㈠ 如何处理工业废水中总氮
硝化液回流进行前置反硝化工艺硝化液回流至前端缺氧区,同时投加碳源,通过反硝化菌将硝基氮进行反硝化转化为氮气,无需新增处理设施,无需新增占地,仅需在现有的好氧段的末端安装内回流泵,将硝化液回流至前置反硝化区。此方案从理论上可行,但存在如下问题:1) 如需将总氮达到一级A标,需将硝基氮降至10mg/L以下,通过计算,硝化液回流比将在150-200%,即2倍于进水水量的富含溶解氧的硝化液(DO约4mg/L)回流至缺氧段将直接改变缺氧段的溶解氧环境(0.2mg/L≤DO≤0.5mg/L),影响反硝化效率的一个重要指标即严格的缺氧环境,如此大的回流比导致的溶氧升高和缺氧停留时间减少将会严重影响反硝化效率和反应时间,进而出水总氮无法达到很低的水平,但减少回流比则无法完成总氮的反硝化数量,亦会影响出水总氮达标。2) 如进行反硝化反应,反硝化菌必定会利用一定的碳源,从进水C/N比和出水的C/N比分析,该厂如进行反硝化需补加碳源,如在前端补充甲醇作为碳源,则存在反硝化菌和其他菌种的竞争关系,从微生物学的角度分析,反硝化在此条件下并非优势菌种,因此前端投加的大量碳源会被浪费,导致运行费用升高,如过量补充则又会导致后端处理负荷的增加。根据不同水质需求对生化脱氮的不同环节进行设计与优化,比如IDN-BMP总氮去除装备就是从反硝化阶段入手,加强菌种的选择与驯化,优化反应器结构,从而增强反应器的的脱氮效率。
㈡ 工业废水去除氨氮的方法
根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1. 折点氯化法去除氨氮
折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下:
Cl2+H2O→HOCl+H++Cl-
NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-
NHCl2+NaOH→N2+HOCl+H++Cl-
折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。
2. 选择性离子交换化去除氨氮
离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性。
O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。
沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。
3. 空气吹脱法与汽提法去除氨氮
空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至碱性时,离子态铵转化为分子态氨,然后通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。
用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会大大降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。
汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样是一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,用填料塔可以满足此要求。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但汽提塔内容易生成水垢,使操作无法正常进行。
吹脱和汽提法处理废水后所逸出的氨气可进行回收:用硫酸吸收作为肥料使用;冷凝为1%的氨溶液。
4. 生物法去除氨氮
生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。
硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:
亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+
硝化 : 2NO2-+O2→2NO3-
硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS•d);泥龄在3~5天以上。
在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。
常见的生物脱氮流程可以分为3类:
⑴多级污泥系统
多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇;
⑵单级污泥系统
单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工艺特点:流程简单、构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;将脱氮池设置在去碳源,降低运行费用;好氧池在缺氧池后,可使反硝化残留的有机污染物得到进一步去除,提高出水水质;缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷。此外,后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果高于前置式,理论上可接近100%的脱氮效果。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。它本质上仍是A/O系统,但利用交替工作的方式,避免了混合液的回流,其脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,必须配置计算机控制自动操作系统;
⑶生物膜系统
将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
由于常规生物处理高浓度氨氮废水还存在以下:
为了能使微生物正常生长,必须增加回流比来稀释原废水;
硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。
5. 化学沉淀法去除氨氮
化学沉淀法是根据废水中污染物的性质,必要时投加某种化工原料,在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。
化学沉淀法处理NH3-N是始于20世纪60年代,在90年代兴起的一种新的处理方法,其主要原理就是NH4+、Mg2+、PO43-在碱性水溶液中生成沉淀。
在氨氮废水中投加化学沉淀剂Mg(OH)2、H3PO4与NH4+反应生成MgNH4PO4•6H2O(鸟粪石)沉淀,该沉淀物经造粒等过程后,可开发作为复合肥使用。整个反应的pH值的适宜范围为9~11。pH值<9时,溶液中PO43-浓度很低,不利于MgNH4PO4•6H2O沉淀生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反应将在强碱性溶液中生成比MgNH4PO4•6H2O更难溶于水的Mg3(PO4)2的沉淀。同时,溶液中的NH4+将挥发成游离氨,不利于废水中氨氮的去除。利用化学沉淀法,可使废水中氨氮作为肥料得以回收。
㈢ 工业废水硝态氮如何去除
处理废水中亚硝态氮:
用亚硫酸盐作为还原剂将废水中的亚硝态氮还内原为氮气以达到消容除亚硝态氮的目的。亚硝态氮消除反应在带搅拌的反应器中进行,反应温度为10~40℃,用稀酸将反应过程的ph调整到3~7,并且亚硫酸盐与亚硝态氮按摩尔比1~5:1进行反应。与现有亚硝态氮消除方法比较,本方法的亚硝态氮去除率可以达到90%以上,反应条件温和,并且不产生二次污染。
㈣ 工业废水处理中去除氨氮的方法最常用的是那种
氨氮是指水中以游离氨NH3离子和铵离子NH4形式存在的氮。水中的氨氮指以氨或铵离子形式存在的化合氨。工业废水处理主要采用生物脱氮法。
生物硝化反硝化法(A/0法)具有去除氨氮效果稳定,不产生二次污染的特点。生物法运行中受到温度、碳氮比、pH值的影响。生物脱氮法在去除氨氮的同时也可以使废水中COD和 BOD得到降解。处理过程中碳氮比和pH值对脱氮的效率和操作成本至关重要,需要控制碳氮比>2. 86, 硝化pH值为89,反硝化pH值为7.5-8. 5 ,有于提高A/O法的效率。但是生物法存在抗冲击能力弱、低温时效率低、占地面积大等缺点。
HNF-MP高效硝化反应器,在传统生物法的基础上,改进了反应器的结构,将微生物量提升到原有的2倍以上,大大增强系统的抗冲击能力;对进水管路做保温措施,控制在25℃-30℃,避免低温效率低的问题;多级分离富集技术,可在传统技术的基础上节约30%—50%的占地。
㈤ 污水处理如何去除氨氮
在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用回 ,将污水中的答氨氮氧化为亚硝酸盐或硝酸盐 ;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。因而,污水的生物脱氮包括硝化和反硝化两个阶段。
㈥ 污废水为什么要脱氮除磷它具体有什么现实意义
氮、磷是营养元素,工业废水和生活污水中的氮、磷大量进入水体后,水生生物特别是藻类将大量繁殖,大量死亡的水生生物被微生物分解,分解过程中消耗大量的溶解氧,水中的溶解氧浓度急剧下降,从而影响了鱼类等水生生物的生存。
苏州安川环保旗下COD废水达标处理机可以有效去除废水中的总磷,总氮,降低废水COD。
㈦ 污水采用生物脱氮工艺处理必须满足哪些技术条件说明 目前较成熟生物脱氮工艺及适用范围 考研急需谢谢
污水硝化—反硝化脱氮处理是一种利用硝化细菌和反硝化细菌的污水微生物脱氮处理方法。
此法分为硝化和反硝化两个阶段,在好氧条件下利用污水中硝化细菌将氮化物转化为硝酸盐,然后在缺氧条件下(溶解氧<0.5mg/L)利用污水中反硝化细菌将硝酸盐还原成气态氮。硝化反应可采用一级硝化或两级硝化。一级硝化中,同时也进行碳氧化过程;二级硝化中,碳化和硝化过程可分池进行。硝化池可采用曝气池的形式。两段生物脱氮法是污水微生物脱氮的有效方法,作为标准生物脱氮法已得到较广泛应用
首先要满足生化的条件 : 水质水合采用生化bod/cod大于0.3以上 或通过预处理达到水质适宜生化处理。
而进行生物脱氮,需要控制: PH 溶解氧 温度 碳氮比 污泥龄 有毒有害物质
容积负荷 混合液回流比 这几个大项
A/O工艺 sbr工艺 现在都有广发应用 在生活污水 工业污水都可用
㈧ 工业废水如何有效去除氨氮超标
1 高浓度氨氮废水处理技术
高浓度氨氮废水是指氨氮质量浓度大于500mg/L
的废水。伴随石油、化工、冶金、食品和制药等工业的发展,以及人民生活水平的不断提高,工业废水和城市生活污水中氨氮的含量急剧上升,呈现氨氮污染源多、排放量大,并且排放的浓度增大的特点〔2〕。目前针对高氨氮废水的处理技术主要使用吹脱法、化学沉淀法等。
1.1 吹脱法
将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图 1。
图 2 生物脱氮的途径
用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素,维持最佳碳氮比也是生物法成功的关键之一。
生物法具有操作简单、效果稳定、不产生二次污染且经济的优点,其缺点为占地面积大,处理效率易受温度和有毒物质等的影响且对运行管理要求较高。同时,在工业运用中应考虑某些物质对微生物活动和繁殖的抑制作用。此外,高浓度的氨氮对生物法硝化过程具有抑制作用,因此当处理氨氮废水的初始质量浓度<300
mg/L 时,采用生物法效果较好。
J. Kim 等〔24〕采用小球藻处理美国俄亥俄州辛辛那提磨溪污水处理厂废水中的氨氮,实验结果表明,小球藻在经历24 h 的迟缓期后,在48 h 内氨氮去除率可达50%。
2.3.1 传统生物硝化反硝化技术
传统生物硝化反硝化脱氮处理过程包括硝化和反硝化两个阶段。硝化过程是指在好氧条件下,在硝酸盐和亚硝酸盐菌的作用下,氨氮可被氧化成硝酸盐氮和亚硝酸盐氮;再通过缺氧条件,反硝化菌将硝酸盐氮和亚硝酸盐氮还原成氮气,从而达到脱氮的目的。
传统生物硝化反硝化法中,较成熟的方法有A/O 法、A2/O 法、SBR
序批式处理法、接触氧化法等。它们具有效果稳定、操作简单、不产生二次污染、成本较低等优点。但该法也存在一些弊端,如必须补充相应的碳源来配合实现氨氮的脱除,使运行费用增加;碳氮比较小时,需要进行消化液回流,增加了反应池容积和动力消耗;硝化细菌浓度低,系统投碱量大等。
杨小俊等〔25〕通过A/O 膜生物反应器处理某炼油厂气浮池出水中的氨氮,实验结果表明,当氨氮和COD 容积负荷分别在0.04~0.08、0.30~0.84 kg/(m3·d)时,处理后水中氨氮质量浓度小于5 mg/L。
2.3.2 新型生物脱氮技术
(1)短程硝化反硝化技术。短程硝化反硝化是在同一个反应器中,先在有氧的条件下,利用氨氧化细菌将氨氧化成亚硝酸盐,阻止亚硝酸盐进一步氧化,然后直接在缺氧的条件下,以有机物或外加碳源作为电子供体,将亚硝酸盐进行反硝化生成氮气。
短程硝化反硝化与传统生物脱氮相比具有以下优点:对于活性污泥法,可节省25%的供氧量,降低能耗;节省碳源,一定情况下可提高总氮的去除率;提高了反应速率,缩短了反应时间,减少反应器容积。但由于亚硝化细菌和硝化细菌之间关系紧密,每个影响因素的变化都同时影响到两类细菌,而且各个因素之间也存在着相互影响的关系,这使得短程硝化反硝化的条件难以控制。目前短程硝化反硝化技术仍处在人工配水实验阶段,对此现象的理论解释还不充分。
(2)同时硝化反硝化技术。当硝化与反硝化在同一个反应器中同时进行时,即为同时硝化反硝化(SND)。废水中溶解氧受扩散速度限制,在微生物絮体或者生物膜的表面,溶解氧浓度较高,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,形成缺氧区,反硝化细菌占优势,从而形成同时硝化反硝化过程。
邹联沛等〔26〕对膜生物反应器系统中的同时硝化反硝化现象进行了研究,实验结果表明,当DO 为1mg/L,C/N=30,pH=7.2
时,COD、NH4+-N、TN 去除率分别为96%、95%、92%,并发现在一定的范围内,升高或降低反应器内DO 浓度后,TN 去除率都会下降。
同时硝化反硝化法节省反应器,缩短了反应时间,且能耗低、投资省。但目前对于同步硝化反硝化的研究尚处于实验室阶段,其作用机理及动力学模型需做进一步的研究,其工业化运用尚难实现。
(3)厌氧氨氧化技术。厌氧氨氧化是指在缺氧或厌氧条件下,微生物以NH4+ 为电子受体,以NO2- 或NO3- 为电子供体进行的NH4+、NO2- 或NO3- 转化成N2的过程〔27〕。
何岩等〔28〕研究了SHARON
工艺与厌氧氨氧化工艺联用技术处理“中老龄”垃圾渗滤液的效果,实验结果表明,厌氧氨氧化反应器可在具有硝化活性的污泥中实现启动;
在进水氨氮和亚硝酸氮质量浓度不超过250 mg/L 的条件下,氨氮和亚硝酸氮的去除率分别可达到80%和90%。目前,SHARON
与厌氧氨氧化联合工艺的研究仍处于实验室阶段,还需要进一步调整和优化工艺条件,以提高联合工艺去除实际高氨氮废水中的总氮的效能。
厌氧氨氧化技术可以大幅度地降低硝化反应的充氧能耗,免去反硝化反应的外源电子供体,可节省传统硝化反硝化过程中所需的中和试剂,产生的污泥量少。但目前为止,其反应机理、参与菌种和各项操作参数均不明确。
2.4 膜技术
2.4.1 反渗透技术
反渗透技术是在高于溶液渗透压的压力作用下,借助于半透膜对溶质的选择截留作用,将溶质与溶剂分离的技术,具有能耗低、无污染、工艺先进、操作维护简便等优点。
利用反渗透技术处理氨氮废水的过程中,设备给予足够的压力,水通过选择性膜析出,可用作工业纯水,而膜另一侧氨氮溶液的浓度则相应增高,成为可以被再次处理和利用的浓缩液。在实际操作中,施加的反渗透压力与溶液的浓度成正比,随着氨氮浓度的升高,反渗透装置所需的能耗就越高,而效率却是在下降〔29〕。
徐永平等〔30〕以兖矿鲁南化肥厂碳酸钾生产车间含NH4Cl 的废水为研究对象,利用反渗透法对NH4Cl
废水的处理过程进行了研究,实验装置采用反渗透膜(NTR-70SWCS4)过滤机。结果表明,在用反渗透膜技术处理氨氮废水的过程中,氯化铵质量浓度适宜在60
g/L 以下,在该浓度条件下,设备脱氨氮效率较高,一般大于97%,各项技术指标合格,可以用于实际生产操作。
2.4.2 电渗析法
电渗析是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从电解质溶液中分离出来的过程。电渗析法可高效地分离废水中的氨氮,并且该方法前期投入小,能量和药剂消耗低,操作简单,水的利用率高,无二次污染副产物。
唐艳等〔31〕采用自制电渗析设备对进水电导率为2 920 μS/cm,氨氮质量浓度为534.59 mg/L
的氨氮废水进行处理,通过实验得到在电渗析电压为55 V,进水流量为24 L/h
这一最佳工艺参数条件下,可对实验用水有效脱氮的结论,出水氨氮质量浓度为13 mg/L。
3 不同浓度工业含氨氮废水的处理方法比较
不同氨氮废水处理方法优缺点比较见表 4。
通过对以上几种不同方法的论述,可以看出目前针对工业废水中高浓度氨氮的处理方法主要使用物理化学方法做预处理,再选择其他方法进行后续处理,虽能取得较好的处理效果,但仍存在结垢、二次污染的问题。对低浓度的氨氮废水较常用的方法为化学法和传统生物法,其中化学法的一些处理技术还不成熟,未在实际生产中应用,因此还无法满足工业对低浓度氨氮废水深度处理的要求;
生物法能较好地解决二次污染问题,且能达到工业对低浓度氨氮废水深度处理的要求,但目前对微生物的选种和驯化还不完全成熟。