Ⅰ 海水养殖废水是如何进行处理的
海水养殖废水处理系统包括相连通的斜板沉淀池与三段式脱氮除磷池回,三段式脱氮除磷池答包括顺序设置的配水区、缺氧段、好氧段、除磷段和集水区,缺氧段填充砾石基质,好氧段填充沸石基质,并设置穿孔曝气管,除磷段填充除磷功能填料基质,斜板沉淀池底端设置进水管路,斜板沉淀池顶端与配水区相连通,集水区设置出水管路,集水区与配水区之间设置回流管路,使部分处理后水通过回流管路输送回配水区。与现有技术相比,本发明能同时降低水体中浊度、溶解性COD和氮磷含量,创造性地将A/O生物接触氧化工艺与吸附除磷技术相结合应用于海水处理领域,适用于解决大规模养殖废水净化排放的问题。
Ⅱ 海水日常管理要点是什么
海水养殖是利用浅海、滩涂、港湾、围塘等海域进行饲养和繁殖海产经济动植物的生产方式,是人类定向利用海洋生物资源、发展海洋水产业的重要途径之一。
夏秋交替,天气变化大,这对海水养殖来说是一场很大的考验,如果池塘管理措施稍有不当,就有可能产生一系列问题。海水养殖后期池塘管理如何防缺氧、防水变、防底变、防细菌性疾病是海水养殖成功的关键。
一、防缺氧
池塘氧气的消耗主要有以下几方面:
1、水产养殖动物规格逐渐增大,耗氧量增加。
2、大量肥水、过量投喂,池塘底部有机质积累过多,易造成氨氮、硫化物超标,导致底热、发酵,加重耗氧。
3、进入秋季,早晚温度低,中午温度高,易造成池塘溶解氧上下分层,上层溶解氧高,下层溶解氧不足,氧债积累。
4、遇到恶劣天气(白天刮南风,夜间刮北风),短时间内池水强烈对流,池底大量有机质上翻,加快池塘溶解氧消耗,易造成急性缺氧。
海水动物养殖后期管理好池塘溶氧非常关键,可以说充足溶氧是成功养殖的基础。肥水、喂料采取少量多次原则,并且经常查看料台,避免投喂过多,污染池底。同时定期或实时监测池塘溶解氧,增加增氧机,打破水体分层现象。
对于有缺氧症状的池塘,果断采取措施增氧,包括多开增氧机、加大换水量、必要时药物辅助增氧,多管齐下,保证溶解氧供应。
二、防水变
养殖后期会出现水质混浊、发黄、发暗、发绿、发红等现象,其中水质发红最常见,主要原因有以下几点:
1、大量的残饵、排泄物等在池底的无氧分解。
2、养殖池水太深,与增氧能力脱级,造成底层溶氧不足,容易发臭。
3、频繁的换、排水使池塘中矿物质和微量元素流失,造成池底沙漠化。
4、池水常使用化学药物消毒,对有益微生物构成危害,失去生态平衡,塘底的自净能力丧失,造成池底恶化。
5、水质廋或藻类老化的池塘,藻类光合作用差,溶氧低,有害物质将降解速度慢,底泥容易发臭。
海水动物养殖后期,稳定是第一位的,任何一次水变,都可能对养殖造成不可估量的损失,所以在日常管理当中的每一个环节,都要谨小慎微,安全平稳的度过高温期才是养殖成功的保障。
一方面是防水变的发生,高温季节慎重进水,如果一定要进水,则每次进水前带水样到药店检测水质指标,符合养殖标准方可进水。
另一方面是防水变发生后对海水养殖动物造成毁灭性的打击,发生水红现象时,实时监测池塘溶解氧含量,遵循先增氧,再改底,再解毒的步骤,循序渐进处理,切不可直接杀灭,如此可降低泛塘的风险。
三、防底变
海水养殖池塘底质变坏的判断方法:
1、池边的角落有大量黄褐色泡沫,有异味,不易散开。
2、水质变得浓稠,风吹过水面出现细密的水纹。
3、亚硝酸盐含量升高
Ⅲ 如何合理选择水产养殖给水处理和废水排放处理的总体方案
污水处理系统问题汇总
二沉池出现细碎污泥翻滚、浑浊现象的原因?
①好氧池污泥负荷过小,曝气过量,污泥自身氧化,导致污泥絮凝性变差,污泥结构分散(水混浊而悬浮物多)
②好氧池污泥负荷过大,溶解氧不足,污泥吸附性能变差,有机物未能完全分解掉
③二沉池负荷过高,或二沉池配水不均匀出现重力流现象,局部流速过快将污泥带起
④二沉池回流比过大,二沉池泥层过低,水流搅动泥层过大(此原因占少)
⑤好氧池污泥排放量过大导致好氧池污泥龄过短,新合成的污泥絮体难以沉降(水清澈而悬浮物多)
⑥好氧池污泥龄过长,污泥老化
⑦好氧池污泥营养料不足或者营养料比例不均衡(N、P比例过高)
⑧好氧池污泥发生污泥膨胀现象,沉降性差、二沉池泥层高,水流将污泥带出(SVI值过高或过低都会出现此情况)
⑨好氧池污水中氨氮含量过高
二沉池出现浮渣浮泥现象的原因?
$1__VE_ITEM__① 二沉池回流比小,污泥停留时间过长,污泥厌氧反硝化后被气体携带上浮
$1__VE_ITEM__② 好氧池进入大量物化污泥和厌氧污泥,由于部分不能转化为好氧污泥变为浮渣排出系统
$1__VE_ITEM__③ 好氧池污泥腐败变质
$1__VE_ITEM__④ 好氧池泡沫多,与污泥/悬浮物等混合后到二沉池上浮
$1__VE_ITEM__⑤ 好氧池污泥浓度低(污泥负荷高)或者溶解氧过高(有可能)
$1__VE_ITEM__⑥ 好氧池污泥老化或者泥龄过短,絮凝性差,COD去除率和处理效果差
好氧池溶解氧不足的原因?
$1__VE_ITEM__① 好氧池污泥浓度上升较快或者污泥老化导致耗氧量增加
$1__VE_ITEM__② 厌氧池出水悬浮物很多,进入好氧池后消耗大量的溶解氧
$1__VE_ITEM__③ 鼓风机出现故障停止运行或风机压力不够(出现此情况较少)
$1__VE_ITEM__④ 厌氧池出水COD突然升高很多,或进水突然增大,冲击负荷大,导致好氧池负荷变大
$1__VE_ITEM__⑤ 曝气头损坏或堵塞比较严重,好氧池泡沫多
好氧池发生污泥膨胀现象的原因?
$1__VE_ITEM__① 好氧池溶解氧长期偏低或者长期偏高(有可能)
$1__VE_ITEM__② 原水或厌氧出水的硫化物含量过高导致硫细菌大量繁殖
$1__VE_ITEM__③ 好氧池负荷长期偏低或偏高
$1__VE_ITEM__④ 好氧池水温偏高
$1__VE_ITEM__⑤ 营养料不均衡或缺乏营养(N、P偏低)
$1__VE_ITEM__⑥ 进水pH值问题
$1__VE_ITEM__⑦ 好氧池污泥的泥龄过长,耗氧量增加导致溶解氧不足
好氧池出现污泥解体、上清液细碎污泥多现象的原因?
$1__VE_ITEM__① 好氧池污泥负荷小,曝气过量,污泥自身氧化,污泥絮凝性变差,污泥结构松散(清澈,细碎泥多,COD不高)
$1__VE_ITEM__② 好氧池污泥负荷过大,污泥吸附性能变差,有机物未能完全分解掉,镜检污泥结构散(混浊,不透明,COD高)
$1__VE_ITEM__③ 好氧池污泥排放量过大导致好氧池污泥龄过短(SVI值在70~120适宜,在此范围内二沉池细碎污泥少)
$1__VE_ITEM__④ 好氧池进水含有有毒物质或者污泥老化,泥龄长(混浊,有细碎泥,COD偏高,镜检轮虫很多)
$1__VE_ITEM__⑤ 好氧池营养料不足或者营养料比例不均衡(N、P偏低)
好氧池有大量泡沫出现的原因?
$1__VE_ITEM__① 原水中含有大量的表面活性剂成分(生产过程中添加的物质所至,泡沫为白色,气泡细小,轻且不带黏性)
$1__VE_ITEM__② 新安装曝气头后产生的微小气泡所至(短期影响)
$1__VE_ITEM__③ 微生物繁殖中产生大量脂类物质或微生物(微生物自身生长繁殖活动所至,泡沫为泥色,气泡大,带黏性)
$1__VE_ITEM__④ 污泥反硝化泡沫(好氧污泥在二沉池停留时间过长反硝化后产生的泡沫带黏稠,泥色)
好氧池COD去除率低的原因?
$1__VE_ITEM__① 好氧池污泥老化,泥龄长
$1__VE_ITEM__② 好氧池污泥负荷高,泥龄短,回流量大,停留时间短
$1__VE_ITEM__③ 好氧池污泥负荷低,溶解氧长期偏高导致污泥自身氧化(去除率低,溶解氧高),细碎污泥多,活性好的污泥少
$1__VE_ITEM__④ 好氧池溶解氧不足
$1__VE_ITEM__⑤ 营养料不足或者营养料比例不均衡(N、P比例过高)
$1__VE_ITEM__⑥ 厌氧池COD去除率低,厌氧水解效果差,出水COD浓度过高
$1__VE_ITEM__⑦ 原水含有有毒物质,污泥中毒
$1__VE_ITEM__⑧ 无机盐累积值超过规定范围
$1__VE_ITEM__⑨ 好氧池冲击负荷大或者好氧池出现污泥膨胀现象
厌氧池COD去除率低的原因?
$1__VE_ITEM__① 厌氧池污泥浓度不足(向厌氧池回生化泥)
$1__VE_ITEM__② 厌氧池进入大量物化污泥(无机物占多数)
$1__VE_ITEM__③ 厌氧池营养料不足或者营养料比例不均衡
$1__VE_ITEM__④ 水温超过厌氧微生物适应的范围(超过40℃)
$1__VE_ITEM__⑤ 进水pH超过10.5或者低于6.5
$1__VE_ITEM__⑥ 厌氧池停留时间过短难以到达厌氧水解状态(设计问题)
$1__VE_ITEM__⑦ 进入有毒物质
好氧池上清液细碎污泥多,细碎污泥翻滚难沉降的原因?
$1__VE_ITEM__① 好氧池污泥营养料不足或者营养料比例不均衡
$1__VE_ITEM__② 好氧池污泥负荷过高(二沉池出水混浊,COD高,好氧池泥水沉淀后上清液后细碎污泥,混浊)
$1__VE_ITEM__③ 好氧池污泥负荷过低,曝气过度,污泥自身氧化后产生的细碎污泥(好氧池COD去除率低,出水COD高)
$1__VE_ITEM__④ 好氧池污泥负荷过低,污泥停留时间长、曝气过度导致污泥絮凝性差(污泥结构松散但COD去除率高或不低)
厌氧池脉冲出水悬浮物(污泥)多如何解决?
$1__VE_ITEM__① 控制好初沉池物化污泥进入厌氧池(必须)
$1__VE_ITEM__② 在厌氧池顶部增加虹吸排泥管(不建议排厌氧底部污泥)
$1__VE_ITEM__③ 向厌氧池投加聚丙或聚铝
$1__VE_ITEM__④ 减少进水量或者排放厌氧池底部污泥
好氧池发生污泥膨胀现象如何解决?
$1__VE_ITEM__① 先加大排泥解决沉淀效果差问题,改善后再提升污泥浓度,降低污泥负荷
$1__VE_ITEM__② 加大好氧池污泥的排放量,降低污泥龄(严重时要坚持两个月左右)
$1__VE_ITEM__③ 控制水温在合适范围内,稳定进水量,保持好氧池有充足的溶解氧(必须)
$1__VE_ITEM__④ 加大好氧池营养料投加
$1__VE_ITEM__⑤ 如果二沉池泥层高可加大回流量、调节各二沉池进水量或投加聚铝聚丙(临时控制措施)
设计造纸废水处理工程时应注意哪些问题?
$1__VE_ITEM__① 污泥浓缩池一定要够大,物化污泥产生量很大
$1__VE_ITEM__② 压泥机要满足系统产泥量的需求
$1__VE_ITEM__③ 调节池一定要够大,因为造纸排水极不稳定,波动性很大(纸机停机瞬时排水量很大)
$1__VE_ITEM__④ 白水(白/滑石粉)最好能单独处理或小量的掺进原水进行处理
$1__VE_ITEM__⑤ 一定要考虑钙离子进入好氧池造成曝气头结垢的问题(物化处理方法选择或者曝气方式选择问题)
$1__VE_ITEM__⑥ 考虑造纸废水产生大量污泥去向问题(含水率在35%~40%以下可以送锅炉焚烧,同时要处理焚烧后的烟气问题)
$1__VE_ITEM__⑦ 提升泵选型上要考虑造纸废水中悬浮物、杂物多容易堵塞的问题
好氧池污泥老化的表象有哪些?
$1__VE_ITEM__① 初始阶段做沉降比时上清液开始混浊,有细碎污泥悬浮,难沉降,慢慢二沉池会有浮渣和浮泥出现
$1__VE_ITEM__② 污泥老化会导致好氧池污泥耗氧量增加(注意溶解氧突然下降的征兆)
$1__VE_ITEM__③ 镜检污泥结构分散,丝状菌少,轮虫多,原生动物少,污泥颜色变浅变黄
$1__VE_ITEM__④ 回流的二沉池污泥产生的泡沫介于表面活性剂泡沫和生物泡沫之间,感觉有点黏性
$1__VE_ITEM__⑤ 好氧池处理效果变差,耗氧量增加,出水COD和悬浮物增加,浊度上升
好氧池污泥老化的原因?
$1__VE_ITEM__① 营养料不足或不均衡,好氧池中硫化物浓度过高,溶解氧不足
$1__VE_ITEM__② 泥龄过长(镜检污泥中轮虫多,污泥结构分散,出水混浊,掺清水上清液还是混浊,同时有污泥解体迹象)
$1__VE_ITEM__③ 污泥在二沉池停留时间过长,厌氧反硝化后污泥变黏稠,产生脂类物质(严重时二沉池会有臭味出现)
好氧池污泥老化的解决方法?
$1__VE_ITEM__① 增加营养料的投加
$1__VE_ITEM__② 多排放好氧池污泥,加大污泥回流,减少污泥在二沉池的停留时间
$1__VE_ITEM__③ 适当减少好氧池进水量,待污泥活性好转再慢慢提高水量
微孔曝气方式有什么不足之处?
$1__VE_ITEM__① 微孔曝气膜价格昂贵,安装过程复杂麻烦
$1__VE_ITEM__② 维修成本高,维修过程麻烦
$1__VE_ITEM__③ 应用于造纸废水工程时容易堵塞(氧气与钙离子发生反应产生氧化钙)
$1__VE_ITEM__④ 微孔曝气膜易老化,卡箍被腐蚀后容易脱落
不锈钢钢管(或者用耐高压高强度的PVC管)直接开孔方式曝气的优点和缺点是?
$1__VE_ITEM__① 成本低,安装简单容易,基本没有维修成本(可根据需要来计算开孔孔径大小)
$1__VE_ITEM__② 不老化,不容易结垢堵塞,耐腐蚀
$1__VE_ITEM__③ 产生的气泡大,氧利用率低,需供气量大(应用于接触氧化法时悬挂的填料有剪切气泡的作用,气泡会变小)
好氧池改造安装完毕后如何恢复处理能力?
$1__VE_ITEM__① 首先让进水没过曝气头,再开风机让曝气头通气检查是否出现曝气头接缝漏气、断裂或者有不出气的情况
$1__VE_ITEM__② 然后边进水边回流污泥,进水量在设计的1/2或者1/3左右,等出水及格后再慢慢提高负荷
$1__VE_ITEM__③ 营养料按平常投加即可
两万方/天的造纸废水A/O工艺运行参数控制以及效果
$1__VE_ITEM__① 稳定进水量,物化要达到效果
$1__VE_ITEM__② 提高厌氧COD去除率,经常回流好氧污泥到厌氧池(东莞建晖工地厌氧池去除率在20%~30%,偏低)
$1__VE_ITEM__③ 好氧池水温在38℃以下,污泥浓度控制在3.0~3.5g/L,溶解氧控制在正常范围内,泥龄控制在5~7天
$1__VE_ITEM__④ 二沉池回流比控制在60%~75%(确保刮泥机吸泥口通畅)
$1__VE_ITEM__⑤ 营养料投加量(厌氧+好氧)面粉450Kg/天,尿素450 Kg/天,三纳225 Kg/天
$1__VE_ITEM__⑥ 二沉池没有浮渣浮泥,外观很好
$1__VE_ITEM__⑦ 二沉池没有(或很少)细碎污泥翻滚(好氧污泥活性好)
$1__VE_ITEM__⑧ 好氧污泥结构紧密,污泥沉降比30%~40%,污泥指数在100~120之间,好氧污泥为褐色,饱满
$1__VE_ITEM__⑨ 二沉池出水颜色为淡褐色,COD在80mg/L左右,清澈透明,浊度低
好氧池若停止进水检修时应该什么措施?如何恢复处理效果?
$1__VE_ITEM__① 加大二沉池回流量
$1__VE_ITEM__② 减少风机运行数量
$1__VE_ITEM__③ 增加营养料的投加
$1__VE_ITEM__④ 外排少量生化污泥
$1__VE_ITEM__⑤ 逐渐增加进水量,并随水量的增加而增加风机运行数量
$1__VE_ITEM__⑥ 恢复正常的污泥回流量,并逐渐恢复正常的营养料投加
好氧池溶解氧长期过高会出现怎样的情况?
$1__VE_ITEM__① 好氧污泥会自身氧化,污泥颜色变白
$1__VE_ITEM__② 好氧污泥逐渐老化,结构松散,菌胶团瘦小,丝状菌增多,轮虫大量繁殖
$1__VE_ITEM__③ 上清液细碎污泥多,处理效果变差,出水变混浊
$1__VE_ITEM__④ 出水颜色会变深(经过厌氧处理后断开的键在高氧氧化下会重新链接起来)
好氧池溶解氧长期不足会出现怎样的情况?
$1__VE_ITEM__① 污泥颜色变黑,处理效果变差
$1__VE_ITEM__② 污泥负荷增大,丝状菌容易繁殖,会出现污泥膨胀的现象
$1__VE_ITEM__③ 镜检污泥发现轮虫大量繁殖,钟虫纤毛虫等消失,菌胶团不透明
$1__VE_ITEM__④ 二沉池出水混浊,回流污泥反硝化泡沫增多,污泥和泡沫都变得黏稠
好氧池出现污泥膨胀现象的表现有哪些?
$1__VE_ITEM__① 出水颜色变深(有可能是丝状菌所至)
$1__VE_ITEM__② 污泥沉降性变差,污泥指数升高(SV30≥80~100,SVI≥ 150)
$1__VE_ITEM__③ 污泥沉降为整体沉降,上清液清澈,但出水COD会随着污泥膨胀发展而逐步升高,好氧去除率逐渐降低
$1__VE_ITEM__④ 镜检污泥丝状菌大量繁殖,大量伸出菌胶团外(菌胶团逐渐变瘦小,污泥结构变松散)
$1__VE_ITEM__⑤ 污泥沉淀后外观感觉到有松松的膨胀感(摇晃感觉污泥轻飘飘)
$1__VE_ITEM__⑥ 好氧池泡沫增多(有可能是丝状菌所至)
$1__VE_ITEM__⑦ 污泥颜色变浅(褐色变成类黄色)
好氧池会有哪些异常现象出现?
$1__VE_ITEM__① 好氧污泥发黑或者发白(溶解氧低或者过高)
$1__VE_ITEM__② 好氧池上清液混浊(污泥吸附性能变差或者溶解氧过高导致污泥解体、溶解氧过低有机物未能氧化掉)
$1__VE_ITEM__③ 从二沉池回流的污泥泡沫变黏稠(污泥在二沉池停留时间过长,污泥反硝化后活性变差)
$1__VE_ITEM__④ 好氧池泡沫增多(通过泡沫颜色、黏稠情况来判断是污泥本身发生变化造成的还是生产中添加的物质造成的)
$1__VE_ITEM__⑤ 好氧池去除率下降(具体分析原因:污泥活性情况、污泥负荷、溶解氧、污泥浓度、水温等)
$1__VE_ITEM__⑥ 好氧池污泥膨胀(通过加大排泥和调整营养料投加来控制,稳定进水量,保证溶解氧的充足和适合的水温)
$1__VE_ITEM__⑦ 好氧污泥做沉降比时上清液混浊细碎泥多(污泥负荷过高或者污泥解体,镜检污泥结构松散,菌胶团瘦小)
$1__VE_ITEM__⑧ 好氧微生物变少,结构松散,菌胶团瘦少(负荷过低或者过高、溶解氧不足、发生污泥膨胀、营养料不足)
$1__VE_ITEM__⑨ 好氧池溶解氧长期偏高而出水混浊且COD高(污泥负荷长期偏低,污泥解体、菌胶团被氧化,不消耗氧气)
$1__VE_ITEM__⑩ 污泥老化(导致污泥老化原因有泥龄长、负荷低等,污泥老化使出水变差,细碎泥、轮虫多,耗氧量增加)
二沉池会有哪些异常现象出现?
$1__VE_ITEM__① 出现浮渣浮泥(污泥老化或者污泥龄短,污泥在二沉池停留时间过长)
$1__VE_ITEM__② 出水混浊,COD高,发臭(好氧池溶解氧不足,好氧池停留时间短)
$1__VE_ITEM__③ 出水混浊,COD不是很高,细碎污泥多(好氧池溶解氧充足,污泥负荷小,污泥老化)
$1__VE_ITEM__④ 出水混浊,COD高,细碎污泥多(好氧池溶解氧不足,污泥老化,污泥负荷大)
$1__VE_ITEM__⑤ 出水清澈,COD高(好氧池污泥发生污泥膨胀现象)
$1__VE_ITEM__⑥ 细碎污泥翻滚(好氧池污泥出现问题,建议增加营养料,调整合适的污泥龄)
$1__VE_ITEM__⑦ 二沉池泥层过高(好氧池出现污泥膨胀现象或者回流比小)
$1__VE_ITEM__⑧ 二沉池水面冒气泡(污泥在二沉池停留时间过长)
$1__VE_ITEM__⑨ 回流污泥发黑发臭带黏稠状(污泥停留时间过长,回流比小)
$1__VE_ITEM__⑩ 出水色度变深(物化效果变差、厌氧池效果变差或者好氧池污泥发生污泥膨胀现象)
好氧池污泥发生污泥膨胀时为什么会出现上清液清澈但是COD高的现象?
$1__VE_ITEM__① 丝状菌有很强的吸附作用,大量的丝状菌有网捕作用,所以上清液清澈
$1__VE_ITEM__② 丝状菌大量伸出菌胶团外,阻隔了菌胶团得到充足的氧气,未能将有机物氧化转化成无机物
$1__VE_ITEM__③ 菌胶团得不到充足的氧气,繁殖活动减少,菌胶团变得瘦小,活性下降
厌氧池出水混浊是什么原因?
$1__VE_ITEM__① 厌氧池污泥负荷过高
$1__VE_ITEM__② 初沉池出水悬浮物多
$1__VE_ITEM__③ 厌氧池污泥浓度过高
$1__VE_ITEM__④ 厌氧池营养料不均衡
$1__VE_ITEM__⑤ 厌氧池进水水温过高
用惠菌聚EM活性菌处理污水的好处:
1、节约水资源、降低能耗和成本。
2、利用惠菌聚EM活性菌比一般净化槽处理污水,大大缩短曝气时间,提高工效。
3、治污效果显著,如:有机氮、金属离子、混浊度、COD(化学需氧量)、BOD(生化需氧量)、SS(浮游生物)等均下降至国标以下,而DO(溶解氧)上升,水质得到改善。
4.处理污水中的重金属等,消除毒害。
5.抑制病原菌,消除异味,改善空气质量。
惠菌聚水产EM菌液在养鱼等水产养殖上的作用:
1、有效改良水质、促进残饵及其它飘浮有机物的分解、降解氨氮、亚硝酸盐、硫化氢等有害有毒物质、增加水中溶解氧,促进水体中有益浮游生物的生长,调控养殖池微生物生态结构;
2、增强水产动物免疫功能,预防病害,增进健康,降低发病率及死亡率;
3、迅速净化池底淤泥,平衡PH值,减少水产动物的应激现象,创造健康养殖水环境;
4、迅速稳定水色、培育有益菌与有益藻类。特别对因有机质富余而引起的黑水、浑浊水、红水等的改善有明显的效果;
Ⅳ 我们应该如何合理开发利用富饶的海洋
科学合理地开发利用海洋
调查资料表明,近几年赤潮多发生于沿岸排污口,海洋环境条件较差,潮流较弱,水体交换能力较弱的海区,而海洋环境状况的恶化,又是由于沿岸工业、海岸工程、盐业、养殖业和海洋油汽开发等行业没有统筹安排,布局不合理造成的。为避免和减少赤潮灾害的发生,应开展海洋功能区规划工作,从全局出发,科学指导海洋开发和利用。对重点海域要作出开发规划,减少盲目性,做到积极保护,科学管理,全面规划,综合开发。另外,海水养殖业应积极推广科学养殖技术,加强养殖业的科学管理。控制养殖废水的排放。保持养殖水质处于良好状态。
Ⅳ 水产养殖废水怎么处理,水产养殖废水处理工艺
水产养殖废水处理方法主要有物理处理法、化学处理法、物理化学处理法、生物处理法。
1物理处理法
1)过滤法
由于养殖废水中的剩余残饵和养殖生物排泄物等大部分以悬浮态大颗粒形式存在,因此采用物理过滤法去除是最为快捷、经济的方法。常用的过滤设备有机械过滤器、压力过滤器、沙滤器等。在实际处理工程中,机械过滤器(微滤机)是应用较多、过滤效果较好的方式。沸石过滤器兼有过滤与吸附功能,不仅可以去除悬浮物,同时又可以通过吸附作用有效去除重金属、氨氮等溶解态污染物。
12)泡沫分离法
泡沫分离根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体对液相中的溶质或颗粒进行分离,因此又称泡沫吸附分离。其原理是向被处理水体中通入空气,使水中的表面活性物质被微小气泡吸着,并随气泡一起上浮到水面形成泡沫,然后分离水面泡沫,从而达到去除废水中溶解态和悬浮态污染物的目的。由于泡沫分离技术不仅可以将蛋白质等有机物在未被矿化成氨化物和其他有毒物质前就已被去除,避免了有毒物质在水体中积累,而且可向养殖水体提供所必需的溶解氧,对维护养殖水体生态环境有良好作用。
泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。
2化学处理法
1)臭氧处理法
海水工厂化养殖废水存在养殖生物排泄物等悬浮物,以及氨氮、可生物降解有机物等物质,而且也存在难生物降解有机物。因此,利用臭氧、过氧化氢、二氧化氯、漂白液等化学氧化剂的氧化作用,氧化分解难生物降解溶解态有机物是养殖废水深度处理的主要手段。因此采用O3/UV工艺,既能提高处理效率又可减少臭氧的用量。用O3/UV技术净化湖水可达到水质净化及水体增氧的目的。
臭氧的净化原理在于它在水中的氧化还原电位为2.07 V,高于氯(1.36 V)和二氧化氯(1.5 V)。它能够破坏和分解细胞的细胞壁(膜),迅速扩散渗入细胞内,从而杀死病原菌。臭氧在水中分解的中间物质羟基自由基(•OH),具有很强的氧化性,可以分解一般氧化剂难分解的有机物。因此,用臭氧处理废水,既能够迅速灭除细菌、病毒和氨等有害物质,又能增加水中溶解氧,从而达到净化养殖废水的目的。
2)电化学法
电化学是研究电和化学反应相互关系的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现,二者统称电化学,后者为电化学的一个分支,称放电化学。在水产养殖废水的处理中,用电化学法去除水中溶解的亚硝酸盐和氨氮的研究结果表明,亚硝酸盐完全去除的时间和能耗随着传导率的增加而降低,输入电流最大为2A时,耗能最少,pH相对于输入电流和电导率来说几乎没有影响;在酸性条件下有利于亚硝酸盐的去除,碱性条件有利于氨的去除,氨的去除速度低于亚硝酸盐的去除速度。
3生物处理法
1)活性污泥法
活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。
污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,形悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行。
第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。
第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。
经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。
2)生物膜法
生物膜法是与活性污泥法并列的一类废水好氧生物处理技术,是一种固定膜法,是土壤自净过程的人工化和强化;主要去除废水中溶解性的和胶体状的有机污染物。具体参见http://www.dowater.com更多相关技术文档。
生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。
Ⅵ 海水可以直接利用吗
海水直接利用主要包括海水冷却和生活用海水
Ⅶ 如何养殖海水鱼水质如何解决
一、水槽
最最适用的水槽有下列两种,用树脂黏的玻璃水槽,用压克力树脂板溶接而成的板溶压克力水槽。尺寸尽可能用大水槽和最好跟现有尺寸,因为可跟一般其他现有配品配合。
1.45×30×30
2.60×30×36
3.75×45×45
4.90×45×45
5.120×45×45
6.150×45×45
二、滤器
1.角落滤器
过滤室的容量细小,而且会使水槽奱得狭窄和细小。不大适合海水鱼槽。
2.底部滤器
一般的水槽是用帮浦将水抽到上部滤器,水过滤之后再回木槽中,上部滤器有纵置式和横置式两种,它们的内部构造大致相同,但就过滤面积的广大而言,横置式比较理想,而且在外观上来看,把横置式滤器放在水槽上面,比较美观大方,整理上较为方便。
在水槽中竖立一支水管,并且穿过底板使水能往下流,方法是用排水管方式,在水槽底面装设滤器中。这一次,是在下部滤器中架设帮浦,然后把水往上捸汞槽中的水溢出后,就经过排水管落到滤器中。排水逭式的滤器荓没有值得大书特书的优点,只是放置水槽的台架下面,可以充份的利用,而且在滤器清扫上较方便罢了。
3.上部滤器
用马达把水抽上水面,经过滤床后回流到水槽。上部滤器要特别注意的是,马达的流水不能过大,因为如水不能在滤中稍稍停留的话,过滤后果便不理想。相反,如马达水流过慢,又不能达致过滤的目的。
三、滤材
珊瑚砂是铺放在(底部滤器)和(上部滤器)的过滤室里面最好的滤材,它的面积大而且多孔的碳酸钙,硝化细菌附着其上,可以将海水加以生物过滤,是饲养海水鱼不可或缺的重要项目。
珊瑚砂的大小约在五致八毫米,不要全部太细或全剖太大,最好是混合,但差别不要太大。
四、暖管
一定要用可靠和耐用的产品,因它长期在水中如果品质不皆,会容易造成漏电。别一方面温度的准确也很重要。有一次,便因为暖管的自动调较出错,水温升到三十五度以上,最后只得一尾紫吊(粗皮鲷)生还。
如果用的是大水槽可分别放在槽的两边,最好放在有水流的地方,可加速暖水的流动,平均分布。
五、温度计
大致可分为水中和水外(贴在槽的表面)两种,个人较喜欢用水中,因为准确度较皆。如果用的是大水槽可分别放在槽的两边。如果两边的温度差过大时,可能是暖管的位置有问题。
六、比重计
是饲养海水鱼的必须品,要特别注意的是它们都是溥而细的玻璃管,很易破损,使用时一定要小心。
七、海水
海水中有很多不同的原素,有些是鱼儿不可小的。在如今养海水的人都用人工海水,因为人工海水清洁和方便,而且配方也做得不错,很多原素也包含了。所以很多世界大水族馆也用人工海水。水中的原素经鱼儿长期给收,最好定期加入一些海水素。
其实不光是海水鱼,饲养所有的观赏鱼都面临着鱼患疾病的挑战。将自己心爱的鱼买回家,不经意间鱼便患了病。赶快通过任何能够得到的途径去查询治疗办法,从书上、问鱼商、向朋友咨询、上网等等。然后不敢有丝毫懈怠,在忙碌一天下班后匆匆忙忙地赶往鱼市,花重金为鱼购买最好品牌的药物,回家后不顾得吃饭立即投入治疗。结果鱼往往还是不近人意地死却了。这是多么悲哀的事情呀!相信很多朋友和我有同样的体会,那么如何对付鱼类疾病呢?以下是我的一些粗糙见解:
首先,鱼为什么会得病呢?水质问题?营养问题?打斗造成的伤害?还是外来细菌的感染?个人认为主要原因是饲养环境不合理。我们现在饲养的用于观赏的海水鱼。决大多数产于热带的珊瑚礁海域。那里是生物的摇篮,珊瑚礁用占世界7%的面积养育了占世界65%的物种。生物从低等到高等;从简单到复杂;几乎每一个门,每一个纲都在那里留下了它们的痕迹。在这样错综复杂的环境里,生物们各司其职、互补互利地生活在一起。使得那里的生态维持在相当平衡的状态。如此优越的环境下,鱼类想吃什么就吃什么、想游到那里就游到那里,因此,很少会有疾病的捆饶。即便偶得小徉,在顽强生命力的抗衡下也会极快地痊愈。而我们饲养在家里的鱼往往只拥有痛苦的环境,很多鱼缸里只有裸露的沙子和光秃的石头。即便是一些个人认为得意的珊瑚缸里,也是向搭积木一样稀稀松松地搭放着几块石头,然后在上面放一些榔头、宝石花什么的,生物种类完全是很贫瘠的。这是一方面,另一方面是:我们的鱼缸往往很小,甚至有的只有几十公升。一些穴居、有家庭感的鱼,如:小丑、草莓、古B等等也就算了。若是饲养蝶鱼或吊类,它们不能尽情地游涞游去,很快就抑郁地死去。
Ⅷ 海水养殖重金属超标怎么处理
1、使用EDTA二钠等螯合剂。使用EDTA二钠等螯合剂处理水体重金属,是水产行业特别是育苗水体水质处理常用的方法,主要原理是EDTA利用自身的螯合作用螯合重金属离子并与之形成稳定的螯合物,从而使重金属离子在水中去除。由于使用成本较高,很难在养殖池塘大面积使用。
2、使用硫代硫酸钠去除重金属离子,硫代硫酸钠自身有较强的络合作用,能够络合水体中的重金属离子并与之形成络合物,从而掩蔽重金属离子,消除其本身对水生动物的毒性。
3,外泼有机酸类产品,络合养殖水体中的重金属离子,从而降低养殖水体中的重金属离子浓度,减少它们的对水生动物的危害。养殖过程中,蓝藻频发的池塘如果用硫酸铜杀灭,一次的用量即会造成水体铜离子严重超标,在施用硫酸铜将蓝藻杀灭后用有机酸解毒是合适的,因为发生蓝藻的池塘一般pH值均较高,施用有机酸产品可络合分解水体残存的过多铜离子和藻毒素,又可适当改变pH值抑制蓝藻的再发生.
4.物理吸附法:可以使用的吸附剂有沸石粉和活性炭。这些是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构,能够将重金属离子吸附到自己的多孔结构中,从而实现对养殖水体中重金属离子的去除。沸石粉的吸附具有高选择性和高效选择吸附性。沸石晶体内部的空洞和孔道大小均匀且固定,一般空洞直径为6-15A。只有直径较小的分子才能通过沸石孔道进入空洞被吸附,大的分子不能进入空洞被吸附,沸石因具有这样的选择吸附性能,也称分子筛。沸石对有机污染物的吸附能力主要取决于有机物分子的极性大小和分子直径。小分子比大分子易被吸附,极性分子较非极性分子易被吸附
5,生物处理法。主要是通过养殖水体中水生植物对水体中重金属离子的富集作用。
植物对重金属的吸收富集机理,主要为两个方面:一是利用植物发达的根系对重金属废水的吸收过滤作用,达到对重金属的富集和积累。二是利用微生物的活性原则和重金属与微生物的亲和作用,把重金属转化为较低毒性的产物。通过收获或移去已积累和富集了重金属的植物的枝条,降低土壤或水体中的重金属浓度,达到治理污染、修复环境的目的。
在植物整治技术中能利用的植物很多,有藻类植物、草本植物、木本植物等等。其主要特点是对重金属具有很强的耐毒性和积累能力,不同种类植物对不同重金属具有不同的吸收富集能力,而且其耐毒性也各不相同。
6,生物塘净化法。该方法的原理,是利用复合的水生生态系统的协同作用,完成对重金属污染物的吸收、积累、分解以及净化作用。
Ⅸ 养殖废水处理新技术有哪些啊
工厂化养殖废水处理技术。随着海水养殖技术水平的提高和市场需求的扩大,近10年来我国海版水工厂化养殖得到权了迅速发展,养殖废水中所含的剩余饵料、化学品残留物、以及富含氮、磷、有机质和毒性物质的养殖生物排泄物会加剧养殖邻近海域海水富营养化程度和水质污染,引发有害赤潮等海洋生态环境问题,同时水体污染反过来制约水产养殖的发展。养殖废水生物处理是一种典型的稳定有机污染物的方式,包括活性污泥法和生物膜法。
Ⅹ 如何能将海水有效利用
水荒目前已成为世界性的问题,是制约社会进步和经济发展的瓶颈。据统计,全球用水总量每15年就翻一番,到2030年地球上将有1/3的人口面临淡水资源危机。
地球的表面虽然有71%被水覆盖,但其中96.5%是海水,还有15%是咸水,在余下的2.5%的淡水中,又有69%是人类难以利用的两极冰盖。人类可利用的淡水只占全球水总量的0.77%。有人比喻在地球这个大水缸里可用的淡水只有一汤匙。
合理节约用水是可持续发展的重要课题,然而,节水并不能增加淡水的总量。大量地利用海水自然而然地就成为21世纪解决淡水缺乏的主要途径。海水利用包括海水直接利用,海水淡化和海水综合利用,以及海水农业等。
海水直接利用是用海水代替淡水作为工业用水和生活用水。到21世纪上半叶,随着海洋生物污损防治技术的提高和耐腐蚀材料的进一步发展,沿海城市的绝大部分工业冷却水都将采用海水。海水冲厕会得到大面积推广。
海水淡化是海水利用的重点,到了21世纪中叶,也许我们会看到这样一个景象,每个岛屿或缺水的沿海城市都建有海水淡化工厂。这些工厂里大多采用蒸留法和反渗透技术来制取淡水。到时候全世界使用的水资源中有1/5以上来自海洋。
反渗透法是利用孔径比纳米还细小的半透膜滤去盐份来制取淡水的。另外,还有人设想由于反渗透法制取淡水是在一定的压力下实现的,假如把海水淡化装置放在海底,就可以利用海水自身的压力来获取淡水,对海上城市或石油钻井平台非常实用。
出海远洋只要带一台海水淡化设备就可以满足船上的淡水供应。采用蒸留法制取淡水,主要是利用热能来实现的,在有核电站和热电厂的条件下采用这种技术可以充分利用电厂余热大大减少能耗。
海水是含有多种物质的混合液体,从海水中提取铀可用于核电站的运行,以电力作为海水淡化的能量,可制取淡水,用海水淡化后的浓盐水可作为提溴和制盐的原料,也可以进一步提取钾、镁、锂、碘和重水,这样环环相扣,从而形成物资高效利用的生态工业。
也许再过几十年随着海洋化工的发展,海水淡化反而成为了副产品,人类用水量可大辐度增加。农业用水占人类用水总量的70%,海水农业是当今研究和开发的热点之一。21世纪,随着我国基因工程技术的飞速发展,耐海水植物的基因被转接到水稻、蔬菜等作物上,到那时,人类可在海湾或滩上方便地种植各种农作物,并直接利用海水灌溉。不用再为缺水、干旱而担忧。海水农业将成为人类食品供给的重要基地。
拥有13.7亿立方千米的海水是我们人类取之不尽的宝库。21世纪海水的综合利用必将使我们的生活更加美好。摘自北京科普之窗