㈠ 污水处理如何控制总氮超标
1、化学法去除总氮,先测试总氮的浓度,如果浓度差值不大,建议直接用氨氮去除剂处理,这样氨氮处理下来了,总氮也会随之降低(PS:氨氮去除剂只适用于去除总氮中的氨氮,而总氮和氨氮的比例会根据水质不一样而有所不同,所以使用的处理效果不一,也根据实际情况判断)
2、污水厂内的生物脱氮反应是一个两段式反应过程,在每一段进行合理的工艺控制,从而使出水总氮合格达标。这也是总氮的控制难点,在污水厂中实现总氮的控制达标,首先要了解生物脱氮的反应机理,然后有选择的进行工艺管控。
比较常见的就是AO工艺,还有增加了除磷的AAO工艺,也有SBR工艺及其变种,还有各类氧化沟工艺,利用时间和空间上的交替实现的总氮处理。
(1)如何使用污水厂的氮浓度扩展阅读:
控制总氮的排放的原因
水中氮元素的过量排放会引起水体富营养化,使藻类大量繁殖,出现水华赤潮,当水中总氮含量大于0.3mg/L时,即达到富营养化的标准;另外,硝酸盐本身对人无害,但在体内会被还原为亚硝酸盐。
一方面,亚硝酸盐会与血红蛋白反应生成高铁血红蛋白,影响氧的传输能力,特别对于婴儿,易导致高铁血红蛋白症(蓝婴病);另一方面,亚硝酸盐过高,会与蛋白生成亚硝胺,属于强致癌物质,对健康危害极大。
㈡ 污水处理厂出水总氮浓度
总氮为氨氮,硝态氮、亚硝态氮等无机氮,和蛋白质、氨基酸和有机胺等有机氮的总和。
2、其单位为mg/L。
硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。
因此,冬季时污水处理厂特别是北方地区的污水处理厂出水氨氮超标的现象较为明显。
(2)如何使用污水厂的氮浓度扩展阅读:
水氮含量超标原因及控制方法
1、污泥负荷与污泥龄
生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/kgMLVSS?d。负荷越低,硝化进行得越充分,NH3-N向NO3--N转化的效率就越高。
与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。SRT控制在多少,取决于温度等因素。对于以脱氮为主要目的生物系统,通常SRT可取11~23d。
2、 回流比与水力停留时间。生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。通常回流比控制在50~100%。
㈢ 污水处理厂氨氮废水去除方法是怎样的呢
污水处理厂氨氮处理技术的选择主要取决于:
1、水的性质
2、要求达到的处理效果
3、经济性。氨氮的技术选择还与氨氮的浓度密切相关
根据氨氮浓度的不同可以分为三类:
高浓度(>500mgNH3-N/l),
中浓度(50-500mgNH3-N/l),
低浓度(<50mgNH3-N/l)。
首先来说说氨氮的去除方法
吹脱法&鸟粪石工艺:
氨氮的去除方法中第一个要和大家讨论的是吹脱法,吹脱法是将废水中的离子态铵,通过调节pH值转化为分子太铵,随后被通入废水的空气或蒸汽吹出,常见的有吹脱池和吹脱塔。蒸汽吹脱要考虑:
1、吹脱装置的合理性
2、废水流量
3、蒸汽量
4、pH≥11
5、吹脱温度≥94℃,6还要考虑冷凝系统。
来源:污水处理 维拓环境 十万伏特
㈣ 污水厂氨氮的简单处理方法有哪些
1、可以在污水中直接投加可以降低氨氮的浓度的氨氮去除剂,氨氮去除剂是一种含有特殊架状结构的高分子无机化合物,对氨氮的去除率达90%以上。
2、可以将Cl2加入氨氮废水至某一临界点以将氨氮氧化成氮气。其反应方程式为:NH4++1.5HClO→0.5N2+1.5H2O+2.5H++1.5Cl- 。
3、还可以利用微生物的作用将废水中的氨氮通过一系列反应形成氮。
除此之外,还可以用氨吹脱工艺,主要是将水的pH 值提到10. 5~11.5的范围,在吹脱塔中反复形成水滴,通过塔内大量空气循环,气水接触,使氨气逸出。这种方法广泛用于处理中高浓度的氨氮废水,常需加石灰,经吹脱可以回收氨气。
㈤ 污水处理厂的进水氨氮是多少
污水处理厂的进水氨氮浓度主要取决于污水来源。
1、如果是一般生活污内水处理厂的氨氮容的浓度在15-35mg/l。
2、如果处理工业废水,其氨氮就远大于上述浓度,需要进行预处理,一般正规的污水处理厂的进水氨氮浓度控制在35mg/l以下。
(5)如何使用污水厂的氮浓度扩展阅读
氨氮废水主要来源于化肥、焦化、石化、制药、食品、垃圾填埋场等,大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,给水处理的难度和成本。
甚至对人群及生物产生毒害作用,针对氨氮废水的处理工艺有生物法、物化法的各种处理工艺等。
㈥ 如何处理工业废水中总氮
硝化液回流进行前置反硝化工艺硝化液回流至前端缺氧区,同时投加碳源,通过反硝化菌将硝基氮进行反硝化转化为氮气,无需新增处理设施,无需新增占地,仅需在现有的好氧段的末端安装内回流泵,将硝化液回流至前置反硝化区。此方案从理论上可行,但存在如下问题:1) 如需将总氮达到一级A标,需将硝基氮降至10mg/L以下,通过计算,硝化液回流比将在150-200%,即2倍于进水水量的富含溶解氧的硝化液(DO约4mg/L)回流至缺氧段将直接改变缺氧段的溶解氧环境(0.2mg/L≤DO≤0.5mg/L),影响反硝化效率的一个重要指标即严格的缺氧环境,如此大的回流比导致的溶氧升高和缺氧停留时间减少将会严重影响反硝化效率和反应时间,进而出水总氮无法达到很低的水平,但减少回流比则无法完成总氮的反硝化数量,亦会影响出水总氮达标。2) 如进行反硝化反应,反硝化菌必定会利用一定的碳源,从进水C/N比和出水的C/N比分析,该厂如进行反硝化需补加碳源,如在前端补充甲醇作为碳源,则存在反硝化菌和其他菌种的竞争关系,从微生物学的角度分析,反硝化在此条件下并非优势菌种,因此前端投加的大量碳源会被浪费,导致运行费用升高,如过量补充则又会导致后端处理负荷的增加。根据不同水质需求对生化脱氮的不同环节进行设计与优化,比如IDN-BMP总氮去除装备就是从反硝化阶段入手,加强菌种的选择与驯化,优化反应器结构,从而增强反应器的的脱氮效率。