导航:首页 > 废水污水 > 广东含镍污水处理什么价格

广东含镍污水处理什么价格

发布时间:2024-07-01 20:42:25

① 含镍废水的处理方法

沉淀法:向污水中加入碱调节PH,使Ni2+以氢氧化镍沉淀的形式予以除去。吸附法:利用固体物质表面对污水中污染物质进行吸附。沸石、腐殖酸等常被作为处理含镍电镀废水的吸附剂。吸附法常用于处理Ni2+浓度较低的废水。膜分离技术:在外力推动下,利用具有选择透过性能的特制薄膜作为障碍层,使混合物中某些组分易透过,其他组分难透过被截留。

沉淀法:向污水中加入碱调节PH,使Ni2+以氢氧化镍沉淀的形式予以除去。此法操作简单,是目前最常用的方法之一。

吸附法:利用固体物质表面对污水中污染物质进行吸附。沸石、腐殖酸等常被作为处理含镍电镀废水的吸附剂。吸附法常用于处理Ni2+浓度较低的废水。

膜分离技术:在外力推动下,利用具有选择透过性能的特制薄膜作为障碍层,使混合物中某些组分易透过,其他组分难透过被截留。

② 城市污水污泥处理与处置


城市污水污泥处理与处置具体包括哪些内容呢,下面中达咨询为大家带来相关内容介绍以供参考。
城市污水污泥是污水处理过程中产生的固体废弃物。随着国内污水处理事业的发展,污水厂总处理水量和处理程度将不断扩大和提高,产生的污泥量也日益增加,目前在国内一般污水厂中其基建和运行费用约占总基建和运行费用的20%~50%[1]。污水污泥中除了含有大量的有机物和丰富的氮、磷等营养物质,还存在重金属、致病菌和寄生虫等有毒有害成分。为防止污泥造成的二次污染及保证污水处理厂的正常运行和处理效果,污水污泥的处理处置问题在城市污水处理中占有的位置已日益突出。
中国现有人口13亿多,城市640多个,城市人口2.7亿。据中国国家环保总局提供的数字,目前中国每年大约排放污水401亿m3,已建成运转的城市污水处理厂有400余座,日处理能力2534万m3。按污泥产量占处理水量的0.3%~0.5%(以含水率97%计)[2]计算,中国城市污水厂污泥的产量在7.602万m3/d和12.67万m3/d (以含水率97%计)之间。因此,中国在污水处理事业不断取得进步的同时,将面临巨大的污泥处理处置压力。
1 国内城市污水污泥处理处置现状
1.1 国内城市污水污泥处理的状况
1.1.1 现有污水污泥处理工艺
国内已建成运行的城市污水厂来看,污水污泥处理工艺大体可归纳为18种工艺流程,见表1。
1.1.2 污泥浓缩
污泥浓缩主要是降低污泥中的空隙水,通常采用的是物理处理方法,主要包括重力浓缩法、气浮浓缩法、离心浓缩法等,它们的处理性能如表2所示[3]:
1.1.3 污泥稳定
国内目前常用的污泥稳定方法是厌氧消化,好氧消化和污泥堆肥也有部分被采用,并且污泥堆肥正处于不断研究阶段,而热解和化学稳定方法或者是由于技术的原因或者是由于经济、能耗的原因而很少被采用[5]。图2为上述几种污泥稳定方法在国内所占的比例。
1.1.4 污泥脱水
国内现有的污泥脱水措施主要是机械脱水,而干化场由于受到地区、气候条件的限制很少被采用。图3为几种污泥脱水技术在国内所占的比例。
1.2国内城市污水污泥处理中存在的问题
国内城市污水污泥的处理起步较晚,其中也存在许多问题,主要表现在以下几个方面:
1.2.1 污泥处理率低、工艺不完善
我国存在着重废水处理,轻污泥处理的倾向。很多城市未把污泥的处理作为污水厂的必要组成部分,往往是污水处理厂建成后,相当长的时间后才建污泥处理系统,造成我国城市污水污泥处理率很低。从表1的工艺中也可以看出,国内城市污水厂的污泥处理工艺是很不完善的。污泥经过浓缩、消化稳定和干化脱水处理的污水厂仅占上述城市污水厂的25.68%。这说明我国70%以上的污水厂中不具有完整的污泥处理工艺。不具有污泥稳定处理的污水厂占55.70%,大量未经过稳定处理的污水污泥将对环境产生严重的二次污染。不具有污泥干化脱水处理的污水厂约占48.65%。污泥经浓缩、消化后,尚有约95%~97%含水率,体积仍然很大。这样庞大体积的污泥如果不经过污泥的干化脱水处理,将为运输及后续处置带来许多不便。
1.2.2 污泥处理技术设备落后
当前我国有些污水处理厂所采用的污泥处理技术已经是发达国家所摈弃的技术,其水平还停留在发达国家的70、80年代的水平,有的甚至是国外的60年代的水平。而且有些污泥处理技术根本不合乎国内的污水污泥特性,对所采用的技术缺乏必要的调查研究。污泥处理设备也比较落后,性能差、效率低、能耗高,专用设备少,未能形成标准化和系列化。因此,限制了我国污泥处理技术的提高和发展。
1.2.3 污泥处理管理水平低
很多已建成的污泥处理设施不能正常运行,除技术水平外,管理水平低也是重要因素。大部分污水厂的管理人员和操作人员的素质较差,缺乏管理经验,不能有效地组织生产,加上技术人员少,各个专业不配套,所以一旦生产上出现问题,不知如何处理,有的污水处理厂的污泥处理系统只好长期停止运行。提高污水厂的管理水平,早日实现科学管理是保证污水厂污泥系统长期运转的关键所在。
1.2.4 污泥处理设计水平低
我国排水事业有很大发展,积累了较为丰富的污水处理设计经验,并培养了大批设计人材。但在污泥处理方面,我国还缺乏实践经验和设计经验,尤其是污泥处理系统的整体水平还比较低,从已建成的污水处理厂的污泥处理装置看,运行工况不佳,不能保证长期运行,很多厂的装置建成后,又进行较大的技术改造,造成人力、物力和财力的极大浪费。
1.2.5 污泥处理投资低
国内污泥处理投资只占污水处理厂总投资的20%~50%,而发达国家污泥处理投资要占总投资的50%~70%。
1.3 我国城市污水污泥处置的状况及分析
城市污水污泥的处置途径包括土地利用、卫生填埋、焚烧处理和水体消纳等方法,这些方法都能够容纳大量的城市污水污泥,但因国家的不同而应用情况有所不同。我国自80年代初第一座污水处理厂天津纪庄子污水处理厂建成投产后,污泥即由附近郊区农民用于农田。其后北京高碑店等污水处理厂的污泥也均用于农田。随着城市污水污泥产生量和污水处理厂的逐渐增多,目前我国已开始将污水处理厂污泥用于土地填埋和城市绿化,并将污泥作基质,制作复合肥用于农业等。但在国内,总的状况还是以污泥土地利用的形式为主,将污泥用于农业。可由于国内在污泥管理方面对污泥所含病原菌、重金属和有毒有机物等理化指标及臭气等感官指标控制的重视程度还不够高,因此限制了对污泥的进一步处置利用,图4为几种污泥处置技术在国内所占的比例。
国内的污泥处置,即最终出路存在严重问题,从上图可以看到仍有13.79%的污泥没有任何处置,这将为环境污染带来巨大危害。污泥散发的臭气污染空气,病原菌对人类健康产生潜在威胁,重金属和有毒有害有机物污染地表和地下水系统。造成这种现象的原因可以归纳如下:由于国内污泥处理处置的起步较晚,许多城市没有将污泥处置场所纳入城市总体规划。造成很多处理厂难以找到合适的污泥处置方法和污泥弃置场所;我国污泥利用的基础薄弱,人们对污泥利用的认识存在严重不足,对污泥的最终处置问题缺乏关注,给一些有害污泥的最终处置留下了隐患;污泥的利用率不是很高,仍有一部分的污水厂污泥只经贮存即由环卫部门外运市郊直接堆放,尤其是国内一些南方城市很多采用这种方式。这样的处置方式既影响了污水厂的正常运行,同时污泥的随意堆放又可能产生二次污染,也造成污泥资源的浪费。因此,我国当前面临的问题是尽快发展污泥处置技术来解决不断增长的污水污泥。
2 我国城市污水污泥处理处置对策
2.1 我国城市污水污泥处理途径
从国内今后的发展趋势来看,其城市污水处理将形成以国家投资的大型污水处理厂为主,各地区根据经济发展状况投资兴建的不同规模污水处理厂并存的局面,因此对污水厂污泥的处理应根据污水厂所处的环境位置、处理规模、资金来源、经济技术水平来确定适合中国国情的工艺方法和技术设备等。
污泥处理的目的是使污泥减容化、稳定化、无害化及综合利用。对于国内城市的各类污水处理厂来说,应该不断完善其污水污泥处理工艺,选择包括污泥浓缩、厌氧消化、脱水等较完善的污泥处理工艺,并积极开发性能良好的、国产的污泥浓缩、稳定和脱水的装置和机械,以提高污泥的含固率,使后续的污泥处置和综合利用能顺利进行。就选择污水污泥浓缩技术来说,由于国内城市污水污泥中有机物含量低,所以采用重力浓缩仍然是一种经济、有效的污泥减容方法。污泥脱水的方法主要包括自然干化和机械脱水,而自然干化由于受到气候、地区的限制而很少被采用。污泥的机械脱水能有效降低污泥体积,为污泥的后续处置打下良好基础。现在常用的机械脱水技术有板框压滤脱水、带式压滤脱水和离心脱水等,在实际运行中各有其优缺点,同时污泥的性质对脱水效果影响很大,因此对机械脱水方法的选择应根据污水厂工艺、运行的特点和污泥处理处置的要求而定。污泥处理时采用不同的稳定方法对整个污水处理的工艺选择和技术经济比较有举足轻重的影响,典型的稳定方法有厌氧消化、好氧消化和堆肥等的生物稳定法及投加石灰的化学稳定法。对目前国内现有的情况来说,应考虑采用基建投资少、运行管理费用低、简易高效的污泥稳定方法。污泥的中温厌氧消化法为国内的部分污水处理厂所采用,它不仅能将污泥中的有机物降解,同时杀死部分病原菌和寄生虫(卵),从而使污泥达到稳定化以及部分无害化,而且消化产生的沼气还可作能源回收。不过该法投资大,操作管理严格,对工艺技术及安全运行的要求也较高,这对国内大型的污水处理厂来说是可行的,而对于国家缺乏技术经济优势的小型污水处理厂,采用污泥厌氧消化作为污泥稳定、无害化措施是不可行的。笔者认为,对于小型污水处理厂,一是在选择污水处理工艺时,可选择延时曝气法(如采用氧化沟),由于该工艺产生的污泥随着泥龄的增长,有机物分解趋于完善,挥发分含量随之减少,其能量也逐渐降低,污泥趋于稳定。当污泥龄足够长时,其好氧稳定的结果与厌氧消化稳定的结果很接近[6]。二是采用生污泥直接脱水后进行好氧堆肥的方法,好氧堆肥是利用微生物的作用,将污泥转化为类腐殖质的过程,可消除污泥恶臭,堆肥后污泥稳定化、无害化程度高,是经济简便,高效低能耗的污泥稳定化无害化替代技术。
2.2 污泥堆肥是符合中国国情的污泥稳定技术
污泥农用前最好进行堆肥化处理,目的是经过生物降解作用,使植物养分形态更有利于植物的吸收,另一方面还可消除臭味、杀死病原菌和寄生虫。
目前世界各国普遍采用的堆肥方法有静态和动态堆肥两种,如自然堆肥法、圆柱形分格封闭堆肥法、滚筒堆肥法、竖式多层反应堆肥法以及条形静态通风等堆肥工艺,这些方法都在不断发展和完善。
近年来,国内先后建成了一些机械化程度较高的堆肥厂,如无锡、杭州、武汉、上海等地的机械化堆肥技术包括较完整的前处理、发酵、后处理工艺和设备,其堆肥技术在产品质量、运行操作可控性、环境质量等方面的指标都达到了较高水平。天津市污水处理研究所在纪庄子污水处理厂进行的污泥高温堆肥的试验和研究中,探索出了一套少加甚至不加调节剂、简单而便于操作管理的污泥堆肥工艺,同时提出了工艺流程和技术参数,为生产线的设计与建设提供了技术依据。以堆肥处理前、后消化污泥的提取液为试验液,以草履虫为试验对象所进行的综合毒性研究表明,两者的半致死浓度相差近10倍,说明堆肥对毒性有机物的降解效果是显著的[7]。
1997年北京市环境保护科学研究院总结多年研究成果,吸取国内外各类机械堆肥装置的优点设计、研制了污泥动态发酵器,该装置效率高、能耗低,便于操作管理和设备化。根据所研制的设备,提出以污泥动态发酵器为核心的污泥制复合肥新工艺路线,建成了1条年产5000t复合肥生产的装置。生产线包括污泥动态发酵器、混合搅拌器、圆盘造粒机、烘干机、筛分机等组成,运行以后设备稳定可靠、经济效益明显。该研究提出的污泥动态发酵无害化及污泥制肥工艺,将在北京市高碑店等污水处理厂的污泥处理处置中得到应用,对于解决北京市的污水污泥处置问题,会起到很好的作用。可以说,该项技术的成果转化和推广应用已经有了良好的开端[8]。
2.3 污泥土地利用是符合中国国情的处置方法
一般来说,各国家对于污泥处置方式的选择应兼顾到环境生态效益与处置成本、经济效益之间的平衡。一种有效的、适合本国具体情况的污泥处置方法应该是在环境上卫生、社会上被接受及经济上有效的方法。污泥土地填埋对污泥的土力学性质要求较高,需要大面积的场地和大量的运输费用,地基需作防渗处理以免污染地下水,填埋场的废气可能污染环境等,近年来污泥填埋处置所占比例越来越小;焚烧法的技术和设备复杂、耗能大、费用较高,并且有大气污染问题;污泥投海受到地理位置和国际海洋有关公约的限制以及对海洋生态系统和人类食物链已造成威胁,中国政府已于1994年初接受三项国际协议,承诺于1994年2月20日起不在海上处置工业废物和污水污泥;污水污泥用作建材是近年处于研究阶段的新课题,尚有许多技术难题需要解决。因此,上述几种方法的使用在我国受到限制。
从污泥的成分看,其中有机物、氮、磷等的含量均高于一般农家厩肥,还含有钾及其它微量元素[9]。若施用于土地中,对土壤物理、化学及生物学性状有一定的改良作用。污泥中的有机物质可明显改善土壤的结构性,使土壤的容重下降,孔隙增多,土壤的通气透水性和田间持水量提高[10 11],从而改善土壤的物理性质。施用污泥也可提高土壤的阳离子交换量,改善土壤对酸碱的缓冲能力,提供养分交换和吸附的活性位点,从而提高土壤保肥性[12]。污泥中丰富的各种养分,明显地增加土壤氮、磷养分,并能有效地向植物提供养分[11],减少化学肥料的施用量,从而可降低农业生产的成本。此外,污泥可以使土壤中微生物量增加和代谢强度提高而改变土壤的生物学性状,所以污泥土地利用是适合我国目前的经济发展状况是一种积极的、生产性的污泥处置方法[13 14]。同时,我国是一个发展中的国家,又是一个农业大国,其广阔的土地资源是发展污水污泥土地利用的天然优势。因此,无论从经济因素还是从肥效利用因素出发,污泥的土地利用特别是污泥的农用都是一种符合中国国情的处置方法。这种处置方法一方面可以为国内污水厂污泥找到一条根本出路,另一方面还可缓解我国农村资源的短缺。
2.4 污泥土地利用应注意的问题
2.4.1 加强病原菌和寄生虫的控制
城市污水处理厂污泥中含有大量的病原微生物和寄生虫,如不加以控制,则污泥在土地利用或使用过程中会对人畜的健康造成危害。因此污泥在处置或利用前进行高、中温好氧法或厌氧法处理或采用辐射处理是不可或缺的环节。
2.4.2 重视对污泥中重金属及有毒有机物的控制
污水污泥中的重金属和有机污染物含量已成为污泥土地利用的重要限制因素,污泥中往往含有大量的铜、镍、镉、铅、锌、汞等重金属和许多种有毒有机物,若农田中长期施用会导致土壤污染,它们被农作物吸收后又通过食物链进入人体,从而影响人体健康。尽管国内城市污水厂的污水以生活污水为主,但国内城市污水污泥中重金属含量还是有部分超过农用标准[2 15]。因此,将污泥作土地利用时,应特别注意污水污泥中重金属超标问题。污泥中有机污染物的研究工作已经在发达国家开展了很多年,但我们在这方面的研究工作还不是很多。然而,很少研究工作并不意味着我国的污水污泥中不含或少含有机污染物。北京高碑店污水处理厂的污泥中已经检测到35种含氮芳香族化合物,并有7种已经定量化[16]。因此,在污水污泥中有机污染物与重金属这两个领域的研究工作还有很多要做,包括污泥中有机污染物和重金属的表现形式以及污泥处理过程中它们的变化及对土壤-污泥系统的影响。这样才可以很好地解决污泥中污染物对环境及人类健康造成的影响。然而,污泥质量根源于污水厂处理的污水的质量,因此也要从污染源着手,降低进入城市污水的重金属及其它有毒物质的浓度,即必须使排入城市污水管道的工业废水水质符合《污水排入城市下水道水质标准》(CJ18-86)。
2.4.3 污泥的施用量
污水污泥的农业利用,不仅可以消除污泥对环境的污染,也可使其资源化而提高作物产量。但是,不合理的施用污泥,很可能导致土壤中重金属元素的积累,造成土壤资源的污染和危害人类的健康。一般来说某块农田适用污泥数量有一定限度,当达到这一限度时,污泥的农用就应停止一段时间后再继续进行。具体的污泥施用量应在调查研究的基础上,根据气候条件、地理环境、作物种类及土壤同化能力制定适合本地区特点的污泥施用额定负荷量,以确保污泥的农田施用安全。
2.4.4 制定完善标准和法律法规,推广与普及环境知识
许多发达国家已对污泥的处置利用制定了法律法规,对污泥的标准、施用地点的选择、水源的保护、病原菌的控制、重金属的允许施入量、运输等都作了相应的规定。目前,我国关于污泥施用的标准和法律法规还不健全,比如污泥农业利用中关于重金属的控制标准只是在研究小麦的基础上建立起来的,很明显这样会存在片面性,因此这样的标准有待于在科学研究的基础上进一步完善。另一方面是要向社会各界大力传播环保知识。污泥土地中的一个重要问题是,要让广大的污泥用户了解科学施用污泥的利益和盲目施用污泥的危害,自觉地遵守污泥土地利用的环境法律法规和科学施用技术规范。
3 结语
随着我国工业和城市的发展,污水处理率的提高,其产生量必然越来越大。从目前情况来看,国内污泥处理利用技术还比较落后,污泥处理率还比较低,人们对污泥处理处置必要性认识还不够,污泥的处理处置存在严重的不足,许多问题亟待解决。同时,我国是一个农业大国,将经过堆肥稳定化后的污泥进行土地循环利用,应该是国内污泥处置利用较有发展前景的一种途径。为了解决国内污泥处理处置中存在的问题,充分利用污泥这种资源,减少环境公害,我国必须大力发展污泥处理处置和利用的各种技术。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

③ 关于电镀含镍废水处理

电镀废水的处理与回用对节约水资源以及保护环境起着至关重要的作用。本文综述了各种电镀废水处理技术的优缺点,以及一些新材料在电镀废水处理上的应用。
01 化学沉淀法
化学沉淀法是通过向废水中投入药剂,使溶解态的重金属转化成不溶于水的化合物沉淀,再将其从水中分离出来,从而达到去除重金属的目的。
化学沉淀法因为操作简单,技术成熟,成本低,可以同时去除废水中的多种重金属等优点,在电镀废水处理中得到广泛应用。
1.碱性沉淀法
碱性沉淀法是向废水中投加NaOH、石灰、碳酸钠等碱性物质,使重金属形成溶解度较小的氢氧化物或碳酸盐沉淀而被去除。该法具有成本低、操作简单等优点,目前被广泛使用。
但是碱性沉淀法的污泥产量大,会产生二次污染,而且出水pH偏高,需要回调pH。NaOH由于产生污泥量相对较少且易回收利用,在工程上得到广泛应用。
2.硫化物沉淀法
硫化物沉淀法是通过投加硫化物(如Na2S、NariS等)使废水中的重金属形成溶度积比氢氧化物更小的沉淀,出水pH在7~9,无需回调pH即可排放。
但是硫化物沉淀颗粒细小,需要添加絮凝剂辅助沉淀,使处理费用增大。硫化物在酸性溶液中还会产生有毒的HS气体,实际操作起来存在局限性。
3.铁氧体法
铁氧体法是根据生产铁氧体的原理发展起来的,令废水中的各种重金属离子形成铁氧体晶体一起沉淀析出,从而净化废水。该法主要是通过向废水中投加硫酸亚铁,经过还原、沉淀絮凝,最终生成铁氧体,因其设备简单、成本低、沉降快、处理效果好等特点而被广泛应用。
pH和硫酸亚铁投加量对铁氧体法去除重金属离子的影响,确定镍、锌、铜离子的最佳絮凝pH分别为8.00~9.80、8.00~10.50和10.00,投加的亚铁离子与它们摩尔比均为2~8,而六价铬的最佳还原pH为4.00~5.50,最佳絮凝pH则为8.00~10.50,最佳投料比为20。出水的镍含量小于0.5mg/L,总铬含量小于1.0mg/L,锌含量小于1.0mg/L,铜含量小于0.5mg/L,达到《电镀污染物排放标准》(GB21900—2008)中“表2”的要求。
化学沉淀法的局限性
随着污水排放标准的提高,传统单一的化学沉淀法很难经济有效地处理电镀废水,常常与其他工艺组合使用。
采用铁氧体-CARBONITE(一种具有物理吸附与离子交换功能的材料)联合工艺处理Ni含量约为4000mg/L的高浓度含镍电镀废水:先以铁氧体法控制pH为11.0,在Fe/Fe。摩尔比O.55,FeSO4·7H2O/Ni质量比21,反应温度35℃的条件下搅拌反应15min,出水Ni平均浓度从4212.5mg/L降至6.8mg/L,去除率达99.84%;然后采用CARBONITE处理,在CARBONITE投加量1.5g/L,pH=6.5,温度35℃的条件下反应6h,Ni去除率可达96.48%,出水Ni浓度为0.24mg/L,达到GB21900-2008中的“表2”标准。
采用高级Fenton一化学沉淀法处理含螯合重金属的废水,使用零价铁和过氧化氢降解螯合物,然后加碱沉淀重金属离子,不仅可以去除镍离子(去除率最高达98.4%),而且可以降低COD化学需氧量。
02 氧化还原法
1.化学氧化法
化学氧化法在处理含氰电镀废水上的效果尤为明显。该方法把废水中的氰根离子(CN一)氧化成氰酸盐(CNO-),再将氰酸盐(CNO-)氧化成二氧化碳和氮气,可以彻底解决氰化物污染问题。
常用的氧化剂包括氯系氧化剂、氧气、臭氧、过氧化氢等,其中碱性氯化法应用最广。采用Fenton法处理初始总氰浓度为2.0mg/L的低浓度含氰电镀废水,在反应初始pH为3.5,H202/FeSO4摩尔比为3.5:1,H202投加量5.0g/L,反应时间60min的最佳条件下,氰化物的去除率可达93%,总氰浓度可降至0_3mg/L。
2.化学还原法
化学还原法在电镀废水处理中主要针对含六价铬废水。该方法是在废水中加入还原剂(如FeSO、NaHSO3、Na2SO3、SO2、铁粉等)把六价铬还原为三价铬,再加入石灰或氢氧化钠进行沉淀分离。上述铁氧体法也可归为化学还原法。
该方法的主要优点是技术成熟,操作简单,处理量大,投资少,在工程应用中有良好的效果,但是污泥量大,会产生二次污染。采用硫酸亚铁作为还原剂,处理80t/d的含总铬7O~80mg/L的电镀废水,出水总铬小于1.5mg/L,处理费用为3.1元/t,具有很高的经济效益。
以焦亚硫酸钠为还原剂处理含80mg/L六价铬、pH为6~7的电镀废水,出水六价铬浓度小于0.2mg/L。
03 电化学法
电化学法是指在电流的作用下,废水中的重金属离子和有机污染物经过氧化还原、分解、沉淀、气浮等一系列反应而得到去除。
该方法的主要优点是去除速率快,可以完全打断配合态金属链接,易于回收利用重金属,占地面积小,污泥量少,但是其极板消耗快,耗电量大,对低浓度电镀废水的去除效果不佳,只适合中小规模的电镀废水处理。
电化学法主要有电凝聚法、磁电解法、内电解法等。
电凝聚法是通过铁板或者铝板作为阳极,电解时产生Fe2+、Fe或Al,随着电解的进行,溶液碱性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通过絮凝沉淀去除污染物。
由于传统的电凝聚法经过长时间的操作,会使电极板发生钝化,近年来高压脉冲电凝聚法逐渐替代传统的电混凝法,它不仅克服了极板钝化的问题,而且电流效率提高20%~30%,电解时间缩短30%~40%,节省电能30%~40%,污泥产生量少,对重金属的去除率可达96%~99%。
采用高压脉冲电絮凝技术处理某电镀厂的电镀废水,Cu2十、Ni2、CN一和COD的去除率分别达到99.80%、99.70%、99.68%和67.45%。
电混凝法通常也与其他方法结合使用,利用电凝聚法和臭氧氧化法联合处理电镀废水,以铁和铝做极板,出水六价铬、铁、镍、铜、锌、铅、TOC(总有机碳)、COD的去除率分别为99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年来内电解法受到广泛关注。内电解法利用了原电池原理,一般向废水中投加铁粉和炭粒,以废水作为电解质媒介,通过氧化还原、置换、絮凝、吸附、共沉淀等多种反应的综合作用,可以一次性去除多种重金属离子。
该方法不需要电能,处理成本低,污泥量少。通过静态试验研究了铁碳微电解法对模拟电镀废水的COD及铜离子的去除效果,去除率分别达到了59.01%和95.49%。然而,采用微电解反应柱研究连续流的运行结果显示,14d后微电解出水的COD去除率仅为10%~15%,铜的去除率降低至45%~50%之间,可见需要定期更换填料或对填料进行再生。
04 膜分离技术
膜分离技术主要包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、电渗析(ED)、液膜(Lv)等,利用膜的选择透过性来对污染物进行分离去除。
该方法去除效果好,可实现重金属回收利用和出水回用,占地面积小,无二次污染,是一种很有发展前景的技术,但是膜的造价高,易受污染。
对膜技术在电镀废水处理中的应用和效果进行了分析,结果表明:结合常规废水处理工艺与膜生物反应器(MBR)组合工艺,电镀废水被处理后的水质达到排放标准;电镀综合废水经UF净化、RO和NF两段脱盐膜的集成工艺处理后,水质达到回用水标准,RO和NF产水的电导率分别低于100gS/cm和1000gS/cm,COD分别约为5mg/L和10mg/L;镀镍漂洗废水通过RO膜后,镍的浓缩高达25倍以上,实现了镍的回收,RO产水水质达到回用标准。
投资与运行费用分析表明:工程运行1年多即可收回RO浓缩镍的设备费用。
液膜法并不是采用传统的固相膜,而是悬浮于液体中很薄的一层乳液颗粒,是一种类似溶剂萃取的新型分离技术,包括制膜、分离、净化及破乳过程。
美籍华人黎念之(NormanN.Li)博士发明了乳状液膜分离技术,该技术同时具有萃取和渗透的优点,把萃取和反萃取两个步骤结合在一起。乳化液膜法还具有传质效率高、选择性好、二次污染小、节约能源和基建投资少的特点,对电镀废水中重金属的处理及回收利用有着良好的效果。
05 离子交换法
离子交换法是利用离子交换剂对废水中的有害物质进行交换分离,常用的离子交换剂有腐殖酸物质、沸石、离子交换树脂、离子交换纤维等。离子交换的运行操作包括交换、反洗、再生、清洗四个步骤。
此方法具有操作简单、可回收利用重金属、二次污染小等特点,但离子交换剂成本高,再生剂耗量大。
研究强酸性离子交换树脂对含镍废水的处理工艺条件及镍回收方法。结果表明:pH为6~7有利于强酸性阳离子交换树脂对镍离子的去除。离子交换除镍的适宜温度为30℃,适宜流速为15BV/h(即每小时l5倍树脂床体积)。适宜的脱附剂为10%盐酸,脱附液流速为2BV/h。前4.6BV脱附液可回用于配制电镀槽液,平均镍离子质量浓度达18.8g/L。
Mei.1ingKong等研究了CHS—l树脂对cr(VI)的吸附能力,发现Cr(VI)在低浓度时,树脂的交换吸附率是由液膜扩散和化学反应控制的。CHS一1树脂对Cr(VI)的最佳吸附pH为2~3,在298K下其饱和吸附能力为347.22mg/g。CHS一1树脂可以用5%的氢氧化钠溶液和5%氯化钠溶液来洗脱,再生后吸附能力没有明显的下降。
使用钛酸酯偶联剂将1一Fe203与丙烯酸甲酯共聚,在碱性条件下进行水解,制备出磁性弱酸阳离子交换树脂NDMC一1。
通过对重金属Cu的吸附研究发现,NDMC—l树脂粒径较小、外表面积大,因而具有较快的动力学性能。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。
06 蒸发浓缩法
蒸发浓缩法是通过加热对电镀废水进行蒸发,使液体浓缩达到回用的效果。一般适用于处理含铬、铜、银、镍等重金属浓度高的废水,用其处理浓度低的重金属废水时耗能大,不经济。
在处理电镀废水中,蒸发浓缩法常常与其他方法一起使用,可实现闭路循环,效果不错,比如常压蒸发器与逆流漂洗系统联合使用。蒸发浓缩法操作简单,技术成熟,可实现循环利用,但是浓缩后的干固体处置费用大,制约了它的应用,目前一般只作为辅助处理手段。
07 生物处理技术
生物处理法是利用微生物或者植物对污染物进行净化,该方法运行成本低,污泥量少,无二次污染,对于水量大的低浓度电镀废水来说是不二之选。生物法主要包括生物絮凝法、生物吸附法、生物化学法和植物修复法。
1.生物絮凝法
生物絮凝法是一种利用微生物或微生物产生的代谢物进行絮凝沉淀来净化水质的方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外、具有絮凝活性的代谢物,能使水中胶体悬浮物相互凝聚、沉淀。
生物絮凝剂与无机絮凝剂和合成有机絮凝剂相比,具有处理废水安全无毒、絮凝效果好、不产生二次污染等优点,但其存在活体生物絮凝剂不易保存,生产成本高等问题,限制了它的实际应用。目前大部分生物絮凝剂还处在探索研究阶段。
生物絮凝剂可以分为以下三类:
(1) 直接利用微生物细胞作为絮凝剂,如一些细菌、放线菌、真菌、酵母等。
(2) 利用微生物细胞壁提取物作为絮凝剂。微生物产生的絮凝物质为糖蛋白、黏多糖、蛋白质等高分子物质,如酵母细胞壁的葡聚糖、Ⅳ-乙酰葡萄糖胺、丝状真菌细胞壁多糖等都可作为良好的生物絮凝剂。
(3) 利用微生物细胞代谢产物的絮凝剂。代谢产物主要有多糖、蛋白质、脂类及其复合物等。
近年来报道的生物絮凝剂主要为多糖类和蛋白质类,前者有ZS一7、ZL—P、H12、DP。152等,后者有MBF—W6、NOC—l等。陶颖等]利用假单胞菌Gx4—1胞外高聚物制得的絮凝剂对cr(Ⅳ)进行了絮凝吸附研究。
其研究结果表明,在适宜条件下Or(Ⅳ)的去除率可达51%。研究枯草芽孢杆菌NX一2制备的生物絮凝剂v一聚谷氨酸(T-PGA)对电镀废水的处理效果,实验证明,T-PGA能有效地去除Cr3+、Ni等重金属离子。
2.生物吸附法
生物吸附法是利用生物体自身的化学结构或成分特性来吸附水中的重金属,然后通过固液分离,从水中分离出重金属。
可以从溶液中分离出重金属的生物体及其衍生物都叫做生物吸附剂。生物吸附剂主要有生物质、细菌、酵母、霉菌、藻类等。该方法成本低,吸附和解析速率快,易于回收重金属,具有选择性,前景广阔。
研究各种因素对枯草芽胞杆菌吸附电镀废水中Cd效果的影响,结果表明:pH为8、吸附剂用量为10g/L(湿重)、搅拌转数为800r/min、吸附时间为10min的条件下,废水中镉的去除率达93%以上。
吸附镉后的枯草芽胞杆菌细胞膨大,色泽变亮,细胞之间相互粘连。Cd2+与细胞表面的钠进行了离子交换吸附。
壳聚糖是一种碱性天然高分子多糖,由海洋生物中甲壳动物提取的甲壳素经过脱乙酰基处理而得到,可以有效地去除电镀废水中的重金属离子。
通过乳化交联法制备了磁性二氧化硅纳米颗粒组成的壳聚糖微球,然后用乙二胺和缩水甘油基三甲基氯化反应的季铵基团改性,所得生物吸附剂具有很高的耐酸性和磁响应。
用它来去除酸性废水中的cr(VI),在pH为2.5、温度为25℃的条件下,最大吸附能力为233.1mg/g,平衡时间为40~120min[取决于初始Cr(VI)的浓度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液进行吸附剂再生,解吸率达到95.6%,因此该生物吸附剂具有很高的重复使用性。
3.生物化学法
生物化学法是指微生物直接与废水中的重金属进行化学反应,使重金属离子转化为不溶性的物质而被去除。
从电镀废水中筛选分离出3株可以高效降解自由氰根的菌种,在最佳条件下可以将80mg/L的CN一去除到0.22mg/L。研究发现,有许多可以将cr(VI)还原成低毒cr(III)的微生物,如无色杆菌、土壤细菌、芽孢杆菌、脱硫弧菌、肠杆菌、微球菌、硫杆菌、假单胞菌等,其中除了大肠杆菌、芽孢杆菌、硫杆菌、假单胞菌等可以在好氧条件下还原Cr(VI),其余大部分菌种只能在厌氧条件下还原cr(VI)。
R.S.Laxman等发现灰色链霉菌能在24~48h内把cr(VI)还原成cr(III),并能够将cr(III)显著地吸收去除。中科院成都生物研究所的李福、吴乾菁等从电镀污泥、废水及下水道铁管内分离筛选出35株菌种,并获得了SR系列复合功能菌,该功能菌具有高效去除Cr(VI)和其他重金属的功效,并在此基础上进行了工程应用,取得较好的效果。
4.植物修复法
植物修复法是利用植物的吸收、沉淀、富集等作用来处理电镀废水中的重金属和有机物,达到治理污水、修复生态的目的。
该方法对环境的扰动较少,有利于环境的改善,而且处理成本低。人工湿地在这方面起着重要的作用,是一种发展前景广阔的处理方法。
李氏禾是一种可富集金属的水生植物,在去除水中重金属方面具有很大的潜力。在人工湿地种植了李氏禾,用以处理含铬、铜、镍的电镀废水,使它们的含量分别降低了84.4%、97.1%和94_3%。当水力负荷小于0.3m/(m2·d1时,出水中的重金属浓度符合电镀污染物排放标准的要求;当进水铬、铜和镍的浓度为5、10和8mg/L时,仍能达标排放。
可见用李氏禾处理中低浓度的电镀废水是可行的。质量平衡表明,铬、铜和镍大部分保留在人工湿地系统的沉积物中。
08 吸附法
吸附法是利用比表面积大的多孔性材料来吸附电镀废水中的重金属和有机污染物,从而达到污水处理的效果。
活性炭是使用最早、最广的吸附剂,可以吸附多种重金属,吸附容量大,但是活性炭价格昂贵,使用寿命短,需要再生且再生费用不低。一些天然廉价材料,如沸石、橄榄石、高岭土、硅藻土等,也具有较好的吸附能力,但由于各种原因,几乎没有得到工程应用。
以沸石作为吸附剂处理电镀废水,发现在静态条件下,沸石对镍、铜和锌的吸附容量分别达到5.9、4.8和2.7mg/g.先以磁性生物炭去除电镀废水中的Cr(vI),
然后通过外部磁场分离,使得cr(VI)的去除率达到97.11%。而在10rain的磁选后,浊度由4075NTU降至21.8NTU。其研究还证实了吸附过程后,磁性生物炭仍保留原来的磁分离性能。近年来又研制开发了一些新型吸附材料,如文中提到的生物吸附剂以及纳米材料吸附剂。
纳米技术是指在1~100nm尺度上研究和应用原子、分子现象,由此发展起来的多学科交叉、基础研究与应用紧密联系的科学技术。纳米颗粒由于具有常规颗粒所不具备的纳米效应,因而具有更高的催化活性。
纳米材料的表面效应使其具有高的表面活性、高表面能和高的比表面积,所以纳米材料在制备高性能吸附剂方面表现出巨大的潜力。雷立等l采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(II)、cd(II)和Cr(III)的吸附。
结果表明:pH=5时,初始浓度分别为200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分别为513.04、212.46和66.35mg/L,吸附性能优于传统吸附材料。纳米技术作为一种高效、节能环保的新型处理技术,得到人们的广泛认同,具有很大的发展潜力。
09 光催化技术
光催化处理技术具有选择性小、处理效率高、降解产物彻底、无二次污染等特点。
光催化的核心是光催化剂,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化学稳定性好、无毒、兼具氧化和还原作用等诸多特点。TiO:在受到一定能量的光照时会发生电子跃迁,产生电子一空穴对。
光生电子可以直接还原电镀废水中的金属离子,而空穴能将水分子氧化成具有强氧化性的OH自由基,从而把很多难降解的有机物氧化成为COz、H:0等无机物,被认为是最有前途、最有效的水处理方法之一。
以悬浮态的TiO2为催化剂,在紫外光的作用下对络合铜废水进行光催化反应。结果表明:当TiO2投加量为2g/L,废水pH=4时,在300W高压汞灯照射下,载入60mL/min的空气反应40rain,对120mg/LEDTA络合铜废水中Cu(II)与COD的去除率分别达到96.56%和57.67%。实施了“物化一光催化一膜”处理电镀废水的工程实例,出水COD去除率达到70%以上,同时TiO2光催化剂可重复使用。
膜法的引入可大大提高水质,使处理后水质达到中水回用标准,提高了电镀废水的资源化利用率,回用率达到85%以上,大大节约了成本。然而光催化技术在实际应用中受到了很多的限制,如重金属离子在光催化剂表面的吸附率低,催化剂的载体不成熟,遇到色度大的废水时处理效果大幅下降,等等。不过光催化技术作为高效、节能、清洁的处理技术,将会有很大的应用前景。
10 重金属捕集剂
重金属捕集剂又叫重金属螯合剂,它能与废水中的绝大部分重金属离子产生强烈的螯合作用,生成的高分子螯合盐不溶于水,通过分离就可以去除废水中的重金属离子。
重金属捕集剂处理后的重金属废水中剩余的重金属离子浓度大部分都能达到国家排放标准。以二硫代氨基甲酸盐重金属离子捕集剂XMT探讨了不同因素对Cu的捕集效果,对Cu去除率在99%以上,出水Cu浓度小于0.05mg/L,出水远低于GB21900-2008的“表3”标准。
选取3种市售重金属捕集剂对实际电镀废水中的Cu2+、Zn2+、Ni进行同步深度处理,发现三聚硫氰酸三钠(简称TMT)对Cu的去除效果最为显著,投加量少且效果稳定,但对Ni的去除效果较差。甲基取代的二硫代氨基甲酸钠(以Me2DTC表示)的适用性最强,对3种重金属离子均具有良好的去除效果,可达到GB21900-2008中的“表3”排放标准,且在DH=9.70时处理效果最佳。至于乙基取代的二硫代氨基甲酸钠(Et2DTC),对Ni的去除效果不佳。
重金属捕集剂因高效、低能、处理费用相对较低等特点而有很大的实用性。
结语
电镀废水成分复杂,应尽量分工段处理。在选择处理方法时,应充分考虑各种方法的优缺点,加强各种水处理技术的综合应用,形成组合工艺,扬长避短。
重金属具有很大的回收价值且毒性大,在电镀废水处理过程中应多使用重金属回收利用的工艺,尽可能地减少排放。
基于化学沉淀法污泥产量大,电化学法能耗高,膜分离技术的膜组件造价高且易受污染等诸多问题,就现有电镀废水处理技术而言,应向着节能、高效、无二次污染的方向改进。
同时可与计算机技术相结合,实现智能化控制。还可结合材料学、生物学等学科,开发出更适合处理电镀废水的新型材料。

④ 工业重金属污水处理剂有哪些

在去除重金属成分的化学过程要用到助凝剂、混凝剂、絮凝剂,重金属去除剂 片碱 硫酸等药剂
重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。如果不对重金属废水处理,就会严重污染环境。废水处理中重金属的种类、含量及存在形态随不同生产企业而有所不同。去除重金属在废水处理中显得相当重要。
由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态,达到去除重金属的目的。例如,废水处理过程中,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,废水处理去除重金属原则是:
原则一:最根本的是改革生产工艺.不用或少用毒性大的重金属;
原则二:是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。重金属废水处理应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经除重金属处理直接排入城市下水道,以免扩大重金属污染。
废水处理除重金属的方法,通常可分为两类:
方法一:是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等废水处理法;
方法二:是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些废水处理方法应根据废水水质、水量等情况单独或组合使用。

⑤ 电镀废水含镍离子如何处理到表三以下

电镀废水中主要的污染物质为重金属,比如镍、锌、铜、铬等,合理、全面地处理重金属污染物是保证电镀废水稳定达标的重要因素之一。
首先,针对常见的电镀含镍废水,如果只是电镀镍,而非化学镀,那么在含镍废水中,镍是离子态形式,只需要用氢氧化钠进行调节pH,再通过PAC混凝,PAM絮凝沉淀,即可去除电镀镍。
但在掺杂了前处理水的电镀废水或者在化学镍废水中,会存在络合剂,如果只是加碱调节,镍离子是无法沉淀的,用量为镍离子的5-7倍。这时需要加入除镍剂M2进行螯合沉淀处理,通过与镍离子生成不溶性螯合物而把镍离子浓度降低,达到污水处理排放标准。
由于除镍剂M2能够与任何形态的镍离子生成不溶于水的螯合沉淀,将废水中的总镍含量处理至0.1mg/L以下,解决了传统化学方法中的弊端。
再次,针对其他重金属废水,如含铬废水、含铜废水、含锌镍废水等,这时即可采用重捕剂M1去除,HMC-M1第三代重捕剂分子结构复杂,螯合能力强,官能团表面电荷多,能够与含有络合剂的重金属废水生成不溶性的螯合沉淀,从而使重金属达标排放。

⑥ pcb线路板行业含镍废水处理方法

以下方法可以根据情况进行选择,对于含镍废水的处理,目前常用的工艺有:重金属离子沉淀法、离子交换法、膜系统处理法。
1、重金属离子沉淀法
工艺特点:M2除镍剂投加至废水中与废水中的镍离子发生反应,迅速生成不溶性、短时间内去除絮状沉淀,螯合能力强,且无需破络可直接满足一类污染物车间排口的镍浓度不高于0.1 mg/L的排放标准要求。
2、离子沉淀法
该工艺具有工艺简单、设备少等鲜明的特点,曾在一段时期内被大量企业所采纳。但该工艺也具有显著的缺点:
(1)当树脂趋向饱和的时候,其交换能力逐渐下降,出水水质
也逐渐变差,且无法及时判断饱和时间;
(2)树脂需要频繁更换或再生,其操作费用较高;
(3)再生液、清洗液的
3、 膜系统处理法
工艺特点
(1)处理过程中无需添加化学药剂,纯物理分离过程,节省大量的药剂费用;
(2)由于物料分离反渗透膜具有独特的元件结构,对溶质和水进行分离,处理效果稳定并且完全满足严苛的排放要求。
缺点是,费用较高。

⑦ 鐢甸晙宸ュ巶搴熸按澶勭悊鏂规硶鏈夊摢浜

鎽樿侊細鐢甸晙鍘傦紙鎴栬溅闂达級鎺掓斁鐨勫簾姘村拰搴熸恫锛屽傜數闀闆朵欢鐨勫啿娲楁按銆佸簾妲芥恫銆佽惧囧喎鍗存按鍜屽啿娲楀湴琛ㄦ按绛夛紝鐢变簬鐢熶骇宸ヨ壓鐨勪笉鍚屼骇鐢熺殑姘磋川涓嶅悓锛屾垚鍒嗗嶆潅銆傜數闀宸ュ巶鎺掑嚭鐨勫簾姘村拰搴熸恫涓鍚鏈夊ぇ閲忛噾灞炵诲瓙濡傦細閾銆侀晲銆侀晬锛屽惈姘帮紝鍚閰革紝鍚纰憋紝涓鑸甯稿惈鏈夋湁鏈烘坊鍔犲墏銆傜數闀搴熸按澶勭悊甯哥敤涓鍜屾矇娣娉曘佷腑鍜屾贩鍑濇矇娣娉曘佹哀鍖栨硶銆佽繕鍘熸硶銆侀挕鐩愭硶銆侀搧姘т綋娉曠瓑鍖栧︽柟娉曘傛帴涓嬫潵甯︽偍绠瑕佷簡瑙d竴涓嬬數闀鍘傜殑姹℃按澶勭悊鏂规堛傜數闀搴熸按鐨勬潵婧愮數闀鐢熶骇涓浜х敓鐨勫簾姘存垚鍒嗛潪甯稿嶆潅锛岄櫎鍚姘(CN-)鍜岄吀纰卞栵紝閲嶉噾灞炴槸鐢甸晙涓氭綔鍦ㄥ嵄瀹虫ф瀬澶х殑姹℃按绫诲埆锛岃繖浜涚墿璐ㄤ弗閲嶅嵄瀹崇幆澧冨拰浜虹被韬浣撳仴搴枫傜數闀搴熸按鐨勪富瑕佹潵婧愭湁锛
1銆侀晙浠舵竻娲楁按(鏄涓昏佺殑搴熸按鏉ユ簮)銆傝ュ簾姘翠腑闄ゅ惈閲嶉噾灞炵诲瓙澶栵紝杩樺惈鏈夊皯閲忕殑鏈夋満鐗╋紝鍏跺惈閲忚緝浣庯紝浣嗘暟閲忚緝澶с
2銆侀晙娑茶繃婊ゅ啿娲楁按鍜屽簾闀娑茬殑鎺掓斁銆傝繖閮ㄥ垎搴熸按鏁伴噺涓嶅ぇ锛屼絾鍚閲忛珮锛屾薄鏌撳ぇ銆
3銆佸伐鑹烘搷浣滃拰璁惧囥佸伐鑹烘祦绋嬩腑绛夐犳垚鐨勨滆窇銆佸啋銆佹淮銆佹紡鈥濇帓鏀剧殑搴熸恫銆
4銆佸啿娲楄惧囥佸湴鍧绛変骇鐢熺殑搴熸按銆
鐢甸晙姹℃按娌荤悊鍦ㄥ浗鍐呭栨櫘閬嶅彈鍒伴噸瑙嗭紝宸茬爺鍒跺嚭澶氱嶆不鐞嗘妧鏈锛岄氳繃灏嗘湁姣掓不鐞嗕负鏃犳瘨銆佹湁瀹宠浆鍖栦负鏃犲炽佸洖鏀惰吹閲嶉噾灞炪佹按寰鐜浣跨敤绛夋帾鏂芥秷闄ゅ拰鍑忓皯姹℃煋鐗╃殑鎺掓斁閲忋傞殢鐫鐢甸晙宸ヤ笟鐨勫揩閫熷彂灞曞拰鐜淇濊佹眰鐨勬棩鐩婃彁楂橈紝鐢甸晙姹℃按娌荤悊宸插紑濮嬭繘鍏ユ竻娲佺敓浜у伐鑹恒佹婚噺鎺у埗鍜屽惊鐜缁忔祹鏁村悎闃舵碉紝璧勬簮鍥炴敹鍒╃敤鍜岄棴璺寰鐜鏄鍙戝睍鐨勪富娴佹柟鍚戙
鐢甸晙宸ュ巶搴熸按澶勭悊鏂规硶鎴戝浗澶勭悊鐢甸晙搴熸按甯哥敤鐨勬柟娉曟湁鍖栧︽硶銆佺敓鐗╂硶銆佺墿鍖栨硶鍜岀數鍖栧︽硶绛夈
鍖栧︽硶鍖栧︽硶鏄渚濋潬姘у寲杩樺師鍙嶅簲鎴栦腑鍜屾矇娣鍙嶅簲灏嗘湁姣掓湁瀹崇殑鐗╄川鍒嗚В涓烘棤姣掓棤瀹崇殑鐗╄川锛屾垨鑰呯洿鎺ュ皢閲嶉噾灞炵粡娌夋穩鎴栨皵娴浠庡簾姘翠腑闄ゅ幓銆
1銆佹矇娣娉
(1)涓鍜屾矇娣娉曘傚湪鍚閲嶉噾灞炵殑搴熸按涓鍔犲叆纰辫繘琛屼腑鍜屽弽搴旓紝浣块噸閲戝睘鐢熸垚涓嶆憾浜庢按鐨勬阿姘у寲鐗╂矇娣褰㈠紡鍔犱互鍒嗙汇備腑鍜屾矇娣娉曟搷浣滅畝鍗曪紝鏄甯哥敤鐨勫勭悊搴熸按鏂规硶銆
(2)纭鍖栫墿娌夋穩娉曘傚姞鍏ョ~鍖栫墿浣垮簾姘翠腑閲嶉噾灞炵诲瓙鐢熸垚纭鍖栫墿娌夋穩鑰岄櫎鍘荤殑鏂规硶銆備笌涓鍜屾矇娣娉曠浉姣旓紝纭鍖栫墿娌夋穩娉曠殑浼樼偣鏄锛氶噸閲戝睘纭鍖栫墿婧惰В搴︽瘮鍏舵阿姘у寲鐗╃殑婧惰В搴︽洿浣庯紝鍙嶅簲pH鍊煎湪7锝9涔嬮棿锛屽勭悊鍚庣殑搴熸按涓鑸涓嶇敤涓鍜岋紝澶勭悊鏁堟灉鏇村ソ銆備絾纭鍖栫墿娌夋穩娉曠殑缂虹偣鏄锛氱~鍖栫墿娌夋穩棰楃矑灏忥紝鏄撳舰鎴愯兌浣擄紝纭鍖栫墿娌夋穩鍦ㄦ按涓娈嬬暀锛岄亣閰哥敓鎴愭皵浣擄紝鍙鑳介犳垚浜屾℃薄鏌撱
(3)铻鍚堟矇娣娉曘傞氳繃楂樺垎瀛愰噸閲戝睘鎹曢泦娌夋穩鍓(DTCR)鍦ㄥ父娓╀笅涓庡簾姘翠腑Hg2+銆丆d2+銆丆u2+銆丳b2+銆丮n2+銆丯i2+銆乑n2+鍙奀r3+绛夐噸閲戝睘绂诲瓙杩呴熷弽搴旓紝鐢熸垚涓嶆憾姘寸殑铻鍚堢洂锛屽啀鍔犲叆灏戦噺鏈夋満鎴(鍜)鏃犳満绲鍑濆墏锛屽舰鎴愮诞鐘舵矇娣锛屼粠鑰岃揪鍒版崟闆嗗幓闄ら噸閲戝睘鐨勭洰鐨勩侱TCR绯诲垪鑽鍓傚勭悊鐢甸晙搴熸按鐨勭壒鐐规槸鍙鍚屾椂鍘婚櫎澶氱嶉噸閲戝睘绂诲瓙锛屽归噸閲戝睘绂诲瓙浠ョ粶鍚堢洂褰㈠紡瀛樺湪鐨勬儏鍐碉紝涔熻兘鍙戞尌鑹濂界殑鍘婚櫎鏁堟灉锛屽幓闄よ兌璐ㄩ噸閲戝睘涓嶅彈鍏卞瓨鐩愮被鐨勫奖鍝嶏紝鍏锋湁杈冨ソ鐨勫彂灞曞墠鏅銆
2銆佹哀鍖栨硶
閫氳繃鎶曞姞姘у寲鍓傦紝灏嗙數闀搴熸按涓鏈夋瘨鐗╄川姘у寲涓烘棤姣掓垨浣庢瘨鐗╋紝涓昏佺敤浜庡勭悊搴熸按涓鐨凜N-銆丗e2+銆丮n2+浣庝环鎬佺诲瓙鍙婇犳垚鑹插害銆佹槯銆佸梾鐨勫悇绉嶆湁鏈虹墿浠ュ強鑷寸梾寰鐢熺墿銆傚傚勭悊鍚姘板簾姘存椂锛屽父鐢ㄦ℃隘閰哥洂鍦ㄧ⒈鎬ф潯浠朵笅姘у寲鍏朵腑鐨勬鞍绂诲瓙锛屼娇涔嬪垎瑙f垚浣庢瘨鐨勬鞍閰哥洂锛岀劧鍚庡啀杩涗竴姝ラ檷瑙d负鏃犳瘨鐨勪簩姘у寲纰冲拰姘銆
3銆佸寲瀛﹁繕鍘熸硶
鍖栧﹁繕鍘熸硶鍦ㄧ數闀搴熸按娌荤悊涓鏈鍏稿瀷鐨勬槸瀵瑰惈閾搴熸按鐨勬不鐞嗐傚叾鏂规硶鏄鍦ㄥ簾姘翠腑鍔犲叆杩樺師鍓侳eS04銆丯aHS03銆丯a2S03銆丼02鎴栭搧绮夌瓑锛屼娇Cr(鈪)杩樺師鎴怌r(III)锛岀劧鍚庡啀鍔犲叆NaOH鎴栫煶鐏颁钩娌夋穩鍒嗙汇傝ユ硶浼樼偣鏄璁惧囩畝鍗曘佹姇璧勫皯銆佸勭悊閲忓ぇ锛屼絾瑕侀槻姝㈡矇娓f薄娉ラ犳垚浜屾℃薄鏌撱
4銆佷腑鍜屾硶
閫氳繃閰哥⒈涓鍜屽弽搴旓紝璋冭妭鐢甸晙搴熸按鐨勯吀纰卞害锛屼娇鍏跺憟涓鎬ф垨鎺ヨ繎涓鎬ф垨閫傚疁涓嬫ュ勭悊鐨勯吀纰卞害鑼冨洿锛屼富瑕佺敤鏉ュ勭悊鐢甸晙鍘傜殑閰告礂搴熸按銆
5銆佹皵娴娉
姘旀诞娉曚綔涓哄勭悊鐢甸晙搴熸按鐨勬妧鏈鏄杩戝嚑骞村彂灞曡捣鏉ョ殑涓椤规柊宸ヨ壓銆傚叾鍩烘湰鍘熺悊鏄鐢ㄩ珮鍘嬫按娉靛皢姘村姞鍘嬪埌鍑犱釜澶ф皵鍘嬫敞鍏ユ憾缃愪腑锛屼娇姘斻佹按娣峰悎鎴愭憾姘旀按锛屾憾姘旀按閫氳繃婧舵皵閲婃斁鍣ㄨ繘鍏ユ按姹犱腑锛岀敱浜庣獊鐒跺噺鍘嬶紝婧惰В鍦ㄦ按涓鐨勭┖姘斿舰鎴愬ぇ閲忓井姘旀场锛屼笌鐢甸晙搴熸按鍒濇ュ勭悊浜х敓鐨勫嚌鑱氱姸鐗╅粡闄勫湪涓璧凤紝浣垮叾鐩稿瑰瘑搴﹀皬浜庢按鑰屾诞鍒版按闈涓婃垚涓烘诞娓f帓闄わ紝浠庤屼娇搴熸按寰楀埌鍑鍖栥
鐢熺墿娉曠敓鐗╁勭悊鏄涓绉嶅勭悊鐢甸晙搴熸按鐨勬柊鎶鏈銆備竴浜涘井鐢熺墿浠h阿浜х墿鑳戒娇搴熸按涓鐨勯噸閲戝睘绂诲瓙鏀瑰彉浠锋侊紝鍚屾椂寰鐢熺墿鑿岀兢鏈韬杩樻湁杈冨己鐨勭敓鐗╃诞鍑濄侀潤鐢靛惛闄勪綔鐢锛岃兘澶熷惛闄勯噾灞炵诲瓙锛屼娇閲嶉噾灞炵粡鍥烘恫鍒嗙诲悗杩涘叆鑿屾偿楗硷紝浠庤屼娇寰楀簾姘磋揪鏍囨帓鏀炬垨鍥炵敤銆
1銆佺敓鐗╁惛闄勬硶
鍑″叿鏈変粠婧舵恫涓鍒嗙婚噾灞炶兘鍔涚殑鐗╀綋鎴栫敓鐗╀綋鍒跺囩殑琛嶇敓鐗╃О涓虹敓鐗╁惛闄勫墏銆傜敓鐗╁惛闄勫墏涓昏佹槸鑿屼綋銆佽椈绫诲強涓浜涙彁鍙栫墿銆傚井鐢熺墿瀵归噸閲戝睘鐨勫惛闄勬満鐞嗗彇鍐充簬璁稿氱墿鐞嗐佸寲瀛﹀洜绱狅紝濡傚厜銆佹俯搴︺乸H鍊笺侀噸閲戝睘鍚閲忓強鍖栧﹀舰鎬併佸叾浠栫诲瓙銆佽灚鍚堝墏鐨勫瓨鍦ㄥ拰鍚搁檮鍓傜殑棰勫勭悊绛夈傜敓鐗╁惛闄勬妧鏈娌荤悊閲嶉噾灞炴薄鏌撳叿鏈変竴瀹氱殑浼樺娍锛屽湪浣庡惈閲忔潯浠朵笅锛岀敓鐗╁惛闄勫墏鍙浠ラ夋嫨鎬у湴鍚搁檮鍏朵腑鐨勯噸閲戝睘锛屽彈姘存憾娑蹭腑閽欍侀晛绂诲瓙鐨勫共鎵板奖鍝嶈緝灏忋傝ユ柟娉曞勭悊鏁堢巼楂橈紝鏃犱簩娆℃薄鏌擄紝鍙鏈夋晥鍦板洖鏀朵竴浜涜吹閲嶉噾灞炪備絾鏄鐢熺墿鎴愰暱鐜澧冧笉瀹规槗鎺у埗锛屽線寰浼氬洜姘磋川鐨勫彉鍖栬屽ぇ閲忎腑姣掓讳骸銆
2銆佺敓鐗╃诞鍑濇硶
鐢熺墿绲鍑濇硶鏄鍒╃敤寰鐢熺墿鎴栧井鐢熺墿浜х敓鐨勪唬璋㈢墿杩涜岀诞鍑濇矇娣鐨勪竴绉嶉櫎姹℃柟娉曘傚井鐢熺墿绲鍑濆墏鏄鐢卞井鐢熺墿鑷韬浜х敓鐨勩佸叿鏈夐珮鏁堢诞鍑濅綔鐢ㄧ殑澶╃劧楂樺垎瀛愮墿璐锛屽畠鐨勪富瑕佹垚鍒嗘槸绯栬泲鐧姐侀粡澶氱硸銆佺氦缁寸礌銆佽泲鐧借川鍜屾牳閰哥瓑銆傚畠鍏锋湁杈冮珮鐢佃嵎鎴栬緝寮虹殑浜叉按鎬у拰鐤忔按鎬э紝鑳戒笌棰楃矑閫氳繃绂诲瓙閿銆佹阿閿鍜岃寖寰峰崕鍔涘悓鏃跺惛闄勫氫釜鑳朵綋棰楃矑锛屽湪棰楃矑闂翠骇鐢熸灦妗ョ幇璞★紝褰㈡垚涓绉嶇綉鐘朵笁缁寸粨鏋勮屾矇娣涓嬫潵銆傚归噸閲戝睘鏈夌诞鍑濅綔鐢ㄧ殑鐢熺墿绲鍑濆墏绾︽湁鍗佸嚑涓鍝佺嶏紝鐢熺墿绲鍑濆墏涓鐨勬皑鍩哄拰缇熷熀鍙涓嶤u2+銆丠g2+銆丄g+銆丄u2+绛夐噸閲戝睘绂诲瓙褰㈡垚绋冲畾鐨勮灟鍚堢墿鑰屾矇娣涓嬫潵銆傝ユ柟娉曞勭悊搴熸按鍏锋湁瀹夊叏鏂逛究鏃犳瘨锛屼笉浜х敓浜屾℃薄鏌擄紝绲鍑濊寖鍥村箍锛岀诞鍑濇椿鎬ч珮銆佺敓闀垮揩锛岀诞鍑濅綔鐢ㄦ潯浠剁矖鏀撅紝澶у氫笉鍙楃诲瓙寮哄害銆乸H鍊煎強娓╁害鐨勫奖鍝嶏紝鏄撲簬瀹炵幇宸ヤ笟鍖栫瓑鐗圭偣銆
3銆佺敓鐗╁寲瀛︽硶
鐢熺墿鍖栧︽硶鏄閫氳繃寰鐢熺墿涓庨噾灞炵诲瓙涔嬮棿鍙戠敓鐩存帴鐨勫寲瀛﹀弽搴旓紝灏嗗彲婧舵х诲瓙杞鍖栦负涓嶆憾鎬у寲鍚堢墿鑰屽幓闄ゃ傚叾浼樼偣鏄锛氶夋嫨鎬у己銆佸惛闄勫归噺澶с佷笉浣跨敤鍖栧﹁嵂鍓傘傛薄娉ヤ腑閲戝睘鍚閲忛珮锛屼簩娆℃薄鏌撴槑鏄惧噺灏戯紝鑰屼笖姹℃偿涓閲嶉噾灞炴槗鍥炴敹锛屽洖鏀剁巼楂樸備絾鍏剁己鐐规槸鍔熻兘鑿屽拰搴熸按涓閲戝睘绂诲瓙鐨勫弽搴旀晥鐜囧苟涓嶉珮锛屼笖鍩瑰吇鑿岀嶇殑鍩瑰吇鍩烘秷鑰楅噺杈冨ぇ锛屽勭悊鎴愭湰杈冮珮銆
鐗╁寲娉曠墿鍖栨硶鏄鍒╃敤绂诲瓙浜ゆ崲鎴栬啘鍒嗙绘垨鍚搁檮鍓傜瓑鏂规硶鍘婚櫎鐢甸晙搴熸按鎵鍚鐨勬潅璐锛屽叾鍦ㄥ伐涓氫笂搴旂敤骞挎硾锛岄氬父涓庡叾浠栨柟娉曢厤鍚堜娇鐢ㄣ
1銆佺诲瓙浜ゆ崲娉
绂诲瓙浜ゆ崲娉曟槸鍒╃敤绂诲瓙浜ゆ崲鍓傚垎绂诲簾姘翠腑鏈夊崇墿璐ㄧ殑鏂规硶銆傛渶甯哥敤鐨勪氦鎹㈠墏鏄绂诲瓙浜ゆ崲鏍戣剛锛屾爲鑴傞ケ鍜屽悗鍙鐢ㄩ吀纰卞啀鐢熷悗鍙嶅嶄娇鐢ㄣ傜诲瓙浜ゆ崲鏄闈犱氦鎹㈠墏鑷韬鎵甯︾殑鑳借嚜鐢辩Щ鍔ㄧ殑绂诲瓙涓庤澶勭悊鐨勬憾娑蹭腑鐨勭诲瓙閫氳繃绂诲瓙浜ゆ崲鏉ュ疄鐜扮殑銆傚氭暟鎯呭喌涓嬶紝绂诲瓙鏄鍏堣鍚搁檮锛屽啀琚浜ゆ崲锛屽叿鏈夊惛闄勩佷氦鎹㈠弻閲嶄綔鐢ㄣ傚逛簬鍚閾绛夐噸閲戝睘绂诲瓙鐨勫簾姘达紝鍙鐢ㄩ槾绂诲瓙浜ゆ崲鏍戣剛鍘婚櫎Cr(VI)锛岀敤闃崇诲瓙浜ゆ崲鏍戣剛鍘婚櫎Cr(鈪)銆侀搧銆侀摐绛夌诲瓙銆備竴鑸鐢ㄤ簬澶勭悊浣庢湁瀹崇墿璐ㄥ惈閲忓簾姘达紝鍏锋湁鍥炴敹鍒╃敤銆佸寲瀹充负鍒┿佸惊鐜鐢ㄦ按绛変紭鐐癸紝浣嗗畠鐨勬妧鏈瑕佹眰杈冮珮銆佷竴娆℃ф姇璧勫ぇ銆
2銆佽啘鍒嗙绘硶
鑶滃垎绂绘槸鎸囩敤鍗婇忚啘浣滀负闅滅嶅眰锛屽熷姪浜庤啘鐨勯夋嫨娓楅忎綔鐢锛屽湪鑳介噺銆佸惈閲忔垨鍖栧︿綅宸鐨勪綔鐢ㄤ笅瀵规贩鍚堢墿涓鐨勪笉鍚岀粍鍒嗚繘琛屽垎绂汇傚埄鐢ㄨ啘鍒嗙绘妧鏈锛屽彲浠庣數闀搴熸按涓鍥炴敹閲嶉噾灞炲拰姘磋祫婧愶紝鍑忚交鎴栨潨缁濆畠瀵圭幆澧冪殑姹℃煋锛屽疄鐜扮數闀鐨勬竻娲佺敓浜э紝瀵归檮鍔犲艰緝楂樼殑閲戙侀摱銆侀晬銆侀摐绛夌數闀搴熸按鐢ㄨ啘鍒嗙绘妧鏈鍙瀹炵幇闂璺寰鐜锛屽苟浜х敓鑹濂界殑缁忔祹鏁堢泭銆傚逛簬缁煎悎鐢甸晙搴熸按锛岀粡杩囩畝鍗曠殑鐗╃悊鍖栧︽硶澶勭悊鍚庯紝閲囩敤鑶滃垎绂绘妧鏈鍙鍥炵敤澶ч儴鍒嗘按锛屽洖鏀剁巼鍙杈60%锝80%锛屽噺灏戞薄姘存绘帓鏀鹃噺锛屽墛鍑忔帓鏀惧埌姘翠綋涓鐨勬薄鏌撶墿銆
3銆佽捀鍙戞祿缂╂硶
璇ユ柟娉曟槸瀵圭數闀搴熸按杩涜岃捀鍙戯紝浣块噸閲戝睘搴熸按寰椾互娴撶缉锛屽苟鍔犱互鍥炴敹鍒╃敤鐨勪竴绉嶅勭悊鏂规硶锛屼竴鑸閫傜敤浜庡勭悊鍚閾銆侀摐銆侀摱銆侀晬绛夊惈閲嶉噾灞炵殑鐢甸晙搴熸按銆備竴鑸灏嗕箣浣滀负鍏朵粬鏂规硶鐨勮緟鍔╁勭悊鎵嬫点傚畠鍏锋湁鑳借楀ぇ銆佹垚鏈楂樸佸崰鍦伴潰绉澶с佽繍杞璐圭敤楂樼瓑缂虹偣銆
4銆佹椿鎬х偔鍚搁檮娉
娲绘х偔鍚搁檮娉曟槸澶勭悊鐢甸晙搴熸按鐨勪竴绉嶇粡娴庢湁鏁堢殑鏂规硶锛屼富瑕佺敤浜庡惈閾銆佸惈姘板簾姘淬傚畠鐨勭壒鐐规槸澶勭悊璋冭妭娓╁拰锛屾搷浣滃畨鍏锛屾繁搴﹀噣鍖栫殑澶勭悊姘村彲浠ュ洖鐢ㄣ備絾璇ユ柟娉曞瓨鍦ㄦ椿鎬х偔鍐嶇敓澶嶆潅鍜屽啀鐢熸恫涓嶈兘鐩存帴鍥為晙妲藉埄鐢ㄧ殑闂棰橈紝鍚搁檮瀹归噺灏忥紝涓嶉備簬鏈夊崇墿鍚閲忛珮鐨勫簾姘淬
鐢靛寲瀛︽硶1銆佺數瑙f硶
鐢佃В娉曟槸鍒╃敤鐢佃В浣滅敤澶勭悊鎴栧洖鏀堕噸閲戝睘锛屼竴鑸搴旂敤浜庤吹閲戝睘鍚閲忚緝楂樻垨鍗曚竴鐨勭數闀搴熸按銆傜數瑙f硶澶勭悊Cr(VI)锛屾槸鐢ㄩ搧浣滅數鏋侊紝閾侀槼鏋佷笉鏂婧惰В浜х敓鐨勪簹閾佺诲瓙鑳藉湪閰告ф潯浠朵笅灏咰r(VI)杩樺師鎴怌r(鈪)锛屽湪闃存瀬涓奀r(鈪)鐩存帴杩樺師涓篊r(鈪)锛岀敱浜庡湪鐢佃В杩囩▼涓瑕佹秷鑰楁阿绂诲瓙锛屾按涓浣欑暀鐨勬阿姘ф牴绂诲瓙浣挎憾娑蹭粠閰告у彉涓虹⒈鎬э紝骞剁敓鎴愰摤鍜岄搧鐨勬阿姘у寲鐗╂矇娣鍘婚櫎閾銆傜數瑙f硶鑳藉熷悓鏃堕櫎鍘诲氱嶉噾灞炵诲瓙锛屽叿鏈夊噣鍖栨晥鏋滃ソ銆佹偿娓i噺灏戙佸崰鍦伴潰绉灏忕瓑浼樼偣锛屼絾鏄娑堣楃數鑳藉拰閽㈡潗杈冨氾紝宸茶緝灏戦噰鐢ㄣ
2銆佸師鐢垫睜娉
浠ラ楃矑鐐銆佺叅娓f垨鍏朵粬瀵肩數鎯版х墿璐ㄤ负闃存瀬锛岄搧灞戜负闃虫瀬锛屽簾姘翠腑瀵肩數鐢佃В璐ㄨ捣瀵肩數浣滅敤鏋勬垚鍘熺數姹狅紝閫氳繃鍘熺數姹犲弽搴旀潵杈惧埌澶勭悊搴熸按鐨勭洰鐨勩傝繎骞存潵锛岄搧纰冲井鐢佃В鎶鏈鍦ㄧ數闀搴熸按鐨勫勭悊涓鍙楀埌瓒婃潵瓒婂氱殑閲嶈嗐
3銆佺數娓楁瀽娉
鐢垫笚鏋愭妧鏈鏄鑶滃垎绂绘妧鏈鐨勪竴绉嶃傚畠鏄灏嗛槾銆侀槼绂诲瓙浜ゆ崲鑶滀氦鏇垮湴鎺掑垪浜庢h礋鐢垫瀬涔嬮棿锛屽苟鐢ㄧ壒鍒剁殑闅旀澘灏嗗叾闅斿紑锛屽湪鐢靛満浣滅敤涓嬶紝浠ョ數浣嶅樊涓烘帹鍔ㄥ姏锛屽埄鐢ㄧ诲瓙浜ゆ崲鑶滅殑閫夋嫨閫忚繃鎬э紝鎶婄數瑙h川浠庢憾娑蹭腑鍒嗙诲嚭鏉ワ紝浠庤屽疄鐜扮數闀搴熸按鐨勬祿缂┿佹贰鍖栥佺簿鍒跺拰鎻愮函銆
4銆佺數鍑濊仛姘旀诞娉
閲囩敤鍙婧舵ч槼鏋(Fe銆丄I绛)鏉愭枡锛岀敓鎴怓e2+銆丗e3+銆丄l3+绛夊ぇ閲忛槼绂诲瓙锛岄氳繃绲鍑濈敓鎴怓e(OH)2銆丗e(OH)3銆丄I(OH)3绛夋矇娣鐗╋紝浠ュ幓闄ゆ按涓鐨勬薄鏌撶墿銆傚悓鏃讹紝闃存瀬涓婁骇鐢熷ぇ閲忕殑H2寰姘旀场锛岄槼鏋佷笂浜х敓澶ч噺鐨凮2寰姘旀场锛屼互杩欎簺姘旀场浣滀负姘旀诞杞戒綋锛屼笌绲鍑濇薄鐗╀竴璧蜂笂娴銆傚ぇ閲忕诞浣撳湪涓板瘜鐨勫井姘旀场鎼哄甫涓嬭繀閫熶笂娴锛岃揪鍒板噣鍖栨按璐ㄧ殑鐩鐨勩
鎴戝浗鐢甸晙搴熸按鐨勫父瑙勫勭悊鎶鏈宸茬粡姣旇緝鎴愮啛锛岀幇浠g敓鐗╂硶澶勭悊鐢甸晙搴熸按鏄闈炲父鏈夊彂灞曞墠閫旂殑涓椤瑰簾姘村勭悊鎶鏈锛屼笖涓嶄骇鐢熶簩娆℃薄鏌擄紝鍏抽敭鏄瑕佽繍鐢ㄦ柊鎶鏈瀵瑰叾杩涜屾繁搴﹀勭悊锛岃繘涓姝ユ彁楂樺嚭姘存按璐ㄣ傝啘澶勭悊鎶鏈鍥犲叾鍒嗙绘晥鐜囬珮锛屼笖鑳藉洖鏀堕噸閲戝睘锛屼粖鍚庡繀灏嗗湪鐢甸晙搴熸按澶勭悊涓鍗犳嵁閲嶈佺殑鍦颁綅銆傚悓鏃堕氳繃鎺ㄥ箍娓呮磥鐢熶骇宸ヨ壓锛屼粠鐢甸晙鐢熶骇鐨勫悇涓鐜鑺備笂鍑忓皯鎺掓薄閲忥紝鍙樷滆鍔ㄦ不鐞嗏濅负鈥滅Н鏋佹不鐞嗏濓紝涔熸槸瑙e喅鐢甸晙搴熸按姹℃煋鐨勬牴鏈鏂规硶銆

⑧ 电镀镍废水最快处理方法有哪些

由于镍的抗腐蚀性能佳,常被用于电镀上,但由于其工艺会产生含镍废水,因此含镍清洗废水脱色就尤为重要。镍的抗腐蚀性能导致我们日常的金属用品大部分都有镀镍层,而含镍废水不能直接排入环境,需进行脱色去除重金属并达到标准才能排放或回用。含镍清洗废水脱色使用一般的絮凝剂是无法达到目标的,需要使用重金属捕捉剂才能去除其中的镍或者其它重金属化合物。含重金属的废水脱色其主要是金属化合物形成的颜色,只要将重金属去除即可达到脱色的效果。
需要注意的是,重金属捕捉剂的使用需要根据废水中所含重金属的种类或者多寡来确定使用量和PH的调节范围,部分的重金属去除需要将废水的PH调至9-12才能达到去除的效果,这就需要进行小试确定添加量和使用方法。单纯含镍废水脱色的话一般情况都不需要将PH调至9以上,正常7-9即可。

⑨ 污水处理专用乙酸钠多少钱一吨 乙酸钠

按照目来前市场情况源来看,污水处理专用乙酸钠每吨的价格一般在2100-3500之间,而之所以价格有高又低,主要因以下几点:

1、质量

俗话说一分价格一分货,即质量越好,价格也会较高,但质量也比较有保证,反之,价格则降低;

2、厂家类型

目前,乙酸钠厂家类型主要包括两种:直销以及代销,两者相比,由于前者不存在差价,所以,价格会相对较低;

3、地域

即当地消费水平越高,乙酸钠的价格也会越高,反之,价格则会相应减少。

河南豫沣源

阅读全文

与广东含镍污水处理什么价格相关的资料

热点内容
汉斯顿双水双膜净水器怎么样 浏览:284
晋城污水首创 浏览:251
太阳能热水器里的水垢如何除 浏览:467
牧原污水处理池 浏览:100
凝结水混床树脂 浏览:469
污水管道维修费用谁来出 浏览:623
edi和cedi区别 浏览:800
咖啡机内部如何除垢 浏览:374
阴阳离子交换树脂机理 浏览:927
含盐废水焚烧 浏览:496
新加坡凯发超滤 浏览:298
净水器的qr是什么意思 浏览:471
反渗透膜清洗篇 浏览:287
饮水机为什么接水时有声音 浏览:748
两个农村污水一起投标 浏览:789
反渗透一段的浓水怎么排放 浏览:110
污水泵维修怎么看油封好坏 浏览:688
过滤器怎么拆卸水处理 浏览:255
电子除垢仪使用温度 浏览:320
施工污水管道挖破了怎么解救 浏览:442