1. 全氟己基乙基磺酸钾一公斤是什么价位如买一百公斤可便宜多少
这个100公斤的话你如果买的就算比较多了,而且这个你一般情况下会便宜5块钱左右一斤。
2. 烷基乙基磺酸盐的功能
烷基乙基磺酸盐(SAS)有以下六个功能(性质和特点):
1、稳定性
在碱性、中性和弱酸性溶液中较为稳定,且耐硬水。
2、溶解度
直链烷基磺酸盐的溶解度较大(C14时超50%),且随着烷基链的碳数的增长而下降。
3、临界胶束浓度
有较低的CMC,C15时CMC为10-2数量,C19时为10-3数量级。 随碳原子数的增加,CMC数值下降。
4、润湿力与脱脂力
工业SAS在硬水中仍具有良好的润湿性,实验C13-C16最好。 脱脂作用实验表明,C11-C15之间,随着碳链的增加,脱脂能力提高,碳数超过14时,脱脂力急剧增大到原来的近一倍,碳数在15-16时,脱脂力最好。
5、泡沫能力和去污力
SAS的泡沫能力和LAS(直链烷基苯磺酸钠)相比略低,但去污力基本相同。
6、生物降解
直链烷基磺酸盐具有优良的生物降解性能。20度、两天后,生物降解率可达99.7%,并不产生有毒代谢物,并对皮肤刺激性小。
3. 己脒定二(羟乙基磺酸)盐主要用途
你是哺乳期,生完孩子几个月了,如果没有100天还是不用的好。(建议慎用)
Cefradine (Cephradine, Velosef) 别名:先锋霉素Ⅵ、头孢菌素Ⅵ、先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。 本品为第一代半合成头孢菌素,抗菌作用与头孢氨苄相似。本品耐酸可以口服,吸收好,血药浓度较高,特点是耐β内酰胺酶,对耐药性金葡菌及其它多种对广谱抗生素耐药的杆菌等有迅速而可靠的杀菌作用,主要以原则经尿排泄,尿中浓度较高。临床主要用于呼吸道、泌尿道、皮肤和软组织等的感染,如支气管炎、肺炎、肾盂肾炎,膀胱炎,耳鼻咽喉感染、肠炎及痢疾等。 口服,成人,0.25g~0.5g/次,3~4次/日,空腹给药。儿童,每日50mg~100mg/kg,分3~4次给予。肌注或静注,成人,0.25g~0.5g/次,3~4次/日。对严重感染每日可增至4g。 1 不良反应偶有胃肠道功能紊乱,如恶心、呕吐、腹泻以及皮疹、荨麻疹等。长期应用可致菌群失调,二重感染和维生素缺乏。 2 和青霉素有部分交叉过敏性,对青霉素过敏者或有过敏体质的人慎用。 3 食物可延迟本品吸收,不影响吸收总量,但宜空腹服用。分类:第一代: 头孢噻吩钠 头孢氨苄 头孢羟氨苄 头孢唑啉 头孢拉啶 头孢硫脒 头孢克罗 头孢噻啶 头孢来星 头孢乙腈 头孢匹林 头孢替唑 第二代: 头孢呋辛钠 头孢呋辛酯 头孢孟多 头孢呋辛钠 头孢克洛 头孢替安 头孢美唑 头孢西丁 头孢丙烯 头孢尼西 第三代: 头孢噻肟钠 头孢哌酮 头孢他啶 头孢曲松 头孢唑肟 头孢甲肟 头孢匹胺 头孢替坦 头孢克肟 头孢泊肟酯 头孢他美酯 头孢地秦 头孢噻腾 头孢地尼 头孢特仑 头孢拉奈 拉氧头孢 头孢布烯 头孢米诺 头孢罗齐 第四代: 头孢吡肟 头孢匹罗 头孢唑南
头孢替安使用详细说明书:
药理毒理:本品为第二代头孢菌素类抗生素。对革兰阳性菌的作用与头孢唑林相接近,而对革兰阴性菌,如嗜血杆菌、大肠埃希菌、克雷伯杆菌、奇异变形杆菌等作用较优,对肠杆菌、枸橼酸杆菌、吲哚阳性变形杆菌等也有抗菌作用。其作用机制为与细菌细胞膜上的青霉素结合蛋白(PBPs)结合,使转肽酶酰化,抑制细菌中隔和细胞壁的合成,影响细胞壁粘肽成分的交叉连结,使细胞分裂和生长受到抑制,细菌形态变长,最后溶解和死亡。
药代动力学:静脉注射本品0.5g后,即刻血药浓度为65mg/L,半小时后为20mg/L。肌内注射0.5g后30分钟达血药峰浓度(Cmax),为20 mg/L。内脏器官中药物浓度以肺中为最高,在其他内脏和肌肉组织中也有一定浓度。不易进入脑脊液中。以原形自用于治疗敏感菌所致的感染,如肺炎、支气管炎、胆道感染、腹膜炎、尿路感染以及手术和外伤所致的感染和败血症等。
肾排泄,血消除半衰期(tl/2()约为0.5小时。
用法用量:肌内注射、静脉注射或静脉注射。 1.肌内注射:用0.25%利多卡因注射液溶解后作深部肌内注射。 2.静脉注射:用灭菌注射用水、氯化钠注射液或5%葡萄糖注射液溶解,每0.5g药物稀释成约20ml,缓缓注射。 3.静脉滴注:将1次用量溶于适量的5%葡萄糖注射液、氯化钠注射液或氨基酸输液中,于30分钟内滴入。 4.成人常用量 一日l~2g,分2~4次给予。严重感染,如败血症也可用至一日4g。 5.儿童 按体重一日40~80mg/kg,病重时可增至一日160mg/kg,分3~4次给予。
不良反应:偶见过敏反应、胃肠道反应、血象改变及一过性血清氨基转移酶升高。可致肠道菌群改变,造成维生素B和K缺乏。偶可致继发感染。大量静脉注射,可致血管疼痛和血栓性静脉炎。
禁忌症:对头孢菌素类抗生素过敏者禁用。
注意事项:1.交叉过敏反应:对一种头孢菌素或头霉素(cephamycin)过敏者对其他头孢菌素或头霉素也可能过敏。对青霉素类、青霉素衍生物或青霉胺过敏者也可能对头孢菌素或头霉素过敏。对青霉素过敏病人应用头孢菌素时发生过敏反应者达5%~10%;如作免疫反应测定时,则对青霉素过敏病人对头孢菌素过敏者达20%。 2.对青霉素过敏病人应用本品时应根据病人情况充分权衡利弊后决定。有青霉素过敏性休克或即刻反应者,不宜再选用头孢菌素类。 3.有胃
4. 印染废水,是染浆废水来的,脱色效果不好,怎么办
不知到你用的什么工艺,一般生物处理不易脱色的话,可以考虑加点絮凝剂,另外氧化法也比较常用,下面一个参考文摘不错的:
由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大.染料废水处理难点:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分复杂.三是水质水量不稳定,排放具有间歇性.印染废水的处理目标一般是COD的去除与脱色,但脱色问题难度更大.
3. 脱色处理方法
3.1 物理方法
3.1.1吸附法
吸附法是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法.吸附脱色技术是依靠吸附剂的吸附作用来脱除染料分子的.吸附按其作用力可分为物理吸附、化学吸附和离子交换吸附三种.目前用于吸附脱色的吸附剂主要是靠物理吸附, 但离子交换纤维、改性膨润土等也有化学吸附作用.
常用的吸附剂包括可再生吸附剂如活性炭、离子交换纤维等和不可再生吸附剂如各种天然矿物(膨润土、硅藻土)、工业废料(煤渣、粉煤灰) 及天然废料(木炭、锯屑) 等.传统的吸附剂是活性碳,活性炭具有较高的比表面积(500- 600 m2/g),它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能.活性炭去除水中溶解性有机物(分子量不超过400)非常有效,但它不能去除水中的胶体疏水性染料.若废水BOD5> 500mg/L,则采用吸附法是不经济的.膨润土作为水处理中的吸附剂和絮凝剂,已被广泛用于印染废水脱色领域,近年来制成多种复合膨润土、VS型纤维和聚苯乙烯基阳离子交换纤维等,具有物理吸附和离子交换功能,且比表面大、离子交换速度快,易再生,对难处理的阳离子染料废水有很好的脱色效果,有些改性的膨润土的脱色效果甚至高于活性炭[4];某些集吸附与絮凝性能为一体的吸附剂如硅藻土复合净水剂也已开发;用电厂粉煤灰制成具有絮凝性能的改性粉煤灰,对疏水性和亲水性染料废水均具有很高的脱色率;另外工业废料(如煤渣、粉煤灰等)、天然废料(如木炭、木屑等)、植物秸秆(如玉米棒等)均对印染废水具有一定的吸附作用.
吸附法尤其适合难生化降解的纺织印染废水脱色处理,印染废水的吸附脱色技术是一项非常有效而又比较经济的方法.活性炭吸附脱色技术不适合印染废水一级处理,只能用于深度脱色处理,活性炭处理成本高,再生困难,所以活性炭的再生技术是正在研究的课题,其中生物再生是研究的重点方向.煤、炉渣吸附剂,原料来源广,成本低,但在处理印染废水之后存在二次污染,所以只适合与生化法或砂过滤等方法联合使用.离子交换树脂对水溶性染料离子吸附特别有效,离子交换吸附剂的开发研制是今后的主要发展方向之一.廉价、高效、因地制宜新型吸附材料的开发是一项很有前途的技术.吸附法与其它处理方法的优化组合处理印染废水,脱色效果更佳.[5]
综上所述,吸附脱色的发展方向体现在两个方面: ①根据吸附机制开发、寻找新的吸附剂; ②对现有吸附剂的改性与活化, 以提高脱色效果和再生能力.
3.1.2超滤法脱色
超滤是利用一定的流体压力推动力和孔径在20~200üA 的半透膜实现高分子和低分子的分离.超滤过程的本质是一种筛滤过程,膜表面的孔隙大小是主要的控制因素.该法的优点是不会产生副作用,可以使水循环使用.早在70 年代初期, 膜分离技术就尝试用来处理印染废水.目前, 该方法可用于去除各种染料和添加剂.但由于分离染料混合物的困难, 并未达到完美的程度.
在这种技术中,半透膜的性质起着决定性的作用.就材料而言,膜有动态膜,纤维素类膜,聚砜超滤膜,荷电超滤膜或疏松反渗透膜.[6]
(1)动态膜从处理效果和经济上讲,ZrO-PAA 动态膜是可行的.但能耗较大,其渗透水及化学物质的再利用率可达88% 到96%.
(2) 纤维素类膜.CA 膜的选择性随膜表面与各种染料互变异构体相互作用而发生变化,但膜材料本身在耐pH、耐温等方面仍然有所不足.纤维素类膜在耐pH值、耐压、耐温度等方面优于CA ,用纤维素超滤膜反渗透处理染色废液, 染料去除率97% 以上可实现水的循环使用,但反渗透所需的高压操作仍是它的不足.
(3) 聚砜超滤膜由于其良好的物理化学稳定性,有较大的应用前景.使用聚砜超滤膜代替纤维素膜可实现高温操作, 回收染料减轻污染, 但仍未达到国家排放的标准.
(4) 荷电超滤膜或疏松反渗透膜是用来描述其分离性能介于反渗透和超滤之间的一种膜.荷电超滤膜是以其化学结构含有荷电基团而定义的, 疏松反渗透膜是以其物理结构而命名, 它们往往指的一种膜.对盐NaCl 截留只有2%~ 3% , 而对于500~2 000 分子量的物质,具有较高的分离率, 同时保持高的水通量.一般染料的分子量正好在这种膜的截留范围, 特别是离子型染料.该膜在低压下操作(10 kg/cm 2) 耐pH值、耐压密、耐污染、耐温等方面都比较突出,前景广阔[7].
3.1.3辐射降解法
电离辐射可有效地降解染料水溶液,辐射技术和其它技术有很好的协同作用.与常规污染物处理技术相比,辐射技术在常温常压下进行,具有工艺简单、无二次污染等特点,对难降解有机污染物的处理更有其独特长处.[8]
用60Co γ射线辐照甲基橙和活性艳蓝KNR水溶液,辐照后染料水溶液的可见光区和紫外区的特征吸收峰随吸收剂量的增加而渐渐下降至接近零,说明辐射降解反应既破坏了染料分子的发色基团,同时也破坏了染料的有机分子结构.脱色率和COD去除率均随吸收剂量的增加而增加.过氧化氢与辐射有协同作用,在相同的吸收剂量下,脱色率和COD去除率均随过氧化氢的浓度增加而增加.另外,该法pH值适用范围很广;溶液的初始浓度越大,COD去除和脱色效果越差;氧的存在可以促进染料分子的降解.在同样辐照条件下,染料的辐射降解效果因染料分子的结构不同而略有不同[9].
辐射法处理印染等难降解污水时虽然有机物的去除率高、设备占地小、操作简便,但用来产生高能粒子的装置价格昂贵,技术要求高,而且该方法能耗较大,能量利用率不高,若要真正投入实际运行,还需进行大量的研究工作.
3.2 物理化学法
3.2.1絮凝法
印染废水的絮凝脱色技术, 投资费用低, 设备占地少, 处理量大, 是一种被普遍采用的脱色技术.某印染厂采用混凝脱色- 悬浮曝气生物滤池工艺处理主要含活性染料的废水,原水CODCr, SS的平均质量浓度分别为296,285 mg/L 和平均色度为550倍, 处理后出水水质相应各项指标分别为40, 20 mg/L 和10 倍, 其去除率分别为87%, 92%和98%.[10]
在印染废水中使用的絮凝剂很多,大致可分为无机絮凝剂、有机絮凝剂和微生物絮凝剂三类,其中,有机絮凝剂还分为天然有机高分子絮凝剂、合成有机高分子絮凝剂.由于印染废水水质比较复杂,无机单盐絮凝剂在水解絮凝过程中,未能完成具有优势絮凝效果的形态,投药量大,絮凝效果差;无机高分子絮凝剂可以较好地除去废水中大部分悬浮态染料,但对于水溶性染料中分子量小、不容易形成胶体的废水则难以处理;有机高分子絮凝剂对于水溶性染料等废水具有很好的脱色性能,但单独使用效果差,而且易于产生有毒物质;因此,开发研制价廉、无毒、高效的新型有机絮凝剂,已成为目前絮凝法的主要研究方向之一.
复合絮凝剂则能同时发挥几种絮凝剂的优点,使絮凝法用于印染废水处理既经济,又适用.如将有机絮凝剂与无机絮凝剂复配使用,充分发挥有机高分子絮凝剂的吸咐架桥性能和无机絮凝剂的电性中和能力,可以使处理出水达到较好的效果.此外,淀粉衍生物、木质素衍生物、羧甲基壳聚糖[11]等天然高分子具有无毒、原料广、价廉和可生物降解等优点,也得到科研工作者的高度重视.另外,微生物絮凝剂是利用生物技术,从微生物体或其分泌物提取、纯化而获得的一种安全、高效,且能自然降解的新型水处理剂.与普通的絮凝剂相比,有固液易于分离,沉淀少,适用性广等优点,因此微生物絮凝剂的研究正成为当今世界絮凝剂方面研究的重要课题[12].总之,高效、无毒、无害的环境友好性絮凝即将在印染废水处理中有广阔的应用前景.
絮凝法虽然是含染料废水处理的常用方法,但对于许多可溶性好的染料, 处理效果往往不佳.因此, 复合絮凝法将成为工业废水处理工艺研究的主要内容和发展方向.根据实际出水要求,采用适当的预处理和后处理手段,发挥絮凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义.
然而,用絮凝法进行废水脱色依然存在以下几个方面的问题:产生大量的淤泥;由于废水水质变化大,每批废水脱色前均需要进行预试验,以确定最佳条件,提高了成本,又费时.过量的阳离子絮凝剂会在废水中产生大量氮的化合物,它们对鱼类有毒且难以生物降解和硝酸化抑制,絮凝剂过量也可能导致沉淀重新溶解.脱色效率低,不符合排放标准.因此,实际生产中,应根据实际出水要求,采用适当的预处理和后处理手段,发挥混凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义.
3.3 化学方法
3.3.1电化学法
电化学法是处理印染废水的另一种有效的处理方法.电化学法通过可溶性电极在阳极和阴极上发生电絮凝、电气浮和H的间接还原作用从而达到处理废水的目的.电化学法处理印染废水具有设备小、占地少、运行管理简单、COD去除率高和脱色好等优点,但同时电化学法存在着能耗大、成本高和析氧析氢副反应等缺点.近年来,随着电化学和电力工业的发展以及许多新型高析氧析氢过电位电极的发明,电化学法又重新引起人们的重视.根据电极反应方式划分, 传统电化学方法可细分为内电解法、电絮凝和电气浮法、电氧化学.
内电解法是利用废水中有些组分易被氧化,有些组分易被还原,在有导电介质存在时,电化学反应便会自发进行,同时兼有絮凝、吸附、共沉淀等综合作用的一种废水处理方法[13].最著名的内电解法是铁屑法, 即将铸铁作为滤料, 使印染废水浸没或通过, 利用Fe 和FeC 与溶液的电位差, 发生电极反应, 产生较高化学活性新生态H, 能与印染废水多种组分发生氧化还原反应, 破坏染料发色结构, 而阳极产生的新生态Fe2+, 其水解产物有较强的吸附和絮凝作用.该法不需要外加电源,操作简单,成本低廉,是种很有前途的处理方法.
电气浮法是以Fe、AL作阳极产生的H2将絮体浮起;而电絮法则是利用电极反应产生的Fe2+ 、Al3+实现絮凝脱色.采用石墨、钛板等作极板, 对染料废水通电电解, 阳极产生O2或Cl2, 阴极产生H2.通过O的氧化作用及H的还原作用破坏染料分子而使印染废水脱色, 脱色率可达98% 以上,COD去除率达80%以上.
国内重点研究的是电化学与其它方法相结合,其中较为有成就的是用絮凝复合床新技术处理高色度印染废水,对色度>10000倍的印染废水处理后,脱色率可达99%以上,CODCr去除率达75%.国外在新型电极方面研究较多,如:Sb/SnO2、Ti/SnO2、Ti/RnO2、Ti/Pt等电极.
电催化高级氧化技术(Advanced Electro catalysis Oxidation Processes , AEOP) 是最近发展起来的新型AOPs ,因其处理效率高、操作简便、与环境兼容等优点引起了研究者的注意.它能在常温常压下,通过有催化活性的电极反应直接或间接产生轻基自由基, 从而有效降解难生化污染物.陈武等进行了三维电极电化学方法处理印染废水实验, COD去除率达74.7% ,色度去除率达93.3%[14].
3.3.2氧化法
氧化法是使染料分子中发色基团的不饱和双键被氧化断开,形成分子量较小的有机物或无机物,从而使染料失去发色能力的一种印染废水处理方法.氧化法主要有:高温深度氧化法、化学氧化法和光催化氧化降解法等.
高温深度氧化法主要是焚烧法.
化学氧化法是印染废水脱色处理的主要方法,其机理是利用氧化剂将染料不饱和的发色基团打破而脱色.Fenton试剂(Fe2+-H2O2)、臭氧、氯气、次氯酸钠等是一般采用的氧化剂.常见的有组合法和催化氧化法等.如采用混凝- 二氧化氯组合法的优点在于ClO2氧化能力强,是HClO的9倍多,且无氯气氧化法处理废水时可能与水中有机物结合生成氯代有机物(AOX)[15].
化学氧化法能有效地去除印染废水中的色度,但不能很好地去除废水中的COD,对此有人提出了不完全氧化的方法,即只部分氧化,使有机物通过自由基耦合降低水溶性而絮凝去除.陈玉峰[16]等通过实验发现,电生成Fenton试剂处理实际工业印染废水,CODCr去除率在80 %以上, 脱色率达到95% ,处理费用1117元/m3,具有很好的实际应用价值和市场前景.盛翼春[17]通过研究发现,采用新型电催化氧化对染料浓度高达0.3g/l的水溶性染料废水在2分钟内脱色率高达95%以上.
同时,随着太阳能技术的发展进步,光催化氧化也越来越受到人们的重视.夏金虹[18]用纳米TiO2粉体光催化降解印染废水,脱色率为96% , CODCr去除率为86%,TiO2催化性能比较稳定,可重复使用.光催化氧化技术具有工艺设备简单、操作条件易控制、处理成本较低、氧化能力强、无二次污染等突出优点,在有机废水处理中有着广阔的应用前景.但悬浮体系的纳米TiO2颗粒由于粒径极为细小,存在着难以回收、容易中毒、不易分散等缺点,需通过先进的负载技术或光化学反应器,甚才会获得更高催化效率.因此,纳米TiO2光催化剂的负载技术对其实现大规模实用化、商品化和工业化具有重大的实际意义,是今后TiO2研究的主要方向[19].
总之, 氧化法是一种优良的印染废水脱色方法,但也有其自身的缺憾.如果氧化程度不足, 染料分子的发色基团可能被破坏而脱色, 但其中的COD仍未除尽; 若将染料分子充分氧化, 能量、药剂量消耗可能会过大, 成本太高, 所以氧化法一般用于氧化- 絮凝或絮凝- 氧化工艺.采用氧化- 絮凝工艺, 目的是通过氧化法将水溶性染料分子变为疏水性或使阳离子染料分子转变为中性, 阴性分子, 以利絮凝除去.反之, 采用絮凝- 氧化工艺则是将氧化作为后处理步骤, 对印染废水做深度处理经进一步去除残余色度及COD[20].
3.3.3还原法
还原法式使用还原型脱色剂对直接染料废水进行脱色处理的方法,使用的原料主要是铁屑.铁屑是机械加工过程中的废料, 用于处理印染废水,不仅成本低廉、操作简单, 而且能够获得以废治废的效果.该方法主要基于电化学反应.铁屑是铁-碳合金, 浸入废液后形成无数微小原电池.电极反应产物为Fe2+, H2,OH-, 均具有较高的化学活性, 可有效地脱除废水中的染料分子.其它还原剂有保险粉(+ 活性炭)、亚硫酸及其盐.洪俊明等[21]通过铁屑内电解的强化A/ O MBR 工艺处理印染废水, 出水的水质中色度的去除率超过90.0 %和COD的去除率达到94.9 %.董永春[22]等采用以含硫还原剂和氢化物引发剂为基础的稳定双组分还原反应系统,处理直接染料染色废水,使之与其中的直接染料发生还原脱色反应,其优点是脱色剂用量少,反应快速,脱色率高.还原法的主要缺点是还原降解产物具有毒性, 必须经过二次处理.如活性炭吸附等, 处理费用增大.
3.3.4高级氧化法
高级氧化法(Advanced Oxidation Processes ,AOPs)脱色被认为是一种很有前途的方法.所谓高级氧化法如UV + H2O2、UV + O3, 因为在氧化过程中产生羟基自由基(·OH), 其强氧化性使染料废水脱色.经研究发现它对偶氮染料的脱色很有效, 高级氧化反应随O3和H2O2加入量的增加,其反应速率也随之增加[23]. 在实际生产中与某些化学辅助剂会提高脱色效果, 而且UV + H2O2方法处理偶氮型活性染料产生的降解产物对环境完全无害.最近的研究发现二氯三嗪基型偶氮类活性染料使用UV + H2O2方法脱色也有很好的效果[24].
氧化剂O3对绝大多数染料的脱色效果较好, 无二次污染, 引入紫外光(UV) 等可加快氧化和提高脱色率.有学者指出O3/UV 对偶氮染料脱色效果好,UV 的引入促使O3在溶液中产生氧化性强的羟自由基.胡文容[25]等指出, 虽超声波几乎不能降解偶氮肿I , 但对O3氧化有明显的强化作用, 当O3浓度为7107mg/ L , 加80w 超声波是超声波协同O3处理偶氮肿的最佳组合, 既可满足90 %脱色率, 又可节省48%的O3.但是目前用O3处理染废水费用较高, 开发新型臭氧发生器并和UV 或超声波连用以提高效率、降低费用是O3在染料废水处理中推广的前提, O3对COD的去除不理想.
高级氧化法的对环境污染极小,效果较好,但有一个严重不足之处是处理费用较高, 从而限制了它的广泛使用.
3.3.5超声波氧化
超声波处理印染废水是基于超声波能在液体中产生局部高温、高压、高剪切力,诱使水分子及染料分子裂解产生活性非常强的氢氧自由基, 对大部分有机污染物有氧化作用并可并促进絮凝;同时,在超声波作用下传质加强,超声空化产生局部高温高压,可大大强化氢氧自由基对有机物的氧化速度,提高降解效率.
用超声波可以强化臭氧氧化处理偶氮类染料废水,这是因为超声波空化效应产生高能条件促使臭氧快速分解,产生大量的自由基,从而使氮类染料脱色.张家港市九州精细化工厂用根据超声波气振技术设计的FBZ 废水处理设备处理染料废水[26],色度平均去除率为97.0 % ,CODCr去除率为90.6% ,总污染负荷削减率为85.9 %.符德学[27]等使用该法处理含碱性湖蓝-5B的印染废水,COD去除率达90.2%,脱色率达到98.3%.刘静[28]等的实验结果表明,超声波与微电场的协同作用大大提高了脱色率,在最佳条件下处理60min,色度去除率可达96.6%.
3.3.6萃取法
萃取是采用与水互不相溶,但能很好溶解污染物的萃取剂,使其与废水充分混合接触后,利用污染物在水中和溶剂中不同的分配比分离和提取污染物,从而净化废水.废水中的酸性染料可用混合胺进行萃取回收,阴离子染料可用离子对萃取法用长碳链去除,萃取剂可用氢氧化钠再生.由邻苯二甲酸与间苯二酚为原料制备荧光黄的生产废水可用N235/煤油系统萃取,其COD去除率可达91-98%,色度去除率为99.8%[29].
离子对萃取法是一种新的废水脱色方法.该法是将染色残液与一非水溶性有机溶剂一同振荡,当两相分离时,水相中便呈现无色,染料聚积于上层有机相中.只要燃料含有至少一个磺酸基团或者是染料必须是酸性的,那么任何深浓的染色废液均可用此法脱色.该有机相可反复使用数次[30].离子对萃取法的优点有:液/液相分离工艺简单,能耗低.对于活性染料来说,仅钠盐和钙盐形成的水解产物需处理.萃取剂无需再生就可重复使用[31].
3.4 生物处理方法
生物法是利用微生物酶来氧化或还原染料分子,破坏其不饱和键及发色基团,从而达到处理目的的一种印染废水处理方法.生物法目前仍是国内外主要的印染废水处理方法.
生物法的缺点在于微生物对营养物质、PH、温度等条件有一定的要求,难以适应印染废水水质波动大、染料种类多、毒性高的特点;同时还存在占地面积大、管理复杂、对色度和COD去除率低等缺点.生物法处理印染废水的脱色率和COD去除率不高,一般不适宜单独应用,可作为预处理或深度处理.
3.4.1传统生物处理技术
生物法处理印染废水中,以活性污泥法最为普遍,这是因为活性污泥法具有可分解大量有机物、能去除部分色素、可调节pH值、运转效率高且费用低等优点,但对色度的去除往往不够理想,因此组合式生物处理技术是目前印染废水的常用方法.我国生物法中以表面活性污泥法和接触氧化法占多数,此外,鼓风曝气活性污泥法、射流曝气活性污泥法、生物转盘法等也有应用,生物流化床尚处于试验性应用阶段.
在印染废水处理中,厌氧- 好氧工艺具有的这种独特降解机理引起国内的广泛关注,并得到了深入的研究和应用,取得了明显的效果[32].娄金生等在印染废水的处理过程中采用了厌氧- 好氧工艺,取得了良好效果,COD总去除率大于90 % ,脱色率大于95%.
3.4.2微生物强化处理技术
随着纺织工业新产品和新技术的开发,印染废水中水溶性染料、活性染料和化学浆料的数量和种类的不断增加,从而导致印染废水可生物降解性下降,如大量的聚乙烯醇(PVA)等,因此选育及应用优化脱色菌和PVA降解菌开始引起人们的关注.选育和培养出各种优良脱色菌株或菌群是生物法一个重要的发展方向.白腐真菌不但对活性艳红X3B染料有较好的脱色作用,而且对难处理的成分复杂的实际染料废水也有较好的降解作用,能有效去除印染废水的COD和BOD5.虽然不能彻底生化降解染料废水,但给后续的深度处理带来极大方便[33].
黄建岷[34]在实验中采用富集法分离菌株,所得脱色菌处理印染废水有明显的脱色效果,脱色率可达70 %以上.与活性炭吸附脱色相比差异不大,证明利用微生物处理印染废水的色度问题是可行的, 但在菌种筛选方面仍有大量工作可做.
3.4.3膜生物反应器处理技术
膜生物反应器处理技术作为一种新型的污水处理工艺,是传统活性污泥法和膜分离技术的有机结合,可通过膜片提高某些专性菌的浓度和活性,还可以截留许多分解速度较慢的大分子难降解物质,通过延长其停留时间而提高对它的降解效率.但由于膜易堵塞且制造费用较高,对膜技术在水处理领域全面推广产生一定阻力.不过,随着材料科学的发展、膜制造技术的进步、膜质量的提高、膜制造成本的降低以及工艺的改进,膜生物反应器的应用范围将越来越广.
3.4.4生物酶脱色技术
一些使用合适的厌氧和嗜氧的联合生物处理可提高染料的降解性, 但是在厌氧条件下, 偶氮还原酶通常将偶氮染料分解为相应的胺类, 其中许多会致低能或致癌,而且偶氮还原酶具有强专一性, 只分解被选择染料的偶氮键.与此相反,苯氧化酶——过氧化木质素酶(木质素酶, LiP) , 过氧化锰酶(MnP) , 和漆酶——对芳香环没有强的专一性, 因此, 有可能降解各种不同的芳香化合物.这些酶制剂可有效地使许多结构不同的染料脱色.初始反应速率与制剂中每一个酶(漆酶、LiP 和MnP) 都有关系.一些染料添加剂可显著降低脱色速率.因此, 在评价新的酶及其处理工艺时, 必须考虑染色助剂对酶活性的影响.今后研究工作主要集中于已选择出的酶的固定化以便为酶脱色的工业应用打下基础[35].
4. 发展前景
各种脱色方法比较分析,可以看出每种处理方法从经济性,技术性,对环境影响和实用性都有一定的缺陷, 气吹、混凝、吸附、过滤等一般具有设备简单、操作简便和工艺成熟等优点,但是这类处理方法通常是将有机物从液相转移到固相或气相,不仅没有完全消除有机污染物和消耗化学药剂,而且造成废物堆积和二次污染.吸附脱色具有只吸附染料, 但不破坏其结构的特点, 但目前使用的吸附剂往往存在吸附量不够, 或再生不容易的缺点.高级氧化法脱色如光氧化、超临界氧化、湿式氧化、低温等离子体化学法被认为是一种很有前途的方法, 但其昂贵的价格成为制约其广泛应用的重要原因.一些传统的氧化方法如NaClO、H2O2、臭氧和紫外氧化等证明对废水脱色并不有效, 采用强化物理化学与酶催化降解的方法可能将有非常广阔的应用前景.因此在实际工程中应该按照具体条件和要求,合理选择工艺组合,以便取得最佳的效果.
5. 羟乙基磺酸钠与异氰酸酯基反应吗
下午好,SHES在正常情况下一般不能和MDI、HDI和IPDI等含有异氰酸酯基团的非极性溶剂发生化学反应,SHES上挂靠的羟乙基中的羟基被共价键结合的金属钠离子牢牢束缚着,它的羟基不是类似醇、醚和酚上的那种活性官能团,相似的还有HEC(羟乙基纤维素)和HPMC(羟丙基甲基纤维素)等等,上面的羟基基本不具备引发活性。羟基和异氰酸酯反应您是不是用来做黏合剂的,比如类似502胶的氰基丙烯酸乙酯或者铁锚湿固化胶这些产品?SHES平时是白色固体离子结晶,它不溶于绝大多数非极性溶剂,请酌情参考。如果作为反应溶剂建议使用HESA(羟乙基磺酸),它主链上羟基的活性远远大于SHES。
6. 烷基乙基磺酸盐对人体伤害大不大
有一定的伤害,所以注意使用
7. 羟乙基磺酸钠属于哪类物质具有什么性质
椰油基羟乙基磺酸钠是一种高档洗涤用品的表面活性剂,其已被人们使用了几十年,作为一种温和的、高泡沫个人洗涤产品,在使用过程中有一种温和的感觉,洗涤后皮肤感觉柔软,由于具有优越的起泡性质、温和性及良好的皮肤感觉
麻烦采纳,谢谢!
8. 人喝烷基乙基磺酸盐多久会死
摘要 亲,您好,您的这道问题由我来帮你解答,正在为你解答,请你稍微等待一会,不要太过着急,希望我的解答可以帮助到你,解决你的烦恼,祝你生活愉快,身体健康。
9. 羟乙基磺酸钠有什么溶剂可以溶解啊
乙腈、乙二胺、甲醛这些有试过没,或者其他表面活性剂是否可以,非离子型的,比如聚乙烯醇类的、有机硅类的等,那些大部分可以溶解在非水体系中。熔点
191-194oC
水溶性
可溶
10. Fenton氧化法能处理高浓度有机废水吗
的确可以处理高浓度有机废水
1、Fenton试剂简介
1894年,法国科学家H.J.H.Fenton发现H2O2在Fe2+催化作用下具有氧化多种有机物的能力,后人为纪念他将亚铁盐和H2O2的组合称为Fenton试剂。Fenton试剂中Fe2+作为同质催化剂,而H2O2 具有强烈的氧化能力。特别适用于处理高浓度、难降解、毒性大的有机废水。1964年,H.R.Eisen Houser才首次使用Fenton试剂处理苯酚及烷基苯废水,开创了Fenton试剂应用于工业废水处理领域的先例。后来人们发现这种混合体系所表现出的强震化性是因为Fe2+的存在有利于H2O2分解产生出HO˙的缘故,为进一步提高对有机物的去除效果,以标准Fenton试剂为基础,能够改变和偶合反应条件,可以得到一系列机理相似的类Fenton试剂。
2、Fenton试剂的催化机理及氧化性能
催化机理
对于Fenton试剂催化机理,目前公认的是Fenton试剂能通过催化分解产生羟基自由基(HO˙)进攻有机物分子,并使其氧化为CO2、H2O等无机物质。这是由Harber Weiss于1943年提出的。在此体系中HO˙实际上是氧化剂反应,反应式为:
Fe2+ +H2O2+H+—— Fe3+ +H2O+HO˙
由于Fenton试剂在许多体系中确有羟基化作用,所以Harber Weiss机理得到普遍承认,有时人们把上式称为Fenton反应。
氧化性能
Fenton试剂之所以具有非常高的氧化能力,是因为H2O2 在Fe2+的催化作用下,产生羟基自由基HO˙,HO˙与其他氧化剂相比具有更强的氧化电极电位,具有很强的氧化性能。氧化还原电位以电极电位为测定值,HO˙与其他强氧化剂电极电位见下表。
由此表可以看出,HO˙的氧化还原电位远高于其他氧化剂,具有很高的氧化能力,故能使许多难生物降解及一般化学氧化法难以氧化的有机物有效分解,HO˙具有较高的电负性或电子亲和能。
对于多元醇(乙二醇、甘油)以及淀粉、蔗糖、葡萄糖之类的碳水化合物在HO˙作用下,分子结构中各处发生脱H(原子)反应,随后发生C=C键的开裂最后被完全氧化为CO2。对于水溶性高分子物(聚乙烯醇、聚丙烯醇钠、聚丙烯酰胺)和水溶性丙烯衍生物(丙烯腈、丙烯酸、丙烯醇、丙烯酸甲酯等)HO˙加成到C=C键,使双键断裂,然后将其氧化成CO2。对于饱和脂肪族一元醇(乙醇、异丙醇)饱和脂肪族羧基化合物(乙酸、乙酸乙基丙酮、乙醛),主链为稳定的化合物,HO˙只能将其氧化为羧酸,由复杂大分子结构物质氧化分解成直碳链小分子化合物。
对于酚类有机物,低剂量的Fenton试剂可使其发生偶合反应生成酚的聚合物大剂量的Fenton试剂可使酚的聚合物进一步转化成CO2。对于芳香族化合物,HO˙可以破坏芳香环,形成脂肪族化合物,从而消除芳香族化合物的生物毒性。对于染料,HO˙可以直接攻击发色基团,打开染料发色官能团的不饱和键,使染料氧化分解。而色素的产生是因为其不饱和共轭体系的存在而对可见光有选择性的吸收,HO˙能优先攻击其发色基团而达到漂白的效果。
Fenton试剂的作用机理
标准Fenton试剂是由H2O2 在Fe2+ 组成的混合体系,标准体系中HO˙的引发,消耗及反应链终止的反应机理可归纳如下:
Fe2+ +H2O2 ——Fe3++ OH-+HO˙ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(1)
Fe2+ + HO˙ ——Fe3++ OH- ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(2)
H2O ˙+Fe3+ —— Fe2+ +O2 +H+ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(3)
HO˙+H2O2 ——H2O +HO2˙ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(4)
Fe2+ +HO˙——Fe3+ +HO2- ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(5)
Fe3+ +H2O2—— Fe2+HO2 +H+ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(6)
3、Fenton试剂类型
Fenton试剂自出现以来就引起了人们的广泛青睐和重视,并进行了广泛的研究,为进一步提高对有机物的氧化性能,以标准为基础,发展成了一系列机理相似的类Fenton试剂,如改性-Fenton试剂、光-Fenton试剂、电-Fenton试剂、配体-Fenton试剂等。
标准Fenton试剂
标准Fenton试剂是由Fenton试剂Fe2+和H2O2组成的混合体系,它通过催化分解H2O2 产生HO˙来攻击有机物分子夺取氢,将大分子有机物降解成小分子有机物或CO2和H2O,或无机物。
反应过程中,溶液的pH值、反应温度、H2O浓度和Fe3+的浓度是影响氧化效率的主要因素,一般情况下,pH值3~5为Fenton试剂氧化的最佳条件,pH值的改变将影响溶液中铁的形态的分布,改变催化能力。降解速率随反应温度的升高而加快,但去除效率并不明显。
在反应过程中,Fenton试剂存在一个最佳的H2O2和Fe2+投加量比,过量的H2O2 会与HO˙发生反应(4);过量的Fe2+会与HO˙发生反应(5),生成的Fe3+又可能引发反应(6)。
改性-Fenton试剂
利用Fe(Ⅲ)盐溶液、可溶性铁以及铁的氧化矿物(如赤铁矿、针铁矿等)同样可使H2O2催化分解产生HO˙,达到降解有机物的目的,这类改性Fenton试剂,因其铁的来源较为广泛,且处理效果比标准下cnt门n试剂处理效果更为理想,所以得到广泛应用。使用Fe(Ⅲ)替代Fe(Ⅱ)与H2O2组合产生的HO˙反应式基本为:
Fe3+ +H2O2 ——[Fe (HO2)]2+ +H+
[Fe ( HO2 )]2+ —— Fe2++HO2˙
Fe2++H2O2 ——Fe3+ +OH-+HO˙
为简单起见,上述反应中铁的络合体中都省去了H2O 。当pH>2时,还可能存在如下反应:
Fe3++OH-——[Fe(OH)]2+
[Fe (OH)]2++H2O2——[Fe(HO)(HO)2)]2++H+
[Fe(HO)(HO2)]2+—— Fe2++HO2 ˙ +OH-
光-Fenton试剂
在Fenton试剂处理有机物的过程中光照(紫外光或可见光)可以提高有机物的降解效果,如当用紫外光照射Fenton试剂,处理部分有机废水时,COD去除率可提高10%以上。这种紫外光或可见光照下的Fenton试剂体系,称为光-Fenton试剂。在光照射条件下,除某些有机物能直接分解外,铁的羟基络合物(PH值为3~5左右,Fe3+主要以[Fe(OH)]2+形式存在)有较好的吸光性能,并吸光分解,产生更多HO˙,同时能加强Fe3+的还原,提高Fe2+的浓度有利于H2O2催化分解,从而提高污染物的处理效果,反应式如下:
4Fe(HO)2++hv——Fe2+ +HO˙+HO2˙+ H2O
Fe2++H2O2 ——Fe3+ +HO˙+HO-
Fe3+ + H2O2 ——[Fe (OH)]2+ +H+
[Fe (OH)]2+——Fe2++ HO2˙
配体-Fenton试剂
当在Fenton试剂中引人某些配体(如草酸、EDTA等),或直接利用铁的某些螯合体如[K3Fe(C2O4)3˙3H2O],影响并控制溶液中铁的形态分布,从而改善反应机制,增加对有机物的去除效果,则得到配体Fenton试剂。另外,在光照条件下,一些有机配体(如草酸)有较好的吸光性能,有的还会分解生成各种自由基,大大促进了反应的进行。
Mazellier在用Fenton试剂处理敌草隆农药废水时,引人草酸作为配体,可形成稳定的草酸铁络合物{[Fe(C2O4)]+[Fe(C2O4)2]2- 或[Fe(C2O4)3]3- },草酸铁络合物的吸光度的波长范围宽,是光化学性很高的物质,在光照条件下会发生下述反应(以[Fe(C2O4)3]3- 为例)
因此随着草酸浓度的增加,敌草隆的降解速度加快,直到草酸浓度增加到与Fe3+浓度形成平衡时,敌草隆的降解速度最大。
电-Fenton试剂作用机理
电-Fenton系统就是在电解槽中,通过电解反应生成H2O2和Fe2+,从而形成Fenton试剂,并让废水进入电解槽,由于电化学作用,使反应机制得到改善,提高Fenton试剂的处理效果.
Panizza用石墨作为电极电解酸性Fe3+溶液,处理含萘、蒽醌-磺酸生产废水,通过外界提供的O2在阴极表面发生电化学作用生成H2O2,再与Fe2+ 发生催化反应产生HO˙,其反应式如下:
O2十2H2O+e-——2H2O2
Fe2+ + H2O2 ——Fe3++HO ˙ +OH-
陈卫国则认为电催化剂反应在碱性条件下,更利于阴极产生H2O2 ,其反应式为:
O2+H2O+ 2e-—— HO2- + OH-
HO2-+OH-+ 2e-—— HO2-+OH-
4、影响Fenton反应的因素
根据Fenton试剂反应机理可知,HO˙是氧化有机物的有效因子,而[Fe2+]、[H2O2 ]、[OH-]决定了HO˙的产生。影响Fenton试剂处理难降解难氧化有机废水的因东包括pH值、H2O2投加公及投加方式、催化剂种类、催化剂投加量、反应时间和反应温度等,每个因素之间的相互的作用是不同的。
pH值
pH值对Fenton系统会产生较大的影响,pH值过高或过低都不利于HO˙的产生、当pH值过高时会抑制式(1)的进行,使生成HO˙的数量减少;当pH值过低时、由式(6)可见,Fe3+很难被还原为Fe2+,而使式(1)中Fe2+的供给不足,也不利于HO˙的产生。大量试验数据表明,Fenton反应系统的最佳pH值范围为3~5,该范围与机物种类关系不大。
H2O2投量与Fe2+投量之比
H2O2投量和Fe2+投量对HO˙的产生具有重要的影响。由式(1)可见,当H2O2 和Fe2+投量较低时,HO˙产生的数量相对较少,同时,H2O2 又是HO˙捕捉剂,H2O2投量过高会发生式(4)的反应使最初产生的HO˙减少。另外,若Fe2+的投量过高,则在高催化剂浓度下,反应开始时从H2O2中非常迅速地产生大量的活性HO˙。HO˙同基质的反应不那么快,使未消耗的游离HO˙积聚,这些HO˙彼此相互反应生成水,致使一部分最初产生的HO˙被消耗掉,所以Fe2+投量过高也不利于HO˙的产生。而且Fe2+投量过高也会使水的色度增加。在实际应用当中应严格控制Fe2+投量与H2O2投量之比,经研究证明、该比值同处理的有机物种类有关,不同有机物最佳的Fe2+投量与H2O2 投量之比不同。
H2O2投加方式
保持H2O2总投加量不变,将H2O2均匀地分批投加,可提高废水的处理效果,其原因是H2O2分批投加时,[H2O2]/[Fe2+]相对降低,即催化剂浓度相对提高从而使H2O2的HO˙产率增大,提高了H2O2利用率,进而提高了总的氧化效果。
催化剂种类
能催化H2O2分解生成羟基自由基(HO˙)催化剂很多,Fe2+(Fe3+、铁粉、铁屑)、TiO2,/Cu2+/Mn2+/Ag+、活性炭等均有一定的催化能力,不同催化剂存在下H2O2对难降解有机物的氧化效果不同,不同催化剂同时使用时能产生良好的协同催化作用。
催化剂投加量
FeSO4˙7H2O催化H2O2分解生成羟基自由基(HO˙)最常用的催化剂。与过氧化氢相同、一般情况下,随着用量的增加,废水COD的去除率先增大,而后呈厂降趋势。其原因是在Fe2+浓度较低时,Fe2+的浓度增加,单位量H2O2产生的HO˙增加,所产生的HO˙全部参加了与有机物的反应当Fe2+的浓度过高时,部分H2O2发生无效分解,释放出O2。
反应时间
Fenton试剂处理难解有机废水,一个重要的特点就是反应速度快,一般来说,在反应的开始阶段,COD的去除率随时间的延长而增大,一定反应时间后,COD的去除率接近最大值,而后基本维持稳定,Fenton试剂处理有机物的实质就是HO˙与有机物发生反应,HO˙的产生速率以及HO˙与有机物的反应速率的大小直接决定了Fenton试剂处理难降解有机废水所需时间的长短,所以Fenton试剂处理难降解有机废水的反应时间有关。
反应温度
温度升高HO˙活性增大,有利于HO˙与废水中有机物的反应,可提高废水以COD的去除率;而温度过高会促使H2O2 分解为O2和H2O2,不利于HO˙的生成,反而会降低废水COD的去除率。陈传好等研究发现Fe2+-H2O2 处理洗胶废水的最佳温度为85。C,冀小元等则通过试验证明H2O2-Fe2+/TiO2催化氧化分解放射性有机溶剂(TPB/OK)的理想温度为95~99℃。