是技术成熟,操作简单,处理量大,投资少,在工程应用中有良好的效果,但是污泥量大,会产生二次污染。采用硫酸亚铁作为还原剂,处理80t/d的含总铬7O~80mg/L的电镀废水,出水总铬小于1.5mg/L,处理费用为3.1元/t,具有很高的经济效益。
以焦亚硫酸钠为还原剂处理含80mg/L六价铬、pH为6~7的电镀废水,出水六价铬浓度小于0.2mg/L。
03 电化学法
电化学法是指在电流的作用下,废水中的重金属离子和有机污染物经过氧化还原、分解、沉淀、气浮等一系列反应而得到去除。
该方法的主要优点是去除速率快,可以完全打断配合态金属链接,易于回收利用重金属,占地面积小,污泥量少,但是其极板消耗快,耗电量大,对低浓度电镀废水的去除效果不佳,只适合中小规模的电镀废水处理。
电化学法主要有电凝聚法、磁电解法、内电解法等。
电凝聚法是通过铁板或者铝板作为阳极,电解时产生Fe2+、Fe或Al,随着电解的进行,溶液碱性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通过絮凝沉淀去除污染物。
由于传统的电凝聚法经过长时间的操作,会使电极板发生钝化,近年来高压脉冲电凝聚法逐渐替代传统的电混凝法,它不仅克服了极板钝化的问题,而且电流效率提高20%~30%,电解时间缩短30%~40%,节省电能30%~40%,污泥产生量少,对重金属的去除率可达96%~99%。欣格瑞水处理专家
采用高压脉冲电絮凝技术处理某电镀厂的电镀废水,Cu2十、Ni2、CN一和COD的去除率分别达到99.80%、99.70%、99.68%和67.45%。
电混凝法通常也与其他方法结合使用,利用电凝聚法和臭氧氧化法联合处理电镀废水,以铁和铝做极板,出水六价铬、铁、镍、铜、锌、铅、TOC(总有机碳)、COD的去除率分别为99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年来内电解法受到广泛关注。内电解法利用了原电池原理,一般向废水中投加铁粉和炭粒,以废水作为电解质媒介,通过氧化还原、置换、絮凝、吸附、共沉淀等多种反应的综合作用,可以一次性去除多种重金属离子。
该方法不需要电能,处理成本低,污泥量少。通过静态试验研究了铁碳微电解法对模拟电镀废水的COD及铜离子的去除效果,去除率分别达到了59.01%和95.49%。然而,采用微电解反应柱研究连续流的运行结果显示,14d后微电解出水的COD去除率仅为10%~15%,铜的去除率降低至45%~50%之间,可见需要定期更换填料或对填料进行再生。
04 膜分离技术
膜分离技术主要包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、电渗析(ED)、液膜(Lv)等,利用膜的选择透过性来对污染物进行分离去除。
该方法去除效果好,可实现重金属回收利用和出水回用,占地面积小,无二次污染,是一种很有发展前景的技术,但是膜的造价高,易受污染。
对膜技术在电镀废水处理中的应用和效果进行了分析,结果表明:结合常规废水处理工艺与膜生物反应器(MBR)组合工艺,电镀废水被处理后的水质达到排放标准;电镀综合废水经UF净化、RO和NF两段脱盐膜的集成工艺处理后,水质达到回用水标准,RO和NF产水的电导率分别低于100gS/cm和1000gS/cm,COD分别约为5mg/L和10mg/L;镀镍漂洗废水通过RO膜后,镍的浓缩高达25倍以上,实现了镍的回收,RO产水水质达到回用标准。
投资与运行费用分析表明:工程运行1年多即可收回RO浓缩镍的设备费用。
液膜法并不是采用传统的固相膜,而是悬浮于液体中很薄的一层乳液颗粒,是一种类似溶剂萃取的新型分离技术,包括制膜、分离、净化及破乳过程。
美籍华人黎念之(NormanN.Li)博士发明了乳状液膜分离技术,该技术同时具有萃取和渗透的优点,把萃取和反萃取两个步骤结合在一起。乳化液膜法还具有传质效率高、选择性好、二次污染小、节约能源和基建投资少的特点,对电镀废水中重金属的处理及回收利用有着良好的效果。
05 离子交换法
离子交换法是利用离子交换剂对废水中的有害物质进行交换分离,常用的离子交换剂有腐殖酸物质、沸石、离子交换树脂、离子交换纤维等。离子交换的运行操作包括交换、反洗、再生、清洗四个步骤。
此方法具有操作简单、可回收利用重金属、二次污染小等特点,但离子交换剂成本高,再生剂耗量大。
研究强酸性离子交换树脂对含镍废水的处理工艺条件及镍回收方法。结果表明:pH为6~7有利于强酸性阳离子交换树脂对镍离子的去除。离子交换除镍的适宜温度为30℃,适宜流速为15BV/h(即每小时l5倍树脂床体积)。适宜的脱附剂为10%盐酸,脱附液流速为2BV/h。前4.6BV脱附液可回用于配制电镀槽液,平均镍离子质量浓度达18.8g/L。
Mei.1ingKong等研究了CHS—l树脂对cr(VI)的吸附能力,发现Cr(VI)在低浓度时,树脂的交换吸附率是由液膜扩散和化学反应控制的。CHS一1树脂对Cr(VI)的最佳吸附pH为2~3,在298K下其饱和吸附能力为347.22mg/g。CHS一1树脂可以用5%的氢氧化钠溶液和5%氯化钠溶液来洗脱,再生后吸附能力没有明显的下降。
使用钛酸酯偶联剂将1一Fe203与丙烯酸甲酯共聚,在碱性条件下进行水解,制备出磁性弱酸阳离子交换树脂NDMC一1。
通过对重金属Cu的吸附研究发现,NDMC—l树脂粒径较小、外表面积大,因而具有较快的动力学性能。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。
06 蒸发浓缩法
蒸发浓缩法是通过加热对电镀废水进行蒸发,使液体浓缩达到回用的效果。一般适用于处理含铬、铜、银、镍等重金属浓度高的废水,用其处理浓度低的重金属废水时耗能大,不经济。
在处理电镀废水中,蒸发浓缩法常常与其他方法一起使用,可实现闭路循环,效果不错,比如常压蒸发器与逆流漂洗系统联合使用。蒸发浓缩法操作简单,技术成熟,可实现循环利用,但是浓缩后的干固体处置费用大,制约了它的应用,目前一般只作为辅助处理手段。
07 生物处理技术
生物处理法是利用微生物或者植物对污染物进行净化,该方法运行成本低,污泥量少,无二次污染,对于水量大的低浓度电镀废水来说是不二之选。生物法主要包括生物絮凝法、生物吸附法、生物化学法和植物修复法。
1.生物絮凝法
生物絮凝法是一种利用微生物或微生物产生的代谢物进行絮凝沉淀来净化水质的方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外、具有絮凝活性的代谢物,能使水中胶体悬浮物相互凝聚、沉淀。
生物絮凝剂与无机絮凝剂和合成有机絮凝剂相比,具有处理废水安全无毒、絮凝效果好、不产生二次污染等优点,但其存在活体生物絮凝剂不易保存,生产成本高等问题,限制了它的实际应用。目前大部分生物絮凝剂还处在探索研究阶段。
生物絮凝剂可以分为以下三类:
(1) 直接利用微生物细胞作为絮凝剂,如一些细菌、放线菌、真菌、酵母等。
(2) 利用微生物细胞壁提取物作为絮凝剂。微生物产生的絮凝物质为糖蛋白、黏多糖、蛋白质等高分子物质,如酵母细胞壁的葡聚糖、Ⅳ-乙酰葡萄糖胺、丝状真菌细胞壁多糖等都可作为良好的生物絮凝剂。
(3) 利用微生物细胞代谢产物的絮凝剂。代谢产物主要有多糖、蛋白质、脂类及其复合物等。
近年来报道的生物絮凝剂主要为多糖类和蛋白质类,前者有ZS一7、ZL—P、H12、DP。152等,后者有MBF—W6、NOC—l等。陶颖等]利用假单胞菌Gx4—1胞外高聚物制得的絮凝剂对cr(Ⅳ)进行了絮凝吸附研究。
其研究结果表明,在适宜条件下Or(Ⅳ)的去除率可达51%。研究枯草芽孢杆菌NX一2制备的生物絮凝剂v一聚谷氨酸(T-PGA)对电镀废水的处理效果,实验证明,T-PGA能有效地去除Cr3+、Ni等重金属离子。
2.生物吸附法
生物吸附法是利用生物体自身的化学结构或成分特性来吸附水中的重金属,然后通过固液分离,从水中分离出重金属。
可以从溶液中分离出重金属的生物体及其衍生物都叫做生物吸附剂。生物吸附剂主要有生物质、细菌、酵母、霉菌、藻类等。该方法成本低,吸附和解析速率快,易于回收重金属,具有选择性,前景广阔。
研究各种因素对枯草芽胞杆菌吸附电镀废水中Cd效果的影响,结果表明:pH为8、吸附剂用量为10g/L(湿重)、搅拌转数为800r/min、吸附时间为10min的条件下,废水中镉的去除率达93%以上。
吸附镉后的枯草芽胞杆菌细胞膨大,色泽变亮,细胞之间相互粘连。Cd2+与细胞表面的钠进行了离子交换吸附。
壳聚糖是一种碱性天然高分子多糖,由海洋生物中甲壳动物提取的甲壳素经过脱乙酰基处理而得到,可以有效地去除电镀废水中的重金属离子。
通过乳化交联法制备了磁性二氧化硅纳米颗粒组成的壳聚糖微球,然后用乙二胺和缩水甘油基三甲基氯化反应的季铵基团改性,所得生物吸附剂具有很高的耐酸性和磁响应。
用它来去除酸性废水中的cr(VI),在pH为2.5、温度为25℃的条件下,最大吸附能力为233.1mg/g,平衡时间为40~120min[取决于初始Cr(VI)的浓度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液进行吸附剂再生,解吸率达到95.6%,因此该生物吸附剂具有很高的重复使用性。
3.生物化学法
生物化学法是指微生物直接与废水中的重金属进行化学反应,使重金属离子转化为不溶性的物质而被去除。
从电镀废水中筛选分离出3株可以高效降解自由氰根的菌种,在最佳条件下可以将80mg/L的CN一去除到0.22mg/L。研究发现,有许多可以将cr(VI)还原成低毒cr(III)的微生物,如无色杆菌、土壤细菌、芽孢杆菌、脱硫弧菌、肠杆菌、微球菌、硫杆菌、假单胞菌等,其中除了大肠杆菌、芽孢杆菌、硫杆菌、假单胞菌等可以在好氧条件下还原Cr(VI),其余大部分菌种只能在厌氧条件下还原cr(VI)。
R.S.Laxman等发现灰色链霉菌能在24~48h内把cr(VI)还原成cr(III),并能够将cr(III)显著地吸收去除。中科院成都生物研究所的李福、吴乾菁等从电镀污泥、废水及下水道铁管内分离筛选出35株菌种,并获得了SR系列复合功能菌,该功能菌具有高效去除Cr(VI)和其他重金属的功效,并在此基础上进行了工程应用,取得较好的效果。
4.植物修复法
植物修复法是利用植物的吸收、沉淀、富集等作用来处理电镀废水中的重金属和有机物,达到治理污水、修复生态的目的。
该方法对环境的扰动较少,有利于环境的改善,而且处理成本低。人工湿地在这方面起着重要的作用,是一种发展前景广阔的处理方法。
李氏禾是一种可富集金属的水生植物,在去除水中重金属方面具有很大的潜力。在人工湿地种植了李氏禾,用以处理含铬、铜、镍的电镀废水,使它们的含量分别降低了84.4%、97.1%和94_3%。当水力负荷小于0.3m/(m2·d1时,出水中的重金属浓度符合电镀污染物排放标准的要求;当进水铬、铜和镍的浓度为5、10和8mg/L时,仍能达标排放。
可见用李氏禾处理中低浓度的电镀废水是可行的。质量平衡表明,铬、铜和镍大部分保留在人工湿地系统的沉积物中。
08 吸附法
吸附法是利用比表面积大的多孔性材料来吸附电镀废水中的重金属和有机污染物,从而达到污水处理的效果。
活性炭是使用最早、最广的吸附剂,可以吸附多种重金属,吸附容量大,但是活性炭价格昂贵,使用寿命短,需要再生且再生费用不低。一些天然廉价材料,如沸石、橄榄石、高岭土、硅藻土等,也具有较好的吸附能力,但由于各种原因,几乎没有得到工程应用。
以沸石作为吸附剂处理电镀废水,发现在静态条件下,沸石对镍、铜和锌的吸附容量分别达到5.9、4.8和2.7mg/g.先以磁性生物炭去除电镀废水中的Cr(vI),
然后通过外部磁场分离,使得cr(VI)的去除率达到97.11%。而在10rain的磁选后,浊度由4075NTU降至21.8NTU。其研究还证实了吸附过程后,磁性生物炭仍保留原来的磁分离性能。近年来又研制开发了一些新型吸附材料,如文中提到的生物吸附剂以及纳米材料吸附剂。
纳米技术是指在1~100nm尺度上研究和应用原子、分子现象,由此发展起来的多学科交叉、基础研究与应用紧密联系的科学技术。纳米颗粒由于具有常规颗粒所不具备的纳米效应,因而具有更高的催化活性。
纳米材料的表面效应使其具有高的表面活性、高表面能和高的比表面积,所以纳米材料在制备高性能吸附剂方面表现出巨大的潜力。雷立等l采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(II)、cd(II)和Cr(III)的吸附。
结果表明:pH=5时,初始浓度分别为200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分别为513.04、212.46和66.35mg/L,吸附性能优于传统吸附材料。纳米技术作为一种高效、节能环保的新型处理技术,得到人们的广泛认同,具有很大的发展潜力。
09 光催化技术
光催化处理技术具有选择性小、处理效率高、降解产物彻底、无二次污染等特点。
光催化的核心是光催化剂,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化学稳定性好、无毒、兼具氧化和还原作用等诸多特点。TiO:在受到一定能量的光照时会发生电子跃迁,产生电子一空穴对。
光生电子可以直接还原电镀废水中的金属离子,而空穴能将水分子氧化成具有强氧化性的OH自由基,从而把很多难降解的有机物氧化成为COz、H:0等无机物,被认为是最有前途、最有效的水处理方法之一。
以悬浮态的TiO2为催化剂,在紫外光的作用下对络合铜废水进行光催化反应。结果表明:当TiO2投加量为2g/L,废水pH=4时,在300W高压汞灯照射下,载入60mL/min的空气反应40rain,对120mg/LEDTA络合铜废水中Cu(II)与COD的去除率分别达到96.56%和57.67%。实施了“物化一光催化一膜”处理电镀废水的工程实例,出水COD去除率达到70%以上,同时TiO2光催化剂可重复使用。
膜法的引入可大大提高水质,使处理后水质达到中水回用标准,提高了电镀废水的资源化利用率,回用率达到85%以上,大大节约了成本。然而光催化技术在实际应用中受到了很多的限制,如重金属离子在光催化剂表面的吸附率低,催化剂的载体不成熟,遇到色度大的废水时处理效果大幅下降,等等。不过光催化技术作为高效、节能、清洁的处理技术,将会有很大的应用前景。欣格瑞水处理专家
10 重金属捕集剂
重金属捕集剂又叫重金属螯合剂,它能与废水中的绝大部分重金属离子产生强烈的螯合作用,生成的高分子螯合盐不溶于水,通过分离就可以去除废水中的重金属离子。
重金属捕集剂处理后的重金属废水中剩余的重金属离子浓度大部分都能达到国家排放标准。以二硫代氨基甲酸盐重金属离子捕集剂XMT探讨了不同因素对Cu的捕集效果,对Cu去除率在99%以上,出水Cu浓度小于0.05mg/L,出水远低于GB21900-2008的“表3”标准。
选取3种市售重金属捕集剂对实际电镀废水中的Cu2+、Zn2+、Ni进行同步深度处理,发现三聚硫氰酸三钠(简称TMT)对Cu的去除效果最为显著,投加量少且效果稳定,但对Ni的去除效果较差。甲基取代的二硫代氨基甲酸钠(以Me2DTC表示)的适用性最强,对3种重金属离子均具有良好的去除效果,可达到GB21900-2008中的“表3”排放标准,且在DH=9.70时处理效果最佳。至于乙基取代的二硫代氨基甲酸钠(Et2DTC),对Ni的去除效果不佳。
重金属捕集剂因高效、低能、处理费用相对较低等特点而有很大的实用性。
⑵ 电镀废水处理的方法有哪些
重金属废水为您解答,戳我的名字,里面还有我写的文库、经验、网络,或许对您的更多问题有所帮助哦~
电镀废水的处理方法:目前国内外电镀废水的主要处理方法有:
·化学法 从近几十年的国内外电镀废水处理技术发展趋势来看,电镀废水有80%采用化学法处理, 化学法处理电镀废水在技术上较为成熟。化学法包括沉淀法、氧化还原法、铁氧体法等,具 有投资少、处理成本低,操作简单等优点,适用于各类电镀金属废水处理。但化学法需要不 断消耗化工原料,并有污泥产生,排出的水回用困难,且占地面积较大
·化学沉淀法
化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包 括中和沉淀和硫化物沉淀等。 (1)中和沉淀法。在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的 氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。 (2)硫化物沉淀法。加入硫化物使废水中重金属离子生成硫化物沉淀而除去的方法。与 中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低, 反应pH值在79之间,处理后的废水一般不用中和,处理效果更好。但硫化物沉淀法的缺点 是:硫化物沉淀颗粒小,易形成胶体,硫化物沉淀在水中残留,遇酸生成气体,可能造成二 次污染。
·氧化还原法 向废水中投加还原剂将高价重金属离子还原成微毒的低价重金属离子后,再使其碱化成 沉淀而分离去除的方法。工业上以化学还原法除铬比较成熟。具体地讲,工业上化学还原法 处理电镀含铬废水的方法,有硫酸亚铁 石灰法、亚硫酸盐法、二氧化硫法、亚铁盐法、硫化 碱法等。其中亚硫酸盐法处理量大,综合利用方便,在国内外应用最广。如,六价铬质量浓 度为140mg/L的某种电镀废水,用亚硫酸氢钠进行处理,出水Cr 3+ 质量浓度可降为 0.7~1.0mg/L。另采用二氧化硫作还原剂处理高浓度大流量的含铬废水,国内已有工程实例。 亚铁盐还原沉淀法也是治理含铬电镀废水的经典方法,被许多厂家采用。如某五金厂电镀废 水:六价铬质量浓度为100mg/L,Ni 2+ 50mg/L,pH=4~6,经该法处理后出水达排放标准。目 前英、美等国应用水合肼对镀铬漂洗水进行槽内还原,反应速度快,处理效果好。 另外值得一提的是铁屑法。铁屑处理废水最初就是从治理电镀废水开始的。国内外许多 文献报导了生产规模的铁屑处理电镀废水的情况。铁屑法整个装置易于定型化及设备制造工 业化,我国某些大型电镀企业乃至乡镇企业铁屑处理电镀废水的工业化装置在运行中。 氧化还原法原理简单,操作易于掌握,对某些类型的电镀废水是行之有效的,但是其出 水水质差,不能回用,处理混合废水时,易造成二次污染,而且通用氧化剂还有供货和毒性 的问题尚待解决。
·铁氧体法 铁氧体法是根据生产铁氧体的原理发展起来的处理方法。该法处理重金属废水,能一次 脱除多种金属离子,尤其适用于混合重金属电镀废水的一次性处理,具有设备简单,投资少, 操作方便等特点,同时形成的污泥有较高的化学稳定性,容易进行微分离和脱水处理。此法 在国内电镀业中应用较广,但在形成铁氧体过程中需要加热(约70℃),能耗高,存在着处 理后盐度高,而且不能处理含Hg和络合物废水的缺点。
·离子交换法 离子交换法是利用离子交换剂分离废水中有害物质的方法,含重金属废水通过交换剂时, 交换剂上的离子同水中的金属离子进行交换,达到去除水中金属离子的目的。此法操作简单, 残渣稳定,无二次污染,但由于离子交换剂选择性强,制造复杂,成本高,再生剂耗量大, 因此在应用上受到很大限制。
· 吸附法 吸附法是利用吸附剂的独特结构去除重金属离子的一种方法。传统吸附剂有活性炭、腐 殖酸、聚糖树脂、碴藻土等。实践证明,使用不同吸附剂的吸附法,不同程度地存在投资大, 运行费用高,污泥产生量大等问题,处理后的水难于达标排放。
·电解法 电解法是利用金属的电化学性质,在直流电作用下而除去废水中的金属离子,是处理含 有高浓度电沉积金属废水的一种有效方法,处理效率高,便于回收利用。但该法缺点是不适 用于处理含较低浓度的金属废水,并且电耗大,成本高,一般经浓缩后再电解经济效益较好。
·蒸发浓缩法 蒸发浓缩法是对电镀废水进行蒸发,使重金属废水得以浓缩,并加以回收利用的一种处 理方法,一般适用于处理含铬、铜、银、镍等重金属废水,对含重金属离子浓度低的废水, 直接应用蒸发浓缩回收法能耗大,成本高。蒸发浓缩处理重金属废水一般是与其它方法并用,
⑶ 环保越来越严格,电镀污水应该怎么处理
电镀生产排出的废水或废液的处理。电镀工厂排出的废水和废液中含有大量金属离子如:铬、镐、镍,含氰,含酸,含碱,一般常含有有机添加剂。金属离子有的以简单的阳离子形式存在,有的则以酸根阴离于形式存在,有的以复杂的络合离子存在。电镀废水处理常用中和沉淀法、中和混凝沉淀法、氧化法、还原法、钡盐法、铁氧体法等化学方法。化学法设备简单,投资少,应用较广,但常留下污泥需要进一步处理。1、沉淀法(1)中和沉淀法。在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。(2)硫化物沉淀法。加入硫化物使废水中重金属离子生成硫化物沉淀而除去的方法。与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应pH值在7~9之间,处理后的废水一般不用中和,处理效果更好。但硫化物沉淀法的缺点是:硫化物沉淀颗粒小,易形成胶体,硫化物沉淀在水中残留,遇酸生成气体,可能造成二次污染。(3)螯合沉淀法。通过高分子重金属捕集沉淀剂(DTCR)在常温下与废水中Hg、Cd、Cu、Pb、Mn、Ni、Zn及Cr等重金属离子迅速反应,生成不溶水的螯合盐,再加入少量有机或(和)无机絮凝剂,形成絮状沉淀,从而达到捕集去除重金属的目的。DTCR系列药剂处理电镀废水的特点是可同时去除多种重金属离子,对重金属离子以络合盐形式存在的情况,也能发挥良好的去除效果,去除胶质重金属不受共存盐类的影响,具有较好的发展前景。
⑷ 电镀废水危害
氰化钠用于金属电镀。氰化物是剧毒物质。HCN人的口服致死量平均为50毫克,氰化钠约100毫克,氰化钾约120毫克。可见氰化物对人体的危害是很严重的。
氰化物对鱼类及其他水生物的危害较大。水中氰化物含量折合成氰离子(CN-)浓度为0.04~0.1毫克/升时,就能使鱼类致死。对浮游生物和甲壳类生物的CN-最大容许浓度为0.01毫克/升。氰化物在水中对鱼类的毒性还与水的pH值、溶解氧及其他金属离子的存在有关。另外含氰废水还会造成农业减产,牲畜死亡等等。
电镀废水的危害
◆ 氰化物:氰化物是极毒物质,特别是在酸性条件下,它变成剧毒的氢氰酸。含氰废水必须先经过处理,才可排入水道或河流中。人的口服致死量氰化钾为120mg、氰化钠为100mg;长期饮用含氰0.14mg/dm3的水会出现头疼、头晕、心悸等症状。
◆ 六价铬和三价铬:铬有三价(Cr3+)和六价(Cr6+)之分。实验证明六价铬的毒性比三价铬高100倍,可在人、鱼和植物体内蓄积。六价铬对人体皮肤、呼吸系统以及内脏都有伤害,能致呼吸道癌,主要是支气管癌。
◆ 铅和铅化物:铅及其化合物对人体是有害元素。水体中铅会引起鱼类、水生物等中毒,严重者甚至死亡。铅经饮用水或食物进入人体消化道后,有5%~10%被人体吸收,当蓄积过量后,在骨骼中的铅会引起内源性中毒。当血铅到60~80μg/100cm3时,就会出现头疼、疲乏、记忆衰退、失眠、食欲不振等症状。
◆ 镍和镍化合物:镍进入人体后主要存在于脊髓、脑、五脏中,以肺为主。其毒性主要表现在抑制酶系统。镍及其镍盐类对电镀工人的毒害主要是镍皮炎。
◆ 铜和铜化合物:铜是生命所必需的微量元素之一,但过量的铜对人体和动、植物都有害。皮肤接触铜化合物,可发生皮炎和湿疹,在接触高浓度桶化合物时可发生皮肤坏死。
◆ 锌和锌化合物:锌是人体必需的微量元素之一,正常人每天从食物中吸收锌10~15mg。过量的锌会引起急性肠胃炎症状,如恶心、呕吐,同时伴有头晕、周身无力等。
⑸ 电镀,屠宰等污水处理方法,设备,以及分别价格
呵呵,这个问题想解决,首先你要把你水量统计出来,电镀的废水吨水处理投资大约要2000元左右,屠宰大约在1000-1500元,这个也不是绝对的,水量越大,投资越小,设备,主要是水泵,除砂,厌氧,好氧,鼓风机,曝气设备,脱水设备,另外电镀废水可能要有一些特殊的专用设备,还有一些基本的土建,如有不明白的,给我留言吧,我就是做污水处理的,给你介绍个网站,你也可以去那里发帖,那个专业的污水处理网站。
gpszx.com
⑹ 电镀废水怎么处理
我国处理电镀废水常用的方法有化学法、生物法、物化法和电化学法等。
化学法:化学法是依靠氧化还原反应或中和沉淀反应将有毒有害的物质分解为无毒无害的物质,或者直接将重金属经沉淀或气浮从废水中除去。
生物法:生物处理是一种处理电镀废水的新技术。一些微生物代谢产物能使废水中的重金属离子改变价态,同时微生物菌群本身还有较强的生物絮凝、静电吸附作用,能够吸附金属离子,使重金属经固液分离后进入菌泥饼,从而使得废水达标排放或回用。
物化法:物化法是利用离子交换或膜分离或吸附剂等方法去除电镀废水所含的杂质,其在工业上应用广泛,通常与其他方法配合使用。
电化学法:电解法是利用电解作用处理或回收重金属,一般应用于贵金属含量较高或单一的电镀废水。电解法处理Cr(VI),是用铁作电极,铁阳极不断溶解产生的亚铁离子能在酸性条件下将Cr(VI)还原成Cr(Ⅲ),在阴极上Cr(Ⅵ)直接还原为Cr(Ⅲ),由于在电解过程中要消耗氢离子,水中余留的氢氧根离子使溶液从酸性变为碱性,并生成铬和铁的氢氧化物沉淀去除铬。电解法能够同时除去多种金属离子,具有净化效果好、泥渣量少、占地面积小等优点,但是消耗电能和钢材较多,已较少采用。
⑺ 一些常见的电镀污水处理问题
电镀生产过程中的高用水量以及排放出的重金属对水环境的污染,极大地制约了电镀工业的可持续发展。传统的电镀废水处理工艺成本过高,重金属未经回收便排放到水体中,极易对生物造成危害。
电镀重金属废水治理技术的现状
传统的电镀废水处理方法有:化学法,离子交换法,电解法等。但传统方法处理电镀废水存在如下问题:
(1)成本过高——水无法循环利用,水费与污水处理费占总生产成本的15%~20%;
(2)资源浪费——贵重金属排放到水体中,无法回收利用;
(3)环境污染——电镀废水中的重金属为“永远性污染物”,在生物链中转移和积累,最终危害人类健康。
采用膜法技术处理电镀废水典型工艺如下:
采用膜法技术为电镀废水处理提供完美解决方案,促进电镀工业技术升级。其主要特点:
(1) 降低成本——水与贵重金属循环利用,减少材料消耗
(2) 回收资源——贵重金属回收利用
(3) 保护环境——废水零排放或微排放
针对我国家目前电镀行业废水的处理现状进行统计和调查,广泛采用的电镀废水处理方法主要有7类:
(1)化学沉淀法,又分为中和沉淀法和硫化物沉淀法。
(2)氧化还原处理,分为化学还原法、铁氧体法和电解法。
(3)溶剂萃取分离法。
(4)吸附法。
(5)膜分离技术。
(6)离子交换法。
(7)生物处理技术,包括生物絮凝法、生物吸附法、生物化学法、植物修复法。
希望能够帮助到您。
⑻ 污水中的重金属离子去除方法有哪些
通过用活性炭跟其他过滤设备多次过滤才可以去除重金属离子,一般的污水处理厂多数都是用过滤法祛除金属离子的
⑼ 电镀厂都会采用哪些废水处理工艺
目前,我国处理电镀废水常用的方法有化学法、生物法、物化法和电化学法等。
化学法
化学法是依靠氧化还原反应或中和沉淀反应将有毒有害的物质分解为无毒无害的物质,或者直接将重金属经沉淀或气浮从废水中除去。
1、沉淀法
(1) 中和沉淀法。在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。
(2) 硫化物沉淀法。加入硫化物使废水中重金属离子生成硫化物沉淀而除去的方法。与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应pH值在7~9之间,处理后的废水一般不用中和,处理效果更好。但硫化物沉淀法的缺点是:硫化物沉淀颗粒小,易形成胶体,硫化物沉淀在水中残留,遇酸生成气体,可能造成二次污染。
(3) 螯合沉淀法。通过高分子重金属捕集沉淀剂(DTCR)在常温下与废水中Hg2+、Cd2+、Cu2+、Pb2+、Mn2+、Ni2+、Zn2+及Cr3+等重金属离子迅速反应,生成不溶水的螯合盐,再加入少量有机或(和)无机絮凝剂,形成絮状沉淀,从而达到捕集去除重金属的目的。DTCR系列药剂处理电镀废水的特点是可同时去除多种重金属离子,对重金属离子以络合盐形式存在的情况,也能发挥良好的去除效果,去除胶质重金属不受共存盐类的影响,具有较好的发展前景。
2、氧化法
通过投加氧化剂,将电镀废水中有毒物质氧化为无毒或低毒物,主要用于处理废水中的CN-、Fe2+、Mn2+低价态离子及造成色度、昧、嗅的各种有机物以及致病微生物。如处理含氰废水时,常用次氯酸盐在碱性条件下氧化其中的氰离子,使之分解成低毒的氰酸盐,然后再进一步降解为无毒的二氧化碳和氮。
3、化学还原法
化学还原法在电镀废水治理中最典型的是对含铬废水的治理。其方法是在废水中加入还原剂FeS04、NaHS03、Na2S03、S02或铁粉等,使Cr(Ⅵ)还原成Cr(III),然后再加入NaOH或石灰乳沉淀分离。该法优点是设备简单、投资少、处理量大,但要防止沉渣污泥造成二次污染。
4、中和法
通过酸碱中和反应,调节电镀废水的酸碱度,使其呈中性或接近中性或适宜下步处理的酸碱度范围,主要用来处理电镀厂的酸洗废水。
5、气浮法
气浮法作为处理电镀废水的技术是近几年发展起来的一项新工艺。其基本原理是用高压水泵将水加压到几个大气压注入溶罐中,使气、水混合成溶气水,溶气水通过溶气释放器进入水池中,由于突然减压,溶解在水中的空气形成大量微气泡,与电镀废水初步处理产生的凝聚状物黏附在一起,使其相对密度小于水而浮到水面上成为浮渣排除,从而使废水得到净化。
生物法
生物处理是一种处理电镀废水的新技术。一些微生物代谢产物能使废水中的重金属离子改变价态,同时微生物菌群本身还有较强的生物絮凝、静电吸附作用,能够吸附金属离子,使重金属经固液分离后进入菌泥饼,从而使得废水达标排放或回用。
1、生物吸附法
凡具有从溶液中分离金属能力的物体或生物体制备的衍生物称为生物吸附剂。生物吸附剂主要是菌体、藻类及一些提取物。微生物对重金属的吸附机理取决于许多物理、化学因素,如光、温度、pH值、重金属含量及化学形态、其他离子、螫合剂的存在和吸附剂的预处理等。生物吸附技术治理重金属污染具有一定的优势,在低含量条件下,生物吸附剂可以选择性地吸附其中的重金属,受水溶液中钙、镁离子的干扰影响较小。该方法处理效率高,无二次污染,可有效地回收一些贵重金属。但是生物成长环境不容易控制,往往会因水质的变化而大量中毒死亡。
2、生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是由微生物自身产生的、具有高效絮凝作用的天然高分子物质,它的主要成分是糖蛋白、黏多糖、纤维素、蛋白质和核酸等。它具有较高电荷或较强的亲水性和疏水性,能与颗粒通过离子键、氢键和范德华力同时吸附多个胶体颗粒,在颗粒间产生架桥现象,形成一种网状三维结构而沉淀下来。目前,对重金属有絮凝作用的生物絮凝剂约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu 2+、Hg2+、Ag+、Au2+等重金属离子形成稳定的螯合物而沉淀下来。该方法处理废水具有安全方便无毒,不产生二次污染,絮凝范围广,絮凝活性高、生长快,絮凝作用条件粗放,大多不受离子强度、pH值及温度的影响,易于实现工业化等特点。
3、生物化学法
生物化学法是通过微生物与金属离子之间发生直接的化学反应,将可溶性离子转化为不溶性化合物而去除。其优点是:选择性强、吸附容量大、不使用化学药剂。污泥中金属含量高,二次污染明显减少,而且污泥中重金属易回收,回收率高。但其缺点是功能菌和废水中金属离子的反应效率并不高,且培养菌种的培养基消耗量较大,处理成本较高。
物化法
物化法是利用离子交换或膜分离或吸附剂等方法去除电镀废水所含的杂质,其在工业上应用广泛,通常与其他方法配合使用。
1、离子交换法
离子交换法是利用离子交换剂分离废水中有害物质的方法。最常用的交换剂是离子交换树脂,树脂饱和后可用酸碱再生后反复使用。离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。多数情况下,离子是先被吸附,再被交换,具有吸附、交换双重作用。对于含铬等重金属离子的废水,可用阴离子交换树脂去除Cr(VI),用阳离子交换树脂去除Cr(Ⅲ)、铁、铜等离子。一般用于处理低有害物质含量废水,具有回收利用、化害为利、循环用水等优点,但它的技术要求较高、一次性投资大。
2、膜分离法
膜分离是指用半透膜作为障碍层,借助于膜的选择渗透作用,在能量、含量或化学位差的作用下对混合物中的不同组分进行分离。利用膜分离技术,可从电镀废水中回收重金属和水资源,减轻或杜绝它对环境的污染,实现电镀的清洁生产,对附加值较高的金、银、镍、铜等电镀废水用膜分离技术可实现闭路循环,并产生良好的经济效益。对于综合电镀废水,经过简单的物理化学法处理后,采用膜分离技术可回用大部分水,回收率可达60%~80%,减少污水总排放量,削减排放到水体中的污染物。
3、蒸发浓缩法
该方法是对电镀废水进行蒸发,使重金属废水得以浓缩,并加以回收利用的一种处理方法,一般适用于处理含铬、铜、银、镍等含重金属的电镀废水。目前,一般将之作为其他方法的辅助处理手段。它具有能耗大、成本高、占地面积大、运转费用高等缺点。
4、活性炭吸附法
活性炭吸附法是处理电镀废水的一种经济有效的方法,主要用于含铬、含氰废水。它的特点是处理调节温和,操作安全,深度净化的处理水可以回用。但该方法存在活性炭再生复杂和再生液不能直接回镀槽利用的问题,吸附容量小,不适于有害物含量高的废水。
电化学法
1、电解法
电解法是利用电解作用处理或回收重金属,一般应用于贵金属含量较高或单一的电镀废水。电解法处理Cr(VI),是用铁作电极,铁阳极不断溶解产生的亚铁离子能在酸性条件下将Cr(VI)还原成Cr(Ⅲ),在阴极上Cr(Ⅵ)直接还原为Cr(Ⅲ),由于在电解过程中要消耗氢离子,水中余留的氢氧根离子使溶液从酸性变为碱性,并生成铬和铁的氢氧化物沉淀去除铬。电解法能够同时除去多种金属离子,具有净化效果好、泥渣量少、占地面积小等优点,但是消耗电能和钢材较多,目前已较少采用。
2、原电池法
以颗粒炭、煤渣或其他导电惰性物质为阴极,铁屑为阳极,废水中导电电解质起导电作用构成原电池,通过原电池反应来达到处理废水的目的。近年来,铁碳微电解技术在电镀废水的处理中受到越来越多的重视。
3、电渗析法
电渗析技术是膜分离技术的一种。它是将阴、阳离子交换膜交替地排列于正负电极之间,并用特制的隔板将其隔开,在电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现电镀废水的浓缩、淡化、精制和提纯。
4、电凝聚气浮法 采用可溶性阳极(Fe、AI等)材料,生成Fe2+、Fe3+、Al3+等大量阳离子,通过絮凝生成Fe(OH)2、Fe(OH)3、AI(OH)3等沉淀物,以去除水中的污染物。同时,阴极上产生大量的H2微气泡,阳极上产生大量的O2微气泡,以这些气泡作为气浮载体,与絮凝污物一起上浮。大量絮体在丰富的微气泡携带下迅速上浮,达到净化水质的目的。
我国电镀废水的常规处理技术已经比较成熟,现代生物法处理电镀废水是非常有发展前途的一项废水处理技术,且不产生二次污染,关键是要运用新技术对其进行深度处理,进一步提高出水水质。膜处理技术因其分离效率高,且能回收重金属,今后必将在电镀废水处理中占据重要的地位。同时通过推广清洁生产工艺,从电镀生产的各个环节上减少排污量,变“被动治理”为“积极治理”,也是解决电镀废水污染的根本方法。
⑽ 电镀废水分质处理回用
电镀废水分质处理回用具体内容是什么,下面中达咨询为大家解答。
1、前言某电镀企业位于农村地区,年加工电镀件10万m2,镀种主要涉及镀锌、镀铜、镀镍、镀铬、镀仿金、镀代铬、度枪色,镀种较齐全,但由于周边配套设施不完善,无排水去向。由于企业镀种较多,电镀废水种类也比较多,为了避免多种污染物在处理之互相干扰,增加废水的回用可行性,将电镀废水进行分质处理回用。2、电镀废水的具体情况该企业电镀废水根据污染物类型不同分为含镍废水、含铜废水、含锌废水、含铬废水和其他废水。①含镍废水含镍废水为连续排放,主要污染物为pH、COD、TNi。其浓度为pH7-8、COD100mg/L、TNi 23mg/L。②含铜废水含铜废水为连续排放,主要污染物为pH、COD、TCu。其浓度为pH7-8、COD100mg/L、TCu 37.8mg/L。③含锌废水含锌废水主要污染物为pH、COD、TZn。其浓度为pH7-8、COD100mg/L、TZn66.8mg/L。④含铬废水含铬废水为定时排放,主要污染物为pH、COD、Cr6+。其浓度为pH5-6、COD100mg/L、Cr6+39.4mg/L。⑤其他综合废水主要污染物为pH、COD、SS、石油类、TZn、Cr6+、TNi,其浓度为pH3-4、COD100mg/L、SS120mg/L、石油类12mg/L、TCu 3.3mg/L、TZn 20mg/L、Cr6+3.5mg/L、TNi1.6mg/L。3、电镀废水的治理工艺及可行性分析(1)含铬废水本项目含铬废水为定期排放,每次排放废水为工件在镀铬和钝化之后的第一道清洗废水,废水进入车间内含铬废水处理设施处理(阳离子交换柱+蒸发浓缩器+含铬溶液回收罐),离子交换柱通过树脂离子交换将废水中的镍离子、铜离子、锌离子等低价位的金属离子去除,六价铬则存留在废水中,再通过蒸发浓缩器去除大部分水,以水蒸气的形式蒸发损失,将六价铬离子保留在浓缩液中,回收含铬溶液的比例约为10%左右,含铬溶液浓缩至400g/L,回用于镀铬、钝化工序。(2)含镍废水、含铜废水和含锌废水含镍废水、含铜废水和含锌废水处理工艺原料相同,分别采用一套离子交换处理系统。通过阳离子树脂的离子交换功能将废水中的镍离子、铜离子、锌离子等阳离子从废水中分离处理吗,反应式如下:通过实测,处理后出水水质为0.5-9.8mg/l,当水质接近回用于冲洗工序用水水质要求时(中间镀层清洗水各金属离子浓度≤10mg/l,最终镀层清洗水各金属离子浓度≤20mg/l),对树脂进行更换再生;再生液中镍、铜、锌含量均在150g/L以上,最终分别进入镀槽,对金属元素回收利用;由于再生液中可能含有微量的异金属离子,为了避免异金属离子富集,镀槽内添加可以促使其共沉积的添加剂;并在停产时通过电解对异金属离子进行处理,这样就保证了镀液的长期稳定性。(3)综合废水综合废水处理站处理工艺为“反应池+综合废水处理机+沉淀+碳滤+反渗透”。其他废水经综合废水池混合后打入反应池,投加入还原剂NaHSO3溶液,控制ORP在300mV以下,PH值为2.0-3.0;空气搅拌,反应10-20分钟,可使Cr6+还原分解至要求以下。反应式如下:然后流入自动综合废水处理机。碱、综合废水处理剂和高分子絮凝剂PAM在微电脑的自动控制条件下添加、反应,使大量的金属离子生产沉淀,反应式如下:反应混合液进入斜板沉淀分离池后,因水力流速减缓而静止沉淀,重金属形成絮体因重力作用沉淀至沉淀槽底部,上清液经溢流堰自流出水排入碳滤器,经碳滤器的过滤和吸附等一系列的深度处理后,进入反渗透处理装置;反渗透处理装置处理后,渗透液满足生产回用水要求,浓缩液进入蒸发器进行浓度处理,蒸馏后的废水与渗透液一起回用于生产,蒸馏产生的浓液回到综合废水池重新处理;当综合废水处理产生的弃水和浓液中重金属离子富集达到一定浓度,为了保证污水处理的效果和生产的有序进行,浓液定期作为危险废物交由有资质的单位处理。通过实测污水站日常运行监测结果为综合废水经污水处理站处理后后出水水质为pH6-9、铜离子0.01-0.04mg/l、镍离子0.01-0.03mg/l、铬离子0.01-0.04mg/l;满足企业提供的清洗工序回用水水质要求(中间镀层清洗水各金属离子浓度≤10mg/l,最终镀层清洗水各金属离子浓度≤20mg/l)。4、结论通过上述分析,结合某电镀企业污水处理实例对电镀废水分质处理,回用于生产的实例,简单介绍了电镀废水分质处理、回用的可行性,为电镀行业的发展尽绵薄之力。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd