导航:首页 > 废水污水 > 废水钴排放标准是多少

废水钴排放标准是多少

发布时间:2022-05-08 19:52:20

污水处理设计需要查阅那些规范

一、环境手册类有:

1、北京市市政工程设计研究总院主编:《给水排水设计手册(第5册)-城镇排水》(第二版)。中国建筑工业出版社,2003年。

2、北京市市政工程设计研究总院主编:《给水排水设计手册(第6册)-工业排水》(第二版)。中国建筑工业出版社,2002年。

3、上海市市政工程设计研究院主编:《给水排水设计手册(第9册)-专用机械》(第二版)。中国建筑工业出版社,2000年。

4、中国市政工程西北设计研究院主编:《给水排水设计手册(第11册)-常用设备》(第二版)。中国建筑工业出版社,2002年。

5、中国市政工程华北设计研究院主编:《给水排水设计手册(第12册)-器材与装置》(第二版)。中国建筑工业出版社,2001年。

6、北京水环境技术与设备研究中心等主编:《三废处理工程技术手册(废水卷)》。化学工业出版社,2000年。

7、张自杰主编:《环境工程手册—水污染防治卷》。高等教育出版社,1996年。

二、基本环境标准与规范类

1、《地表水环境质量标准》(GB3838–2002)

2、《地下水质量标准》(GB/T14848–1993)

3、《污水综合排放标准》(GB8978–1996)

4、《土壤环境质量标准》(GB15618–1995)

5、《城镇污水处理厂污染物排放标准》(GB18918–2002)

6、《制浆造纸工业水污染物排放标准》(GB 3544-2008)

7、《纺织染整工业废水治理工程技术规范》(HJ 471-2009)

8、《污水海洋处置工程污染控制标准》(GB18486–2001)

9、《畜禽养殖业污染物排放标准》(GB18596–2001)

10、《污水再生利用工程设计规范》(GB50335–2002)

11、《室外排水设计规范》(GB50014-2006)

12、《城市污水处理厂运行、维护及其安全技术规程》(CJJ60–1994)

三、其它供参考的规范和标准:

1、杂环类农药工业水污染物排放标准(GB21523-2008)

2、制糖工业水污染物排放标准(GB21909-2008)

3、发酵类制药工业水污染物排放标准(GB21903-2008)

4、化学合成类制药工业水污染物排放标准(GB21904-2008)

5、提取类制药工业水污染物排放标准(GB21905-2008)

6、羽绒工业水污染物排放标准(GB21901-2008)

7、中药类制药工业水污染物排放标准(GB21906-2008)

8、混装制剂类制药工业水污染物排放标准(GB21908-2008)

9、生物工程类制药工业水污染物排放标准(GB21907-2008)

10、淀粉工业水污染物排放标准(GB25461-2010)

11、酵母工业水污染物排放标准(GB25462-2010)

12、油墨工业水污染物排放标准(GB25463-2010)

13、城市污水处理厂污水污泥排放标准(CJ3025-1993)

14、污水排入城市下水道水质标准(CJ3082-1999)

15、城市污水再生利用分类(GB/T18919-2002)

16、城市污水再生利用城市杂用水水质(GB/T18920-2002)

17、城市污水再生利用景观环境用水水质(GB/T18921-2002)

18、城市污水再生利用工业用水水质(GB/T19923-2005)

19、城市污水再生利用农田灌溉用水水质(GB20922-2007)

20、恶臭污染物排放标准(GB14554-1993)

21、城镇污水处理厂污泥处置混合填埋泥质(CJ/T 249-2007)

22、城镇污水处理厂污泥处置单独焚烧用泥质(CJ/T290-2008)

23、电镀污染物排放标准(GB2190O-2008)

24、合成革与人造革工业污染物排放标准(GB21902-2008)

25、铝工业污染物排放标准(GB25465-2010)

26、陶瓷工业污染物排放标准(GB25464-2010)

27、铅、锌工业污染物排放标准(GB25466-2010)

28、镁、钛工业污染物排放标准(GB25468-2010)

29、铜、镍、钴工业污染物排放标准(GB25467-2010)

30、含油污水处理工程技术规范(HJ58O-2010)

31、氧化沟活性污泥法污水处理工程技术规范(HJ578-2010)

32、膜分离法污水处理工程技术规范(HJ579-2010)

33、序批式活性污泥法污水处理工程技术规范(HJ577-2010)

34、厌氧-缺氧-好氧活性污泥法污水处理工程技术规范(HJ576-2010)

35、酿造工业废水治理工程技术规范(HJ575-2010)

36、电镀废水治理工程技术规范(HJ2002-2010)

37、制革及毛皮加工废水治理工程技术规范(HJ2003-2010)

38、屠宰与肉类加工废水治理工程技术规范(HJ2004-2010)

39、人工湿地污水处理工程技术规范(HJ2005-2010)

40、污水混凝与絮凝处理工程技术规范(HJ2006-2010)

41、污水气浮处理工程技术规范(HJ2007-2010)

42、污水过滤处理工程技术规范(HJ2008-2010)

(1)废水钴排放标准是多少扩展阅读

处理技术

现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理,一般根据水质状况和处理后的水的去向来确定污水处理程度。

一级处理

主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。

二级处理

主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准,悬浮物去除率达95%出水效果好。

三级处理

进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。

整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法。

(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。

二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。

参考资料来源:网络-污水处理

❷ 污水处理厂中污水处理指标有哪些

化学需氧量(COD),生化需氧量(),总需氧量(TOD),总有机碳(TOC),总氮(TN),总磷(TP),pH值,重金属。

物理性指标

温度、色度、嗅和味、固体物质的三种存在形态:悬浮的、胶体的、溶解的。固体物质用总固体量(TS)作为指标,污水处理中常用悬浮固体(SS)表示固体物质的含量(TDS指标高于1000以上)。

化学性指标

一、化学需氧量(COD):指用强化学氧化剂(中国法定用重铬酸钾)在酸性条件下,将有机物氧化成CO2与H2O所消耗的氧量(mg/L),用CODcr表示,简写为COD。化学需氧量越高,表示水中有机污染物越多,污染越严重。

二、生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L)。

如果污水成分相对稳定,则一般来说,COD> BOD。一般BOD/COD大于0.3,认为适宜采用生化处理。

三、总需氧量(TOD):有机物主要元素是C、H、O、N、S等,当有机物被全部氧化时,将分别产生CO₂、H₂O、NO、SO₂等,此时需氧量称为总需氧量(TOD)。

四、总有机碳(TOC):包括水样中所有有机污染物质的含碳量,也是评价水样中有机物质质的一个综合参数。

五、总氮(TN):污水中含氮化合物分为有机氮、氨氮、亚硝酸盐氮、硝酸盐氮,四种含氮化合物总量称为总氮(TN)。凯氏氮(TKN)是有机氮与氨氮之和。

六、总磷(TP):包括有机磷与无机磷两类。

七、pH值。

八、重金属。

生物性指标

一、大肠菌群数:每升水样中所含有的大肠菌群的数目,以个/L计。

二、细菌总数:是大肠菌群数、病原菌、病毒及其他细菌数的总和,以每毫升水样中的细菌菌落总数表示。

(2)废水钴排放标准是多少扩展阅读:

生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。历史上流行的瘟疫,有的就是水媒型传染病。

如1848年和1854年英国两次霍乱流行,死亡万余人;1892年德国汉堡霍乱流行,死亡750余人,均是水污染引起的。受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标。

病原体污染的特点是:

⑴数量大;

⑵分布广;

⑶存活时间较长;

⑷繁殖速度快;

⑸易产生抗药性,很难绝灭;

⑹传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。

常见的混凝、沉淀、过滤、消毒处理能够去除水中99%以上病毒,如出水浊度大于0.5度时,仍会伴随病毒的穿透。病原体污染物可通过多种途径进入水体,一旦条件适合,就会引起人体疾病。

❸ 废水处理六价铬排放标准是多少

强制性国家标准 GB 8978-1996 污水综合排放标准

本标准现行有效。

❹ 国家排放废水COD标准是多少啊

化学需氧量(COD)国家排放废水标准是:单位: mg/L

(4)废水钴排放标准是多少扩展阅读

按照国家综合排放标准与国家行业排放标准不交叉执行的原则,造纸工业执行《造纸工业水污染物排放标准(GB3544-92)》,船舶执行《船舶污染物排放标准(GB3552-83)》,船舶工业执行《船舶工业污染物排放标准(GB4286-84)》。

海洋石油开发工业执行《海洋石油开发工业含油污水排放标准(GB4914-85)》,纺织染整工业执行《纺织染整工业水污染物排放标准(GB4287-92)》,肉类加工工业执行《肉类加工工业水污染物排放标准(GB13457-92)》,合成氨工业执行《合成氨工业水污染物排放标准(GB13458-92)》。

钢铁工业执行《钢铁工业水污染物排放标准(GB13456-92)》,航天推进剂使用执行《航天推进剂水污染物排放标准(GB14374-93)》,兵器工业执行《兵器工业水污染物排放标准(GB14470.1~14470.3-93和GB4274~4279-84)》。

磷肥工业执行《磷肥工业水污染物排放标准(GB15580-95)》,烧碱、聚氯乙烯工业执行《烧碱、聚氯乙烯工业水污染物排放标准(GB15581-95)》,其他水污染物排放均执行本标准。

❺ 百草枯生产废水的颜色

采用氰化物工艺生产百草枯产生的原废水一般呈黑褐色或深棕色,色度很深。
1.生产工艺、污染物排放分析
1.1 氰化物工艺
氰化物工艺是标准制定的主要基础,主要指标的设定也是依据氰化物法工艺确定的。
1.1.1 工艺废水
氰化物工艺在过滤工段产生工艺废水。废水中含有吡啶、百草枯、氰根离子、氨态氮、氯化钠、醇、有机溶剂等。废水呈强碱性,色度很高。
1.1.2 生产过程排放的废气
氰化物法生产过程中,涉及到氯气、液氨、吡啶、氯甲烷等原料的使用过程中,产生尾气的排放。
1.1.3 废水的焚烧处理
废水经焚烧处理后,由排气筒排放入大气的排放流中含有水蒸气、烟尘、二氧化硫、氮氧化物等。焚烧过程排放的烧残渣中则含有氰根离子。
1.2钠法工艺
钠法工艺包括中/高温钠法和低温钠法,中/高温钠法已被严格禁止使用。中/高温钠法工艺过程中产生特征的三联吡啶异构体,其中主要是2,2’∶6’,2’’-三联吡啶,将其设为控制项目,可以从环保的角度禁止中/高温钠法的使用。
2. 污染物排放控制指标的确定
2.1 控制指标的确定原则
根据农药行业的特点,本排放标准除控制常规因子外,还要针对农药生产的特点,对特征污染因子加以控制。这些特征污染因子可能是农药生产的中间体,也可能是最终产品。这些特征污染因子的毒性与危害性往往很大,如不加以控制,则将对生态环境、食品安全和人体健康造成严重威胁。特征污染因子的筛选将综合考虑以下几方面因素:(1)产生量大;(2)对人体、环境生物毒性强或对生态环境危害大;(3)易于控制;(4)具备有效的检测与监测方法。(5) 刚开始时设置的控制因子不宜太多,以后可不断调整或增加控制因子。
2.2 控制指标的确定
以上对目前国内百草枯生产工艺流程及三废排放情况调查进行了分析。在此基础上,根据前述控制指标的确定原则,确定了百草枯农药生产污染物排放的控制指标,见表1。
表1 百草枯农药生产污染物排放标准控制指标
废水 废气 废液废渣
常规污染物 特征污染物
pH、CODcr、色度、氨态氮、氰根离子 吡啶、百草枯、2,2’:6’,2’’-三联吡啶 氯气、氨气、吡啶、氯甲烷 含氰废物
2.3控制指标的适用性
从实际调查的结果看,国内目前没有采用低温钠法工艺的生产装置。考虑到实现成本以及技术等方面问题,短期内国内低温钠法装置上马的可能性不大。所以没有考虑单独为低温钠法设定特征的控制项目。但也不能完全排除可能有企业在技术等方面发生跃进式的进展,同时也不排除有企业“声称”采用低温钠法的情况。如果出现这种情况,我们认为:首先,三联吡啶项目的设定排除了中/高温钠法“冒充”低温钠法的可能;其次,其它诸如废水的常规控制项目等,除了具有对氰化物法工艺的针对性外,还具有相当程度的广泛性,对可能存在的低温钠法也可适用。
3. 排放标准中各项标准值的确定
3.1 标准值的确定依据
本次标准值的确定主要依据为:
(1) 当前的污染治理技术水平。排放标准不同于环境质量标准,环境质量标准是基于环境基准值,是为了保护公众健康,维护生态环境安全而制定的目标值。污染控制的目标是达到环境质量标准,其手段就是对污染源实行排放限制,排放限制的核心是排放标准。排放标准的制订一定要以技术为依据,因为排放标准是要企业去执行的,应体现“技术强制”原则。即通过排放标准的制订迫使污染者采用先进的污染控制技术。我们制订的标准值应当是企业在采用了先进的生产工艺与污染治理措施后能够达到的水平。而不应当盲目追求标准的先进性,而脱离目前行业的污染治理技术水平。
在标准制订时,新源和现源所依据的技术水平也是有区别的。新源排放标准依据目前国内最先进的技术水平制订,现源排放标准依据目前国内较为先进的技术水平制订。
(2) 环境质量要求与污染物的生态影响:在排放标准制订过程中,除充分考虑当前的污染治理技术水平外,还要充分考虑到污染物排放对人体健康乃至整个生态环境的影响。在制订农药的排放标准时,综合考虑农药的ADI值(每公斤体重每日允许摄入量)、MRL值(农作物最大允许残留限量)、LC50值(半致死浓度)等等,使制订的标准既是技术经济可行的,又能充分保护人体健康及生态环境。
(3) 国内外现有的相关标准:现有的相关标准(包括国内标准、国外标准)在制定过程中肯定也考虑了诸多方面的因素,并经过了一定时间的实践检验,这些标准对于我们制订本标准可起到参考作用。
3.2 水污染物排放标准值的确定
(1) 最高允许排水量
根据调查目前采用氰化物法生产百草枯的企业,生产1吨百草枯原药(100%)从生产装置排放的原废水量在2~8m3之间。部分企业的原废水排放情况见表2。
表2 部分百草枯生产企业的原废水排放量
企业名称 采用工艺 原废水排放量(m3/吨原药)
先正达公司 氨氰法 4
沙隆达公司 氨氰法 2.5~3
山东东方科技公司 氨氰法 3
湖北仙隆公司 氨氰法 3
上海泰禾公司 醇氰法 6
浙江永农公司 醇氰法 7.5
升华拜克公司 醇氰法 7
石家庄宝丰公司 醇氰法 2
一般说来,采用氨氰法工艺,单位产品的废水产生量较低,在4m3左右;采用醇氰法工艺,单位产品废水产生量较高,在7m3左右。但也有采用醇氰法工艺的企业,单位产品废水产生量很低。这说明醇氰法工艺还有很大的改进余地,可以通过适当的措施减少废水的产生量。
因此对于现源企业,预计其单位产品的废水产生量为7 m3;对于新源企业,预计其单位产品废水的产生量为4 m3;并且预计生产1吨百草枯原药(100%)的设备、地面冲洗水为0.5m3。由于百草枯生产废水的浓度通常很大,在处理过程中,允许其4倍的稀释容量。因此:
最高允许排水量=(单位产品废水产生量 + 设备、地面冲洗水量)× 稀释倍数
由此可得,对于最高允许排水量,规定新源企业标准限值为18m3,现源企业标准限值为30m3。
(2) 化学需氧量(CODcr)
对于COD指标,《污水综合排放标准》(GB 8978-1996)中规定的一级标准为100mg/L。企业目前能达到的治理水平如表3所示:
表3 部分企业原废水和终排水的COD浓度
企业名称 采用工艺 原废水COD(mg/L) 终排水COD(mg/L)
先正达公司 氨氰法 20000 <100
浙江永农公司 醇氰法 22000 100~110
升华拜克公司 醇氰法 25000 <100
上海秦禾公司 醇氰法 78000 <100
山东东方科技公司 氨氰法 1000 50

参照《污水综合排放标准》(GB 8978-1996)中的规定和企业能达到的治理水平,COD的排放限值设为100mg/L。
对于预处理标准,COD限值可根据污水处理场具体的要求和企业生化处理装置的负荷能力设定,但最高不能超过500mg/L。
(3) pH值
采用氰化物工艺产生的原废水中都含有氰根离子,因此原废水都呈强碱性,一般在pH10~13之间。部分企业原废水的pH值见表3。
表3部分企业原废水pH值
企业名称 原废水pH值
先正达公司 12.6
山东绿霸公司 9.4
石家庄宝丰公司 13.3
上海泰禾公司 12.7
原废水无论是处理后直接排入环境,还是预处理后进行生化处理,都要将pH值调节到中性附近。参照《污水综合排放标准》(GB 8978-1996)的限值,将排放标准和预处理标准限值设定为6~9。

(4) 色度
采用氰化物工艺生产百草枯产生的原废水一般呈黑褐色或深棕色,色度很深。部分企业原废水色度情况见表4。
表4部分企业原废水色度情况
企业名称 采用工艺 色度(度) 测定方法
先正达公司 氨氰法 75000 铂钴标准比色法
石家庄宝丰公司 醇氰法 300000
济南绿霸公司 氨氰法 62500
上海秦禾公司 醇氰法 600000

原废水处理后若直接排放至环境就应当对色度指标加以控制,目前国内采用先进废水治理工艺的企业,处理后废水的色度指标可达到50以下,同时参照《污水综合排放标准》(GB 8978-1996)中的规定,将排放标准限值设定为50。
对于预处理标准,由于还要进行进一步的生化处理,并最终要达到污水处理场的各项排放指标要求(包括色度指标)。因此只要将废水中影响生化处理的物质去除,各项指标能够达到生化处理进水要求就可以了。对于色度指标,并不是影响生化处理的高敏感因素,故没有设定预处理标准。
(5) 氨态氮
氨氰法工艺生产百草枯过程中,氨只起到催化作用,大量的氨氮将随过滤洗涤操作进入到原废水中。目前各企业一般采用汽提回收氨水,再将氨水回用于工艺之中。这项技术是国内普遍采用的成熟方法,汽提可使废水中氨回收率达97~98%,汽提后的废水中氨浓度在200mg/L左右。考虑到进一步生化处理中允许4倍的稀释容量,即稀释后废水中的氨浓度可降至到50mg/L左右。由于氨氮通过微生物的硝化-反硝化作用,容易被去除,因此对于预处理标准,规定氨氮标准限值为50mg/L。
原废水处理后若直接排放至环境,参照《污水综合排放标准》(GB 8978-1996)中的规定,将排放标准限值设定为15mg/L。
(6) 氰根离子
氰根离子是氰化物工艺废水中危害性较大的污染物,部分企业原废水和处理后的废水中氰根离子的浓度如下:

表5部分企业原废水和处理后的废水中氰根离子的浓度
企业名称 采用工艺 原废水中氰根浓度(mg/L) 处理后废水中氰根浓度(mg/L)
先正达公司 氨氰法 7870 <0.5
山东东方科技公司 氨氰法 2000 0.08
湖北仙隆公司 氨氰法 600 0.5
石家庄宝丰公司 醇氰法 1500 <1.0
升华拜克公司 醇氰法 1000~1500 0.5
浙江永农公司 醇氰法 18000 60~80
上海秦禾公司 醇氰法 8000 一级处理后:<20
二级处理后:<0.5

由于氰化物具有高毒性并且对生化处理过程有危害,因此参照《污水综合排放标准》(GB 8978-1996)中的规定和企业能够达到的治理水平,将氰根离子的排放标准和预处理标准都设定为0.5mg/L。
(7) 吡啶
吡啶是百草枯生产中最主要原料,由于其具有较强的刺激性、挥发性和一定的毒性,并且不可生化,因此被列为废水中需要监测的特征污染因子。部分企业原废水和终排水中吡啶含量见表6。
表6部分企业原废水和终排水中吡啶的含量
企业名称 采用工艺 原废水吡啶(mg/L) 终排水吡啶(mg/L)
先正达 氨氰法 146.28 未检出
济南绿霸 氨氰法 16.00 ——
石家庄宝丰 醇氰法 816.28 ——
升华拜克 醇氰法 检测不到 检测不到
*上表中先正达、绿霸、宝丰的数据为实测数据;升华拜克的数据由企业提供。

目前在国内,全国性的排放标准中没有关于吡啶的规定,只在环境质量标准中有所体现。但一些地方制定的排放标准中,吡啶已经被列入了控制项目。

表7吡啶在水中的一些相关标准
标准名称 标准限值
地表水环境质量标准(GB3838-2002) 0.2mg/L
上海市地方污水排放标准(DB31/199-1997) 一级标准:2.0mg/L
二级标准:2.0mg/L
三级标准:5.0mg/L
四川省环境污染物排放标准(试行) 一类水域:甲级1.0mg/L;乙级2.0mg/L
二类水域:甲级2.0mg/L;乙级3.0mg/L
三类水域:甲级3.0mg/L;乙级5.0mg/L

参照上海市及四川省污水排放的地方标准,把新源企业排放标准的限值定为2.0mg/L,现源企业排放标准的限值定为5.0mg/L。
(8) 百草枯离子
百草枯离子是标准制定中最为重要的特征污染物,由于它是在百草枯生产过程中才能涉及到的污染物,具有很强的特殊性,因此在国内外至今没有见到相关的排放标准,只是在美国等一些国家有百草枯的饮用水质量标准。因此,对于百草枯离子排放限值的确定,采取了多介质环境目标值(MEG)方法中几种不同估算模式相互补充、相互印证的方法。
 现源企业排放标准——多介质环境目标值(MEG)估算
多介质环境目标值(Multimedia Environmental Goals, MEG)是美国EPA工业环境实验室推算出的化学物质或其降解产物在环境介质中的含量及排放量的限定值。预计,化学物质的量不超过MEG时,不会对周围人群及生态系统产生有害影响。MEG包括周围环境目标值(Amvient MEG, AMEG)和排放环境目标值(Discharge MEG, DMEG)。AMEG表示化学物质在环境介质中可以容许的最大浓度(估计生物体与这种浓度的化学物质终生接触都不会受其有害影响)。DMEG是指生物体与排放流短期接触时,排放流中的化学物质最高可容许浓度。预期不高于此浓度的污染物不会对人体或生态系统产生不可逆转的有害影响。同时,工业环境实验室还提出了多种MEG值的估算模式。

表8估算百草枯离子MEG值所需数据
数据描述 数据值
美国国家职业与健康研究所(NIOSH)关于百草枯在车间空气中允许浓度的推荐值 1.5mg/m3
美国联邦饮用水指导方针 30μg/L
最低的生态毒性数据值(目前所获资料中最低的是Selenastrum capricornutumr的IC50) 1.8mg/L
大鼠经口LD50 155~203mg/kg

(A)NIOSH推荐值估算模式:
DMEGWH(ug/L)=15×DMEGAH=22.5μg/L
(B)饮用水标准估算模式:
DMEGWH(ug/L)=5×饮用水标准=150μg/L
(C)基于生态环境的估算模式:
DMEGWE(ug/L)=100×最低生态毒性数据值(mg/L)=180μg/L
(D)LD50估算模式:
DMEGWH(ug/L)=0.675×LD50=104.625~137.025μg/L
*上述式中角标含意:W-水;H-健康;E-生态。

以上估算模式中,拟不采用NIOSH推荐值模式估算出的数据,因为NIOSH推荐值是车间环境空气限值,更多的考虑到百草枯的吸入毒性,百草枯的吸入毒性是高毒,而其接触及经口毒性均为中等毒性。本标准的制定将主要基于接触及经口毒性。
其余的4个数据既有基于健康和毒理学影响的饮用水标准模式和LD50模式的估算值,又有基于生态环境模式的估算值。并且4个数据值之间比较接近,相互之间能够较好地印证。4个数据中最大值为180μg/L,最小值为104.625μg/L。为保证排放的安全性,保守地取100μg/L为现源企业排放标准限值。预计,如果排放流中的百草枯离子浓度不超过100μg/L时,在短时间接触的条件下,不会对人体或生态系统产生不可逆转的有害影响。
 新源企业排放标准——总量控制:累积效应的考虑
假设百草枯离子在环境系统中的降解过程符合一级反应动力学,则有:
dC/dt=kC
C——环境中百草枯离子浓度
t——时间
k——降解系数
上式表明,环境中百草枯离子浓度一定时,百草枯离子的降解速率取决于降解系数。
又由百草枯离子在环境中的浓度变化可表达为:
Ct=C0e-kt
C0——百草枯离子初始浓度;
Ct——时间t时百草枯离子浓度;
取对数得
kt=lnC0/Ct
当降解一半时,即Ct=C0/2时
T1/2=ln2/k
T1/2——降解半衰期。
在环境中,百草枯离子的降解半衰期平均为1000天,将T1/2=1000d带入可得:
k=6.9×10-4d-1
得出的降解系数很小,说明百草枯离子在环境中很难降解,具有明显的累积效应。
因此,虽然在美国EPA制定的联邦饮用水指导方针中将百草枯离子的浓度限值定为30μg/L,但在美国的一些州和英国、澳大利亚等一些国家,已经在执行更加严格的饮用水标准。一些国家和地区关于百草枯的标准见表9。

表9一些国家和地区关于百草枯的标准
标准名称 限值
美国亚利桑那州饮用水标准 3μg/L
英国供水条例水质量标准 0.1μg/L(总农药量低于0.5ug/L)
澳大利亚健康与医药委员会标准 0.03μg/L

当然,饮用水标准与排放标准是有区别的,但是从长期累积效应考虑,将新源企业百草枯离子的排放标准确定为比较安全的30μg/L是适当的。并且从目前国内企业治理现状来看,部分污染治理情况较好的企业已经能够达到甚至低于这样的标准,因此这一标准从技术可行性角度来看也是可以实现的
(9) 2,2’:6’,2’’-三联吡啶
2,2’:6’,2’’-三联吡啶是中/高温钠法生产百草枯产生的废水中的特征污染物——三联吡啶异构体——之一,有资料表明,这些异构体中,以2,2’:6’,2’’-三联吡啶为主,而在氰化物法工艺及低温钠法工艺废水中不能检出2,2’:6’,2’’-三联吡啶。同时,2,2’:6’,2’’-三联吡啶具有强致癌作用,因此把2,2’:6’,2’’-三联吡啶设定为废水中特征污染因子之一,并规定不得检出,意在从环保的角度淘汰国家已明令禁止使用的中/高温钠法工艺。
3.3 大气污染物标准值的确定
3.3.1生产过程产生的废气
生产过程废气排放涉及氯气、氨气、吡啶和氯甲烷。
(1) 氯气
在我国《大气污染物综合排放标准中》(GB16297-1996)中,有关新源企业氯气的二级排放标准规定如下:
表10《大气污染物综合排放标准》中有关氯气的规定
污染物 最高允许排放浓度mg/m3 最高允许排放速率kg/h
排气筒高度m 二级
氯气 65 25
30
40
50
60
70
80 0.52
0.87
2.9
5.0
7.7
11
15

参照上面标准,并且规定排气筒高度不得低于30米,因此规定限值如下:

表11氯气排放限值
污染物 最高允许排放浓度mg/m3 排气筒高度m 最高允许排放速率kg/h
氯气 65 30 0.87

(2) 氨气
在《大气污染物综合排放标准中》(GB16297-1996)中,没有关于氨气的规定,但在《恶臭污染物排放标准》(GB14554-1993)中,有如下规定:
表12《恶臭污染物排放标准》中有关氨气的规定
控制项目 排气筒高度m 排放量kg/h
氨 15
20
25
30
35
40
60 4.9
8.7
14
20
27
35
75
在《工作场所有害因素职业接触限值》(GBZ2-2002)中,氨气的最高允许浓度为30mg/m3。由于限制排气筒高度为30m,按10倍的空气稀释计算,可允许排放浓度为300mg/m3。于是氨气排放限值规定如下:
表13氨气排放限值
污染物 最高允许排放浓度mg/m3 排气筒高度m 最高允许排放速率kg/h
氨气 300 30 20

(3) 吡啶和氯甲烷
在《大气污染物综合排放标准中》和《恶臭污染物排放标准》中,都没有这两种气体排放限值的规定。但在《工作场所有害因素职业接触限值》(GBZ2-2002)中,对这两中物质的工作场所空气中容许浓度作了如下规定:

表14 《工作场所有害因素职业接触限值》中有关吡啶和氯甲烷的规定(mg/m3)
中文名 英文名 MAC TWA STEL
吡啶 Pyridine —— 4 10
氯甲烷 Methyl chloride —— 60 120
*表中MAC—最高容许浓度;TWA—时间加权平均容许浓度;STEL—短时间接触容许浓度。

一般说来,由排气筒排放的有害气体,经大气扩散后着地浓度不得超过大气质量标准或卫生标准规定的一次最大容许浓度。由有害物质湍流扩散的Sutton模型,可知:

式中:
Cmax——落地最大浓度
M——单位时间污染物排放量
u——风速
He——排气筒高度
也就是说,如果风速和排气筒高度条件固定,最大落地浓度与单位时间污染物排放量成正比。即:

在这里,采用与氯气排放标准相同的条件,并且已知在《工作场所有害因素职业接触限值》中,氯的最高允许浓度为1mg/m3。对上式进行计算,可得在此条件下:
K=1.149
由于只是关心其比例关系,这里计算时并未对单位进行统一,而是直接选取各个量原有的单位,这对后面的结果不会产生影响。
对于吡啶和氯甲烷,同时采取与氯气相同的条件,并且已知其在《工作场所有害因素职业接触限值》中,最高允许浓度分别为4 mg/m3和60 mg/m3,则可得出这两种物质的最高允许排放速率限值如下:

表15吡啶、氯甲烷最高允许排放速率限值
污染物 最高允许排放速率kg/h
吡啶 3.48
氯甲烷 52.2

对于这两种物质的浓度限值,英国捷利康公司的企业标准中规定分别为:吡啶:90mg/m3,氯甲烷:200mg/m3。拟采用相同的标准,对于吡啶和氯甲烷的排放规定如下:
表15吡啶、氯甲烷排放限值
污染物 最高允许排放浓度mg/m3 排气筒高度m 最高允许排放速率kg/h
吡啶 90 30 3.48
氯甲烷 200 30 52.2

3.3.2焚烧法处理工艺废水产生的废气
采用焚烧方法处理工艺废水,在处理过程中有废气由焚烧炉排气筒排放至大气环境之中。考虑到工艺废水的组成及对焚烧过程的分析,可知此废气主要成分为水蒸气,还包含颗粒物、氮氧化物、二氧化硫等污染物。这些污染物的排放标准可参照《危险废物焚烧控制标准》(GB18484-2001)执行。
3.4 固体废弃物排放设定项目限值的制定依据
对于氰化物工艺来说,固体废弃物一般有如下几个来源:
(1) 工艺过程中产生:如醇氰或水氰工艺中的氰化物回收过程。
(2) 焚烧法处理废水过程产生:焚烧法处理废水过程会产生烧残盐,产生量的多少与具体的焚烧工艺有关。
(3) 氰化物包装物:使用氰化物后剩下的包装物,包括袋、包、箱等。材质一般为纸质或塑料。
无论哪种来源的固体废弃物,都可能含有氰化物,必须加以有效的处理。因此,对于固体废弃物可按《含氰废物污染控制标准》(GB12502-90)的要求进行控制。

表16《含氰废物污染控制标准》中有关规定
项目 第一级 第二级
废物含氰(以CN-计) ≤1.0mg/L ≤1.5mg/L
*废物含氰量是指废物在浸出液中总氰化物的浓度。
*第一级指本标准实施之日起,新建、扩建、改建的企事业单位应执行的标准;第二级指本标准实施之前,已有企事业单位应执行的标准。
参照以上标准将固体废弃物中含氰(以CN-计)限值定为≤1.0mg/L。此处废物含氰量是指废物在浸出液中总氰化物的浓度。
4. 标准监测
为提高各控制项目监测的可操作性,明确了采样点的位置和采样频率的规定。同时,对于焚烧处理工艺废水产生的废气规定采用连续在线监测的要求。这是因为,第一,目前对于焚烧炉排放废气的连续在线监测技术已经比较成熟;第二,对于焚烧炉排放的废气,往往存在取样困难,人工监测不及时,受人为因素干扰大等问题,如采用人工监测,必然会造成超标准排放,使标准执行的有效性受到影响;第三,采用连续在线监测可以有效提高监测水平,减少操作人员劳动强度,并为进一步在其它方面推广积累经验。采样频率的设定按不同企业的生产周期确定。
5. 控制项目分析方法
5.1 已有国家标准分析方法的控制项目
已有国家标准分析方法的控制项目按标准方法执行。具体情况如表17:

表17控制项目分析方法
项目 分析方法 方法来源
COD 重铬酸钾法 GB11914-89
pH 玻璃电极法 GB6902-96
色度 稀释倍数法 GB11903-89
氨氮 蒸馏和滴定法 GB7478-87
氰根离子 滴定法 GB7486-87
吡啶 气相色谱法 GB/T14672-93
氯气 甲基橙分光光度法 HJ/T30-99
氨气 纳氏试剂比色法 GB/T14688-93
吡啶 巴比妥酸分光光度法 GB/T16116-95
氯甲烷 气相色谱法 GB/T16078-95
氰化物(浸出液中以CN-计) 浸出毒性浸出方法 水平振荡法
总氰化物测定 硝酸银滴定法 GB5086.2-97
GB7486-87

5.2 没有国家标准分析方法的百草枯离子和2,2’:6’,2’’-三联吡啶的分析
对于没有国家标准分析方法的百草枯离子和2,2’:6’,2’’-三联吡啶,通过实验和查阅文献,分别建立了分析方法。
5.2.1百草枯离子分析方法
对于百草枯离子,采用液相色谱分析法。方法简述如下:
取一定体积的百草枯废水,用针头过滤器过滤,以辛磺酸钠-乙腈-缓冲溶液为流动相,在以Spherisorb Pheny、5μm为填料的色谱柱和紫外可变波长检测器,对废水中的百草枯离子进行液相色谱分离和测定。
本方法适用于工业废水和地面水中百草枯离子的测定,方法最小检出量(以S/N=2计)为10-12g,最低检测浓度为10.21μg/l。对添加百草枯离子浓度为16~76μg/l的水样进行重复测定,相对标准偏差为0.06%,添加回收率为91.44~107.51%。
5.2.2 2,2’:6’,2’’-三联吡啶的分析方法
对于2,2’:6’,2’’-三联吡啶,水样经过氢氧化钠、乙酸乙酯处理后,采用GC-MS进行定性测定。
本方法适用于工业废水和地面水中2,2’:6’,2’’-三联吡啶的测定,方法最小检出量(以S/N=2计)为8×10-11g,方法的检测限为0.08mg/L。对添加2,2’:6’,2’’-三联吡啶浓度小于1.0mg/L的水样进行重复测定表明:该方法的相对标准偏差小于30%,添加回收率为70-130%。

❻ 污水处理排放标准的COD排放标准多少

据排放地区的不同有不同的标准,如果是排入城市污水处理厂COD要求在内500以下,没有城市污水处理容厂的要求150以下,直接排放到自然水体要求在80以下(根据地区不同有不同标准)。

自来水:自来水是指通过自来水处理厂净化、消毒后生产出来的符合国家饮用水标准的供人们生活、生产使用的水或者是井水。现在自来水消毒大都采用氯化法,公共给水氯化的主要目的就是防止水传播疾病,这种方法推广到至今有100多年历史了,具有较完善的生产技术和设备,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。但经过对理论资料了解、研究,发现氯气用于自来水消毒还是有在一定的弊端。

请问目前达标吗?

❼ 工业污染物排放标准有哪些

工业污染物工业污染物指的是工业生产过程中所排放的废气(SOx)、废水(酸水碱水)、废渣、粉尘、恶臭气味等的总称。通常含有多种有害物质。工业污染物的检测指标主要分为大气污染,固体废弃物污染和水污染三大类 。其中大气污染物包括 SO2 、工业粉尘和烟尘;工业固体废弃物包括冶炼废渣、粉煤灰 、炉渣、煤矸石、尾矿和其他固体废弃物;而水污染物则包括一般无机、有机污染物和有害重金属等,其中挥发酚、氰化物、化学需氧量 、石油类废物和氨氮属于一般无机或有机污染物,而有害重金属则包括汞 、镉、六价铬、铅等。

工业污染物排放标准:

GB19431-2004 味精工业污染物排放标准

GB19821-2005 啤酒工业污染物排放标准

GB20426-2006 煤炭工业污染物排放标准

GB21902-2008 合成革与人造革工业污染物排放标准

GB25465-2010 铝工业污染物排放标准

GB25468-2010 镁、钛工业污染物排放标准

GB25466-2010 铅、锌工业污染物排放标准

GB25464-2010 陶瓷工业污染物排放标准

GB25467-2010 铜、镍、钴工业污染物排放标准

GB26132-2010 硫酸工业污染物排放标准

GB26131-2010 硝酸工业污染物排放标准

GB26452-2011 钒工业污染物排放标准

GB26451-2011 稀土工业污染物排放标准

GB27632-2011 橡胶制品工业污染物排放标准

GB16171-2012 炼焦化学工业污染物排放标准

GB28666-2012 铁合金工业污染物排放标准

GB28661-2012 铁矿采选工业污染物排放标准

GB30484-2013 电池工业污染物排放标准

GB30770-2014 锡、锑、汞工业污染物排放标准

GB31572-2015 合成树脂工业污染物排放标准

GB31571-2015 石油化学工业污染物排放标准

GB31570-2015 石油炼制工业污染物排放标准

GB31573-2015 无机化学工业污染物排放标准

GB31574-2015 再生铜、铝、铅、锌工业污染物排放标准

GB15581-2016 烧碱、聚氯乙烯工业污染物排放标准

T/CNFAGS2-2021 三聚氰胺工业污染物排放标准

❽ 无锡市污水关于Cu、Pb、Cr 的排放标准

城镇污水处理厂污染物排放标准
发布人:水世界-中国城镇水网 发布时间:2006-11-28
1.范围

本标准规定了城镇污水处理厂出水、废气排放和污泥处置(控制)的污染物限值。

本标准适用于城镇污水处理厂出水、废气排放和污泥处置(控制)的管理。

居民小区和工业企业内独立的生活污水处理设施污染物的排放管理,也按本标准执行。

2.规范性引用文件

下列标准中的条文通过本标准的引用即成为本标准的条文,与本标准同效。

GB3838 地表水环境质量标准

GB3097 海水水质标准

GB3095 环境空气质量标准

GB4284 农用污泥中污染物控制标准

GB8978 污水综合排放标准

GB12348 工业企业厂界噪声标准

GB16297 大气污染物综合排放标准

HJ/T55 大气污染物无组织排放监测技术导则

当上述标准被修订时,应使用其最新版本。

3.术语和定义

3.1 城镇污水(municipal wastewater)

指城镇居民生活污水,机关、学校、医院、商业服务机构及各种公共设施排水,以及允许排入城镇污水收集系统的工业废水和初期雨水等。

3.2 城镇污水处理厂(municipal wastewater treatment plant)指对进入城镇污水收集系统的污水进行净化处理的污水处理厂。

3.3 一级强化处理(enhanced primary treatment)在常规一级处理(重力沉降)基础上,增加化学混凝处理、机械过滤或不完全生物处理等,以提高一级处理效果的处理工艺。

4.技术内容

4.1 水污染物排放标准

4.1.1 控制项目及分类

4.1.1.1 根据污染物的来源及性质,将污染物控制项目分为基本控制项目和选择控制项目两类。基本控制项目主要包括影响水环境和城镇污水处理厂一般处理工艺可以去除的常规污染物,以及部分一类污染物,共19 项。选择控制项目包括对环境有较长期影响或毒性较大的污染物,共计43 项。

4.1.1.2 基本控制项目必须执行。选择控制项目,由地方环境保护行政主管部门根据污水处理厂接纳的工业污染物的类别和水环境质量要求选择控制。

4.1.2 标准分级

根据城镇污水处理厂排入地表水域环境功能和保护目标,以及污水处理厂的处理工艺,将基本控制项目的常规污染物标准值分为一级标准、二级标准、三级标准。一级标准分为A标准和B 标准。一类重金属污染物和选择控制项目不分级。

4.1.2.1 一级标准的A 标准是城镇污水处理厂出水作为回用水的基本要求。当污水处理厂出水引入稀释能力较小的河湖作为城镇景观用水和一般回用水等用途时,执行一级标准的A 标准。

4.1.2.2 城镇污水处理厂出水排入GB3838 地表水Ⅲ类功能水域(划定的饮用水水源保护区和游泳区除外)、GB3097 海水二类功能水域和湖、库等封闭或半封闭水域时,执行一级标准的B标准。

4.1.2.3 城镇污水处理厂出水排入GB3838 地表水Ⅳ、Ⅴ类功能水域或GB3097 海水三、四类功能海域,执行二级标准。

4.1.2.4 非重点控制流域和非水源保护区的建制镇的污水处理厂,根据当地经济条件和水污染控制要求,采用一级强化处理工艺时,执行三级标准。但必须预留二级处理设施的位置,分期达到二级标准。

4.1.3 标准值

4.1.3.1 城镇污水处理厂水污染物排放基本控制项目,执行表1 和表2 的规定。

4.1.3.2 选择控制项目按表3 的规定执行。

4.1.4 取样与监测

4.1.4.1 水质取样在污水处理厂处理工艺末端排放口。在排放口应设污水水量自动计量装置、自动比例采样装置,pH、水温、COD 等主要水质指标应安装在线监测装置。

4.1.4.2 取样频率为至少每2h 一次,取24h 混合样,以日均值计。

4.1.4.3 监测分析方法按表7 或国家环境保护总局认定的替代方法、等效方法执行。

4.2 大气污染物排放标准

4.2.1 标准分级

根据城镇污水处理厂所在地区的大气环境质量要求和大气污染物治理技术和设施条件,将标准分为三级。

4.2.1.1 位于GB3095 一类区的所有(包括现有和新建、改建、扩建)城镇污水处理厂,自本标准实施之日起,执行一级标准。

4.2.1.2 位于GB3095 二类区和三类区的城镇污水处理厂,分别执行二级标准和三级标准。其中2003年6月30日之前建设(包括改、扩建)的城镇污水处理厂,实施标准的时间为2006年1月1日;2003年7月1日起新建(包括改、扩建)的城镇污水处理厂,自本标准实施之日起开始执行。

4.2.1.3 新建(包括改、扩建)城镇污水处理厂周围应建设绿化带,并设有一定的防护距离,防护距离的大小由环境影响评价确定。

4.2.2 标准值

城镇污水处理厂废气的排放标准值按表4 的规定执行。

4.2.3 取样与监测

4.2.3.1 氨、硫化氢、臭气浓度监测点设于城镇污水处理厂厂界或防护带边缘的浓度最高点;甲烷监测点设于厂区内浓度最高点。

4.2.3.2 监测点的布置方法与采样方法按GB16297 中附录C 和HJ/T55 的有关规定执行。

4.2.3.3 采样频率,每2h 采样一次,共采集4 次,取其最大测定值。

4.2.3.4 监测分析方法按表8 执行。

4.3 污泥控制标准

4.3.1 城镇污水处理厂的污泥应进行稳定化处理,稳定化处理后应达到表5 的规定。

4.3.2 城镇污水处理厂的污泥应进行污泥脱水处理,脱水后污泥含水率应小于80%。

4.3.3 处理后的污泥进行填埋处理时,应达到安全填埋的相关环境保护要求。

4.3.4 处理后的污泥农用时,其污染物含量应满足表6 的要求。其施用条件须符合GB4284 的有关规定。

4.3.5 取样与监测

4.3.5.1 取样方法,采用多点取样,样品应有代表性,样品重量不小于1kg。

4.3.5.2 监测分析方法按表9 执行。

4.4 城镇污水处理厂噪声控制按GB12348 执行。

4.5 城镇污水处理厂的建设(包括改、扩建)时间以环境影响评价报告书批准的时间为准。

5.其他规定

城镇污水处理厂出水作为水资源用于农业、工业、市政、地下水回灌等方面不同用途时,

还应达到相应的用水水质要求,不得对人体健康和生态环境造成不利影响。

6.标准的实施与监督

6.1 本标准由县级以上人民政府环境保护行政主管部门负责监督实施。

6.2 省、自治区、直辖市人民政府对执行国家污染物排放标准不能达到本地区环境功能要求时,可以根据总量控制要求和环境影响评价结果制定严于本标准的地方污染物排放标准,并报国家环境保护行政主管部门备案。

还有些图 转不过来
你看

http://www.chinacitywater.org/waterknow/queask.jsp?getid=1416&getvalue=436

❾ 水处理行业都有哪些标准

水环境标准
水环境质量标准
相关信息
GB/T 14848-1993 地下水质量标准 1993-12-30
GB 3097-1997 海水水质标准 1997-12-03
GB 3838-2002 地表水环境质量标准 2002-04-28
GB 5084-1992 农田灌溉水质标准 1992-01-04
GB 11607-1989 渔业水质标准
水污染物排放标准
发布日期 相关信息
GB 26451-2011 稀土工业污染物排放标准 2011-01-24
GB 26131-2010 硝酸工业污染物排放标准 2010-12-30
GB 26132-2010 硫酸工业污染物排放标准 2010-12-30
GB 25468-2010 镁、钛工业污染物排放标准 2010-09-27
GB 25467-2010 铜、镍、钴工业污染物排放标准 2010-09-27
GB 25466-2010 铅、锌工业污染物排放标准 2010-09-27
GB 25465-2010 铝工业污染物排放标准 2010-09-27
GB 25464-2010 陶瓷工业污染物排放标准 2010-09-27
GB 25463-2010 油墨工业水污染物排放标准 2010-09-27
GB 25462-2010 酵母工业水污染物排放标准 2010-09-27
GB 25461-2010 淀粉工业水污染物排放标准 2010-09-27
GB 15580-1995 磷肥工业水污染物排放标准 1995-06-12
GB 15581-1995 烧碱、聚氯乙烯工业水污染排放标准 1995-06-12
GB 8978-1996 污水综合排放标准 1996-10-04
GB 13458-2001 合成氨工业水污染物排放标准 2001-11-12
GB 18486-2001 污水海洋处置工程污染控制标准 2001-11-12
GB 18596-2001 畜禽养殖业污染物排放标准 2001-12-28
GB 14470.1-2002 兵器工业水污染排放标准 火炸药 2002-11-18
GB 14374-1993 航天推进剂水污染物排放与分析方法标准 1993-05-22
GB 14470.2-2002 兵器工业水污染排放标准 火工药剂 2002-11-18
GB 14470.3-2002 兵器工业水污染排放标准 弹药装药 2002-11-18
GB 18918-2002 城镇污水处理厂污染物排放标准 2002-12-24
GB 4287-1992 纺织染整工业水污染物排放标准 1992-05-18
GB 13457-1992 肉类加工工业水污染物排放标准 1992-05-18
GB 13456-1992 钢铁工业水污染物排放标准 1992-05-18
GB 19430-2004 柠檬酸工业污染物排放标准 2004-01-18
GB 19431-2004 味精工业污染物排放标准 2004-01-18
GB 19821-2005 啤酒工业污染物排放标准 2005-07-18
GB 18466-2005 医疗机构水污染物排放标准 2005-07-27
GB 20425-2006 皂素工业水污染物排放标准 2006-09-01
GB 20426-2006 煤炭工业污染物排放标准 2006-09-01
GB 21523-2008 杂环类农药工业水污染物排放标准 2008-04-02
GB 21900-2008 电镀污染物排放标准 2008-06-25
GB 21901-2008 羽绒工业水污染物排放标准 2008-06-25
GB 21902-2008 合成革与人造革工业污染物排放标准 2008-06-25
GB 21903-2008 发酵类制药工业水污染物排放标准 2008-06-25
GB 21904-2008 化学合成类制药工业水污染物排放标准 2008-06-25
GB 21905-2008 提取类制药工业水污染物排放标准 2008-06-25
GB 21906-2008 中药类制药工业水污染物排放标准 2008-06-25
GB 21907-2008 生物工程类制药工业水污染物排放标准 2008-06-25

GB 21908-2008 混装制剂类制药工业水污染物排放标准 2008-06-25
GB 21909-2008 制糖工业水污染物排放标准 2008-06-25
GB 3544-2008 制浆造纸工业水污染物排放标准 2008-06-25
GB 4914-1985 海洋石油开发工业含油污水排放标准 1985-01-18
GB 4286-1984 船舶工业污染物排放标准 1984-05-13
GB 3552-1983 船舶污染物排放标准 1983-04-09

相关检测规范、方法标准(水)
GB 13196-1991 水质 硫酸盐的测定 火焰原子吸收分光光度法 1991-08-31
GB/T 17133-1997 水质 硫化物的测定 直接显色分光光度法 1997-12-08
GB/T 14378-1993 水质 二乙烯三胺的测定 水杨醛分光光度法 1993-05-22
GB/T 14552-1993 水和土壤质量 有机磷农药的测定 气相色谱法 1993-07-19
GB/T 14581-1993 水质 湖泊和水库采样技术指导 1993-08-14
GB/T 14671-1993 水质 钡的测定 电位滴定法 1993-09-18
GB/T 14672-1993 水质 吡啶的测定 气相色谱法 1993-09-18
GB/T 14673-1993 水质 钒的测定 石墨炉原子吸收分光光度法 1993-09-18
GB/T 15503-1995 水质 钒的测定 钽试剂(BPHA)萃取分光光度法 1995-03-15
GB/T 15504-1995 水质 二硫化碳的测定 二乙胺乙酸铜分光光度法 1995-03-15
GB/T 15505-1995 水质 硒的测定 石墨炉原子吸收分光光度法 1995-03-15
GB/T 15507-1995 水质 肼的测定 对二甲氨基苯甲醛分光光度法 1995-03-15
GB/T 15440-1995 环境中有机污染物遗传毒性检测的样品前处理规范 1995-03-25
GB/T 15441-1995 水质 急性毒性的测定 发光细菌法 1995-03-25
GB/T 15959-1995 水质 可吸附有机卤素(AOX)的测定 微库仑法 1995-12-21
GB/T 16488-1996 水质 石油类和动植物油的测定 红外光度法 1996-08-01
GB/T 16489-1996 水质 硫化物的测定 亚甲基蓝分光光度法 1996-08-01
GB/T 17130-1997 水质 挥发性卤代烃的测定 顶空气相色谱法 1997-12-08
GB/T 17132-1997 环境 甲基汞的测定 气相色谱法 1997-12-08
GB/T17378.1-1998 海洋监测规范 第1部分:总则 1998-06-22
GB/T 17131-1997 水质 1,2-二氯苯、1,4-二氯苯、1,2,4-三氯苯的测定 气相色谱法 1997-12-08
GB/T 14377-1993 水质 三乙胺的测定 溴酚蓝分光光度法 1993-05-22
GB/T 14376-1993 水质 偏二甲基肼的测定 氨基亚铁氰化钠分光光度法 1993-05-22
GB/T 14375-1993 水质 一甲基肼的测定 对二甲氨基苯甲醛分光光度法 1993-05-22
GB/T 14204-1993 水质 烷基汞的测定 气相色谱法 1993-02-23
GB/T 13902-1992 水质 硝化甘油的测定 示波极谱法 1992-12-02
GB/T 13901-1992 水质 二硝基甲苯的测定 示波极谱法 1992-12-02
GB/T 13900-1992 水质 黑索今的测定 分光光度法 1992-12-02
GB/T 13899-1992 水质 铁(II、III)氰络合物的测定 三氯化铁分光光度法 1992-12-02
GB/T 13898-1992 水质 铁(II、III)氰络合物的测定 原子吸收分光光度法 1992-12-02
GB/T 13897-1992 水质 硫氰酸盐的测定 异烟酸-砒唑啉酮分光光度法 1992-12-02
GB/T 13896-1992 水质 铅的测定 示波极谱法 1992-12-02
GB/T 13266-1991 水质 物质对蚤类(大型蚤) 急性毒性测定方法 1991-09-14
GB/T 13195-1991 水质 水温的测定 温度计或颠倒温度计测定法 1991-08-31
GB/T 13194-1991 水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯的测定 气相色谱法 1991-08-31
GB/T 13193-1991 水质 总有机碳(TOC)的测定 非色散红外线吸收法 1991-08-31
GB/T 13192-1991 水质 有机磷农药的测定 气相色谱法 1991-08-31
GB 13200-1991 水质 浊度的测定 1991-08-31
GB 13199-1991 水质 阴离子洗涤剂的测定 电位滴定法 1991-08-31
GB/T 11914-1989 水质 化学需氧量的测定 重铬酸盐法 1989-12-25
GB/T 11913-1989 水质 溶解氧的测定 电化学探头法 1989-12-25
GB/T 11912-1989 水质 镍的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11911-1989 水质 铁、锰的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11910-1989 水质 镍的测定 丁二酮肟分光光度法 1989-12-25
GB/T 11909-1989 水质 银的测定 3,5-Br2-PADAP分光光度法 1989-12-25
GB/T 11908-1989 水质 银的测定 镉试剂2B分光光度法 1989-12-25
GB/T 11907-1989 水质 银的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11905-1989 水质 钙和镁的测定 原子吸收分光光度法 1989-12-25
GB/T 11904-1989 水质 钾和钠的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11903-1989 水质 色度的测定 1989-12-25
GB/T 11902-1989 水质 硒的测定 2,3-二氨基萘萤光法 1989-12-25
GB/T 11906-1989 水质 锰的测定 高碘酸钾分光光度法 1989-12-25
GB 11901-1989 水质 悬浮物的测定 重量法 1989-12-25
GB 11900-1989 水质 痕量砷的测定 硼氢化钾-硝酸银分光光度法 1989-12-25
GB 11899-1989 水质 硫酸盐的测定 重量法 1989-12-25
GB 11896-1989 水质 氯化物的测定 硝酸银滴定法 1989-12-25

阅读全文

与废水钴排放标准是多少相关的资料

热点内容
广州哪里买机油滤芯 浏览:673
茂名石化乙烯污水处理厂 浏览:254
换完滤芯后如何操作 浏览:828
蒸馏法制备注射用水是利用热原的 浏览:192
超纯水反渗透怎么解决 浏览:423
yl5386xz饮水机怎么使用 浏览:54
桌面即热饮水机用什么水 浏览:158
浙江废水治理一体化设备怎么选 浏览:579
华西血透水处理 浏览:116
污水池怎么清理油污 浏览:689
油烟净化器环保证书怎么申请 浏览:863
总用吸奶器吸奶水会不会回奶 浏览:729
水厂过滤用什么 浏览:867
肾内氢钠离子交换 浏览:454
福特汽车外置汽油滤芯怎么换 浏览:811
快递一米饮水机多少钱 浏览:99
全国工业水除垢公司 浏览:897
为什么3m净水器还是有水垢 浏览:75
莱州水处理设备 浏览:275
超纯水为什么不合格 浏览:631