导航:首页 > 废水污水 > 煤炭污水一般都有哪些杂质

煤炭污水一般都有哪些杂质

发布时间:2022-03-08 16:23:07

⑴ 油田污水中含有的杂质主要有哪些

油田污水主要包括原油脱出水(又名油田采出水)、钻井污水及站内其它类型的含油污水。油田污水的处理依据油田生产、环境等因素可以有多种方式。当油田需要注水时,油田污水经处理后回注地层,此时要对水中的悬浮物、油等多项指标进行严格控制,防止其对地层产生伤害。如果是作为蒸汽发生器或锅炉的给水,则要严格控制水中的钙、镁等易结垢的离子含量、总矿化度以及水中的油含量等。如果处理后排放,则根据当地环境要求,将污水处理到排放标准。我国一些干旱地区,水资源严重缺乏,如何将采油过程中产生的污水变废为宝,处理后用于饮用或灌溉,具有十分重要的现实意义。
采用注水开采的油田,从注水井注人油层的水,其中大部分通过采油井随原油一起回到地面,这部分水在原油外运和外输前必须加以脱除,脱出的污水中含有原油,因此被称为油田采出水。随着油田开采年代的增长,采水液的含水率不断上升,有的区块已达到90%以上,这些含油污水已成为油田的主要注水水源。随着油田外围低渗透油田和表外储层的连续开发,对油田注水水质的要求更加严格。
钻井污水成分也十分复杂,主要包括钻井液、洗井液等。钻井污水的污染物主要包括钻屑、石油、粘度控制剂(如粘土)、加重剂、粘土稳定剂、腐蚀剂、防腐剂、杀菌剂、润滑剂、地层亲和剂、消泡剂等,钻井污水中还含有重金属。
其它类型污水主要包括油污泥堆放场所的渗滤水、洗涤设备的污水、油田地表径流雨水、生活污水以及事故性泄露和排放引起的污染水体等。
由于油田污水种类多,地层差异及钻井工艺不同等原因,各油田污水处理站不仅水质差异大,而且油田污水的水质变化大,这为油田污水的处理带来困难。

⑵ 煤炭里面都有什么成分

构成煤炭有机质的元素主要有碳、氢、氧、氮和硫等,此外,还有极少量的磷、氟、氯和砷等元素。碳、氢、氧是煤炭有机质的主体,占95%以上;煤化程度越深,碳的含量越高,氢和氧的含量越低。碳和氢是煤炭燃烧过程中产生热量的元素,氧是助燃元素。煤炭燃烧时,氮不产生热量,在高温下转变成氮氧化合物和氨,以游离状态析出。硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。煤碳燃烧时绝大部分的硫被氧化成二氧化硫(SO2),随烟气排放,污染大气,危害动、植物生长及人类健康,腐蚀金属设备;当含硫多的煤用于冶金炼焦时,还影响焦炭和钢铁的质量。所以,“硫分”含量是评价煤质的重要指标之一。 煤中的有机质在一定温度和条件下,受热分解后产生的可燃性气体,被称为“挥发分”,它是由各种碳氢化合物、氢气、一氧化碳等化合物组成的混合气体。挥发分也是主要的煤质指标,在确定煤炭的加工利用途径和工艺条件时,挥发分有重要的参考作用。煤化程度低的煤,挥发分较多。如果燃烧条件不适当,挥发分高的煤燃烧时易产生未燃尽的碳粒,俗称“黑烟”;并产生更多的一氧化碳、多环芳烃类、醛类等污染物,热效率降低。因此,要根据煤的挥发分选择适当的燃烧条件和设备。 煤中的无机物质含量很少,主要有水分和矿物质,它们的存在降低了煤的质量和利用价值。矿物质是煤炭的主要杂质,如硫化物、硫酸盐、碳酸盐等,其中大部分属于有害成分。 “水分”对煤炭的加工利用有很大影响。水分在燃烧时变成蒸汽要吸热,因而降低了煤的发热量。煤炭中的水分可分为外在水分和内在水分,一般以内在水分作为评定煤质的指标。煤化程度越低,煤的内部表面积越大,水分含量越高。 “灰分”是煤碳完全燃烧后剩下的固体残渣,是重要的煤质指标。灰分主要来自煤炭中不可燃烧的矿物质。矿物质燃烧灰化时要吸收热量,大量排渣要带走热量,因而灰分越高,煤炭燃烧的热效率越低;灰分越多,煤炭燃烧产生的灰渣越多,排放的飞灰也越多。一般,优质煤和洗精煤的灰分含量相对较低。

⑶ 煤炭污染的煤炭简介

碳、氢、氧是煤炭有机质的主体,占95%以上;煤化程度越深,碳的含量越高,氢和氧的含量越低。碳和氢是煤炭燃烧过程中产生热量的元素,氧是助燃元素。煤炭燃烧时,氮不产生热量,在高温下转变成氮氧化合物和氨,以游离状态析出。硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。煤炭燃烧时绝大部分的硫被氧化成二氧化硫(SO2),随烟气排放,污染大气,危害动、植物生长及人类健康,腐蚀金属设备;当含硫多的煤用于冶金炼焦时,还影响焦炭和钢铁的质量。所以,“硫分”含量是评价煤质的重要指标之一。
煤中的无机物质含量很少,主要有水分和矿物质,它们的存在降低了煤的质量和利用价值。矿物质是煤炭的主要杂质,如硫化物、硫酸盐、碳酸盐等,其中大部分属于有害成分。 中国85%的煤炭是通过直接燃烧使用的,主要包括火力发电、工业锅(窑)炉、民 用取暖和家庭炉灶等。高耗低效燃烧煤炭向空气中排放出大量SO2、CO2和烟尘,造成中国以煤烟型为主的大气污染。
(1)煤炭开采导致土地资源破坏及生态环境恶化。由于露天开采剥离排土,井工开采地表 沉陷、裂缝,都将破坏土地资源和植物资源,影响土地耕作和植被生长,改变地貌并引发景 观生态的变化。开采沉陷造成中国东部平原矿区土地大面积积水受淹或盐渍化,使西部矿区 水土流失和土地荒漠化加剧。采煤塌陷还会引起山地、丘陵发生山体滑落或泥石流,并危及 地面建筑物、水体及交通线路安全。据调查,中国因采矿直接破坏的森林面积累计达106万 公顷,破坏草地面积为26.3万ha,全国累计占用土地约586万ha,破坏土地约157万ha ,且每年仍以4万ha的速度递增,而矿区土地复垦率仅为10%。另据测算,中国每采万吨煤 ,平均塌陷土地0.2ha;在村庄稠密的平原矿区,每采出1000万t煤需迁移约2000人。
(2)煤炭开采破坏地下水资源,加剧缺水地区的供水紧张。中国是世界上人均占有水资源量较低的国家,且水资源分布极不平衡。从含煤地区分布看,富煤地区往往也是贫水地区。据调查,全国96个国有重点矿区中,缺水矿区占71%,其中严重缺水矿区占40%。随着煤炭开采强度和延伸速度的不断加大提高,矿区地下水位大面积下降,使缺水矿区供水更为紧张,以致影响当地居民的生产和生活。另一方面,大量地下水资源因煤系地层破坏而渗漏矿井并 被排出,这些矿井水被净化利用的不足20%,对矿区周边环境形成新的污染。据统计,中国煤矿每年产生的各种废污水约占全国总废污水量的25%。2000年,全国煤矿的废污水排放量 达到27.5亿t,其中,矿井水23亿t,工业废水3.5亿t,洗煤废水5000万t,其它废水450 0万t。
(3)煤炭开采导致废气排放,危害大气环境。因煤炭开采形成的废气主要指矿井瓦斯和地 面矸石山自燃施放的气体。矿井瓦斯中的主要成分甲烷是一种重要的温室气体,其温室效应 为CO2的21倍。据统计中国每年从矿井开采中排放甲烷70~90亿m?3,约占世界甲烷总 排放量的30%,除5%左右的集中回收利用外,其余全部排放到大气中。矿区地面矸石山自燃 施放出大量含SO2、CO2 、CO等有毒有害气体,严重污染大气环境并直接损害周围居民的身体健康 。煤矸石产出量很大,其排放量约占煤矿原煤产量的15%~20%。据不完全统计,中国国有煤矿现有矸石山1500余座,历年堆积量达30亿t,占地5000ha。另据1994年的矿山环境调查, 淮河以北半干旱地区的1072座矸石山中,有464座发生过自燃,自燃率达43.3%。
(4)为满足社会对洁净煤的需求,中国原煤入洗比例连年提高。1999年原煤入洗量3.17亿 t,入洗比例30%,其中国有重点煤矿入洗比例达到48%。原煤被入洗的同时,也排放出大量 的煤泥水污染土壤植被及河流水系。据调查,因洗煤全国每年排出洗矸4500万t,洗煤废水 4000万t,煤泥200万m3。
(5)在中国,由于煤炭生产与消费之间巨大的空间差异,导致“北煤南运,西煤东输”的 长距离运煤格局。运输中产生的煤尘飞扬,既损失大量的煤炭,又污染沿线周围的生态环境 。据统计,1999年全国铁路运煤量为64917万t,平均运距为550km;经公路运输或中转到 铁路的煤炭量达6亿t,平均运距为80km。若以0.5%的扬尘损失计算,因运输向大气中排放的 煤尘达600多万t,直接经济损失超过6亿元人民币。
(6)中国长期以煤炭为主的能源消费结构,不仅形成以酸雨、二氧化硫和烟尘为主要危害 的煤烟型大气污染,也是中国污染物排放量居世界第二的主要原因。统计资料显示,2000年 ,全国废气中SO2排放总量1995万t,其中工业来源的排放量1612万t,生活来源的排放量3 83万t;烟尘排放总量1165万t,其中工业烟尘排放量953万t,生活烟尘排放量212万t; 酸雨区面积约占国土面积的30%。 日前,国际环保组织绿色和平与荷兰独立权威能源机构CEDelft共同发布全球报告《煤炭的真实成本》,指出2007年全球的煤炭使用造成至少3600亿欧元(约合3.2万亿元人民币)的损失。
绿色和平呼吁全球各国重视燃煤造成的环境恶果,立即减少并逐步放弃煤炭的使用。
CEDelft研究所的专家阿哥内斯卡·马库斯卡说:“每年3600亿欧元的损失其实是相对保守的计算。如果不采取有效措施积极阻止气候变化,由此导致的损失将会大幅上升。”比如,数十亿人口将会面临水资源短缺,数亿人的粮食安全也会受到威胁,极端天气也将更加频繁。
此外,煤炭还更直接污染了水源和空气,并导致黑肺病的发生。 (1)政策法规配套,环保投入增大。国家相继出台和修订与煤炭矿区环境保护直接相关的法律法规13项,使矿区环境保护与治理步入法制化轨道,加快了矿山环境保护事业的 发展。矿区的环境改善离不开投入,据不完全统计,“九五”期间煤炭工业投入环境治理的 资金达28.6亿元,平均每年5.7亿元。
(2)土地复垦取得一定成效。资料显示,全国已累计复垦利用各类废弃土地约1500万 亩,占废弃土地总量的8%;其中复垦利用工矿废弃土地约600多万亩,约占工矿废弃土地总 量的10%。复垦后的土地70%作为耕地或其他农用地,30%作为非农业建设用地或其他用途。 从煤炭行业看,“九五”期间,全国复垦采煤塌陷土地150ha,复垦率为15%,完成露天矿 挖损土地复垦量21ha,复垦率已达到41%。?
(3)三废治理效果显著。“九五”期间,煤矸石利用率达到40%,比“八五”期间提高 9个百分点;截止到1999年治理灭火矸石山310座,灭火率达80%。1998年山东省综合利用煤 矸石700多万t,占总排放量的71%,并实现利税近7000万元。新的煤矿设计拒绝矸石堆放, 将有力保证今后彻底根除矸石山。统计显示,1999年,全国采掘业共去除工业SO2 156104 t,其中燃料燃烧中去除的41505t;去除工业烟尘1647893t。
(4)矿区绿化已从单纯植树种草,走向绿色生态工程建设。众多矿区不断加大投入, 绿化美化生产生活区。根据矿区所处地理环境,积极采用绿化新技术,营造矿区防护林,绿 化煤矸石山,治沙固土,恢复植被,保持水土。?
(5)洁净煤技术发展较快。1995年全国共有洗煤厂557个,年入洗原煤2.8亿t,原煤入 洗率为22%。到2000年,洗煤厂数增加到755个,原煤入洗量达4.5亿t,原煤入洗率超过30% 。1995年前,全国动力配煤几乎空白,“九五”期间,全国相继建设并投入运行一批不同规 模、不同类型的动力配煤厂,年生产能力近6000万t。中国民用型煤技术已经成熟,到2000 年,全国民用型煤产量达到8000万t,城镇居民生活用型煤普及率为80%。 为加快开发煤层气的步伐,“九五”期间,国务院批准 成立了专门从事煤层气开发的公司。据不完全统计,2000年,全国共开发利用煤层气近4亿 m?3,预计到2005年,全国煤层气利用量可达30亿m3以上。
煤炭矿区环境保护与治理中的薄弱点
(1)领导环保意识弱,公众参与程度低。中国的环保历史经验证明,一切环境污染与生态破坏,首先发端于各级领导的思想认识和决策行为。当前,许多领导还远没有树立起真正的 环保意识,对可持续发展仅停留在口号上,走的仍是“先污染、后治理”的老路或为了局部 利益而加重污染的歪路。公众参与在发达国家的环境影响评价中占有十分重要的地位,通过 听证会等形式广泛听取公众意见,满足公众对环境保护的要求。我国的建设项目环境影 响评价中还没有建立起公众参与制度,环保工作公开接受公众监督的程度还很低。
(2)经济结构调整迟缓,环境保护监管不力。尽管国家不断进行经济结构的调整,但由于受思想惰性、体制刚性、财力不足、政策缺位和区域壁垒等多因素影响,中国的能源生产和消费结构不合理状况依然存在,这种结构不合理带来的直接后果便是资源的过度开采和 浪费,以及矿区环境和安全状况的难以改善。另一方面,我国的环保管理体制仍然存在许多 弊端,特别是制约监督机制的失效,导致对环境保护的监管不力,有法不依,执法不严,违法开脱现象依然存在。
(3)环保历史欠账多,资金渠道不畅、投入不足。中国的长期计划经济体制,使矿区特别是许多老矿区遗留下巨大的生态环境包袱,且没有建立起相应的治理资金账户。自20世 纪70年代后期,中国的环境污染日趋恶化,治理资金仅有国家财政一条渠道。1984年,国务院在《关于环境保护工作的决定》(国发〔1984〕64号)中,确定了环境保护资金的8条渠 道 ,其中用于污染治理投资的有7条。尽管这7条渠道对资金筹集、污染控制和环境质量的改善曾起过重要作用,但是,从总体上看,污染治理投资总量还远没有达到基本控制住环境恶化加剧的水平。这7条渠道中,有的已不通,即使通的也还存在着渠道不畅等问题,其外部表现则是资金投入的严重不足。据统计,中国每年直接用于煤炭环境保护的资金大约 为5~6亿元,仅占煤炭工业产值的0.3%,远低于全国1%的平均水平。
(4)矿区塌陷土地复垦工作盲点多。尽管早在1988年国务院就已正式颁布实施了《土地复垦规定》,在随后修订和制定的《土地管理法》、《煤炭法》等5部法律中都有土地复 垦方面的法规条文,各级地方政府几乎相继制定土地复垦规定实施办法,但如今矿区土地复 垦率仅为10%,比发达国家低50多个百分点,土地复垦的质量不高,复垦工作中出现了多处 盲点。例如,对于老矿区土地塌陷的历史欠帐至今没有明确补帐的责任对象和资金渠道;土地复垦规定中的“谁破坏,谁复垦”原则形同虚设,现存的塌陷征地和塌陷补偿办法,无法 约束企业对土地复垦规定的执行;企业与地方政府在土地复垦中难以形成有效的合作机制等 。
(5) 国家缺乏针对性更强,体系更加严密的矿山环境保护法律法规。现行环保政策法规中,缺乏针对矿山环境保护特点的法律法规和技术标准,不利于矿山环境保护和治理工作 向纵深发展。一些环境问题由于无章可循,不能及时得到治理,从而长期危害环境。如煤矸 石山自燃被定性为无组织排放,国家尚无限期治理和超标罚款的规定。 20世纪50年代,英国的污染导致了成千上万人死亡。彼得托尔谢姆指出,英国通向环境保护艰难而漫长的道路,对于中国是一个重要的前车之鉴。
大规模的工业生产、严重的煤炭依赖以及浓烟滚滚的城市,这不仅仅是我国的特征,英国在十九、二十世纪的很长时间里,也是如此。由于相似的经历,英国与煤炭污染的漫长斗争,对中国有着特殊的意义。
很多年里,英国人对本国毫无限制地大量消费煤炭的后果众说纷纭,国内很多人也差不多。许多人把煤烟当作经济繁荣和高就业率的象征,而另外一些人则认为这些烟雾要付出严重的经济代价。
后者指出,烟雾代表的是浪费,而不是财富。这一观点的主要提倡者内尔·阿诺特博士是维多利亚女王的私人医生。他在1855年宣称“由于浓烟弥漫的空气,单是伦敦的居民每年在洗衣服上的花费,就要比国内同样数量的家庭多出250万英镑。”
阿诺特的估计只限于洗衣费,而其他人试图对因空气污染而付出的经济代价进行更加全面的统计。科学家罗鲁·罗素(哲学家罗素的叔叔)列出煤烟所引起的24种破坏,包括油漆层的老化、对金属和石制品的侵蚀、植被的破坏、人类的疾病等等。几十年后,一个英国政府委员会在20世纪50年代所计算出的空气污染损失为每年2.5亿英镑,他们的分类标准很多和罗素一样。尽管当时的专家们强调煤炭燃烧所产生的破坏性影响并不是单纯的地方性问题,但还没有谁能从全球性的角度来认识它。
许多论者指出,煤烟的最大代价之一就是煤炭的浪费。乐观主义者希望随着利用者认识到防治煤烟可以省钱,空气能够变得洁净。尽管提高煤炭利用效率确实能够节省燃料费用、减少烟雾排放,但必需的技术不论是购买还是实施起来都很昂贵。即使生产者们认识到购买高能效的设备从长远上可以节省金钱,但很多人缺乏进行这项投资所必需的资金或者长期的决心。
当污染者显然不会采取主动措施减少烟雾的时候,政府就开始干预。19世纪末、20世纪初,英国国会曾经通过了一系列法律,要求地方政府采取行动制止那些排放大量烟雾的工业。
这个立法的效果受到许多因素的限制,包括:罚款太少、法律漏洞,另外,实际上许多负责落实反烟雾法律的地方官员本身就是污染企业的老板,这些因素至今仍在全世界妨碍着环境的有效治理。甚至有时治理者在执法中并没有个人经济利益的牵扯,但他们也常常担心:过严的执法会导致工业的重新布局,从而引起失业和税款流失。
所以,如果不是受到了灾难的打击,情况可能一如既往。1952年11月,一场错综复杂的异常天气袭击了伦敦,成百上千万个壁炉里的燃烧产物无法升入大气,也无法散入风中。能见度为零,医院里挤满了呼吸困难的人们,死亡者达到几千人。
在这场烟雾灾难之后,英国政府开始考虑减少污染,但是它面对着来自煤炭业、制造业和电业利益集团的压力。就像在中国及美国发生的一样,这些行业的拥护者声称,污染控制措施以及替代能源的花费实在太高了,无法实施。
经过多次谈判,国会最终在1956年通过了《空气清洁法》(Clean Air Act)。除了将政府的研究扩大到污染防治领域外,该法案还为工业烟雾设立了新的限制。它还开始控制家庭采暖和烹调所产生的烟雾,这也是英国空气污染的重要原因。为了帮助购买低污染设备筹措资金,国家和地方政府部门都提供了财政援助。
尽管这个立法对减少烟雾这样的可见污染物卓有成效,但对于看不见的污染物——如二氧化硫和汞——却没有任何作用,更不用说温室气体二氧化碳了。治理者们不是禁止将这些物质排入环境,反而鼓励工厂通过极高的烟囱把它们排入大气,他们认为这些物质到那些层次里会被稀释,从而变得“无害”。
不幸的是,单纯地拔高烟囱只会把污染换个地方。二氧化硫会变成酸雨,落在它发源的工厂和发电厂下风处的几百公里外;细微颗粒甚至能飘得更远,二氧化碳则迅速散入全世界的大气,21世纪末的大气二氧化碳浓度可能变成英国工业化开始时的两倍。
中国的煤炭年消耗量超过20亿吨,而且未来几十年煤炭仍将使中国的主要能源。有技术可以减少煤炭燃烧时所产生的颗粒物污染和进入大气的二氧化硫。这个变化最大的受益者将是中国人民,煤炭所造成的健康损害、贫穷和环境破坏让他们付出了沉重的代价。但是,中国空气的净化也会使那些远离中国的人们受益。比如,研究者们发现,中国的烟雾微粒飘到了美国。
除了污染控制措施之外,提高能效也同样重要。最先进的发电厂烧煤较少,排放出的颗粒物质、二氧化硫和二氧化碳也比传统电厂要少。节能和提高能效可以带来类似的好处,而且成本也比建立新的发电设施要低。如果中国能够在这些技术上投资,其本身和世界其他地方都会受益无穷。
治理污染最好的办法不是稀释,而是从根源上杜绝它的产生,这已经很清楚了。所有地球居民都是邻居,共同呼吸着惟一的空气。父辈们在地方和国家的层次上密切合作,减少污染,则必须在全球的层次上携起手来,共同保持健康的空气。

⑷ 有关煤炭的杂质有哪些

TD82煤矿开采 1.煤炭学报2. 煤炭科学技术3.煤矿安全4. 煤田地质与勘探5. 选煤技术6.煤炭工程7.煤炭技术8. 中国煤炭9. 煤矿机械 10..煤矿开采

⑸ 煤炭有哪些成分

煤的成分
通常说煤炭,有的地方习惯叫石炭。但煤不是碳。煤是由古代植物遗体埋在地层下或在地壳中经过一系列非常复杂的变化而形成的。是由有机物和无机物所组成的复杂的混合物,主要含有碳元素,此外还含有少量的氢、氮、硫、氧等元素以及无机矿物质(主要含硅、铝、钙、铁等元素)。煤的结构复杂。视频(煤的组成和分类)
无烟煤
(含碳量95%左右)
煤的主要成分
煤的组成以有机质为主体,构成有机高分子的主要是碳、氢、氧、氮等元素。煤中存在的元素有数十种之多,但通常所指的煤的元素组成主要是五种元素、即碳、氢、氧、氮和硫。在煤中含量很少,种类繁多的其他元素,一般不作为煤的元素组成,而只当作煤中伴生元素或微量元素。
一、煤中的碳
一般认为,煤是由带脂肪侧链的大芳环和稠环所组成的。这些稠环的骨架是由碳元素构成的。因此,碳元素是组成煤的有机高分子的最主要元素。同时,煤中还存在着少量的无机碳,主要来自碳酸盐类矿物,如石灰岩和方解石等。碳含量随煤化度的升高而增加。在我国泥炭中干燥无灰基碳含量为55~62%;成为褐煤以后碳含量就增加到60~76.5%;烟煤的碳含量为77~92.7%;一直到高变质的无烟煤,碳含量为88.98%。个别煤化度更高的无烟煤,其碳含量多在90%以上,如北京、四望峰等地的无烟煤,碳含量高达95~98%。因此,整个成煤过程,也可以说是增碳过程。
二、煤中的氢
氢是煤中第二个重要的组成元素。除有机氢外,在煤的矿物质中也含有少量的无机氢。它主要存在于矿物质的结晶水中,如高岭土(Al203·2Si02·2H2O)、石膏(CaS04·2H20 )等都含有结晶水。在煤的整个变质过程中,随着煤化度的加深,氢含量逐渐减少,煤化度低的煤,氢含量大;煤化度高的煤,氢含量小。总的规律是氢含量随碳含量的增加而降低。尤其在无烟煤阶段就尤为明显。当碳含量由92%增至98%时,氢含量则由2.1%降到1%以下。通常是碳含量在80~86%之间时,氢含量最高。即在烟煤的气煤、气肥煤段,氢含量能高达6.5%。在碳含量为65~80%的褐煤和长焰煤段,氢含量多数小于6%。但变化趋势仍是随着碳含量的增大而氢含量减小。
三、煤中的氧
氧是煤中第三个重要的组成元素。它以有机和无机两种状态存在。有机氧主要存在于含氧官能团,如羧基(--COOH),羟基(--OH)和甲氧基(--OCH3)等中;无机氧主要存在于煤中水分、硅酸盐、碳酸盐、硫酸盐和氧化物中等。煤中有机氧随煤化度的加深而减少,甚至趋于消失。褐煤在干燥无灰基碳含量小于70%时,其氧含量可高达20%以上。烟煤碳含量在85%附近时,氧含量几乎都小于10%。当无烟煤碳含量在92%以上时,其氧含量都降至5%以下。
四、煤中的氮
煤中的氮含量比较少,一般约为0.5~3.0%。氮是煤中唯一的完全以有机状态存在的元素。煤中有机氯化物被认为是比较稳定的杂环和复杂的非环结构的化合物,其原生物可能是动、植物脂肪。植物中的植物碱、叶绿素和其他组织的环状结构中都含有氮,而且相当稳定,在煤化过程中不发生变化,成为煤中保留的氮化物。以蛋白质形态存在的氮,仅在泥炭和褐煤中发现,在烟煤很少,几乎没有发现。煤中氮含量随煤的变质程度的加深而减少。它与氢含量的关系是,随氢含量的增高而增大。
五、煤中的硫
煤中的硫分是有害杂质,它能使钢铁热脆、设备腐蚀、燃烧时生成的二氧化硫(SO2)污染大气,危害动、植物生长及人类健康。所以,硫分含量是评价煤质的重要指标之一。煤中含硫量的多少,似与煤化度的深浅没有明显的关系,无论是变质程度高的煤或变质程度低的煤,都存在着有机硫或多或少的煤。 煤中硫分的多少与成煤时的古地理环境有密切的关系。在内陆环境或滨海三角训平原环境下形成的和在海陆相交替沉积的煤层或浅海相沉积的煤层,煤中的硫含量就比较高,且大部分为有机硫。 根据煤中硫的赋存形态,一般分为有机硫和无机硫两大类。各种形态的硫分的总和称为全硫分。所谓有机硫,是指与煤的有机结构相结合的硫。有机硫主要来自成煤植物中的蛋白质和微生物的蛋白质。煤中无机硫主要来自矿物质中各种含硫化合物,一般又分为硫化物硫和硫酸盐硫两种,有时也有微量的单质硫。硫化物硫主要以黄铁矿为主,其次为白铁矿、磁铁矿((Fe3O4)、闪锌矿(ZnS)、方铅矿(PbS)等。硫酸盐硫主要以石膏(CaSO4·2H20)为主,也有少量的绿矾 (FeSO4·7H 20 )等。

⑹ 污水中包括哪些杂质

不同的污水,杂质是不同的.
主要污染物
病原体污染物?
生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫.水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等.历史上流行的瘟疫,有的就是水媒型传染病.如1848年和1854年英国两次霍乱流行,死亡万余人;1892年德国汉堡霍乱流行,死亡750余人,均是水污染引起的. 污水处理
受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标.病原体污染的特点是:(1)数量大;(2)分布广;(3)存活时间较长;(4)繁殖速度快;(5)易产生抗药性,很难绝灭;(6)传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活.常见的混凝、沉淀、过滤、消毒处理能够去除水中99%以上病毒,如出水浊度大于0.5度时,仍会伴随病毒的穿透.病原体污染物可通过多种途径进入水体,一旦条件适合,就会引起人体疾病.
耗氧污染物?
在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质. 污水中的鱼
这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解.在其分解过程中需要消耗氧气,因而被称为耗氧污染物.这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长.水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化.水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示,即以生化需氧量(BOD)表示.一般用20℃时,五天生化需氧量(BOD5)表示.
植物营养物?
植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质.水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题. 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象.在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地.这种自然过程非常缓慢,常需几千年甚至上万年.而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现.? 植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等.每人每天带进污水中的氮约50g.生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中.天然水体中磷和氮(特别是磷)的含量在一定程度上是浮游生物生长的控制因素.当大量氮、磷植物营养物质排入水体后,促使某些生物(如藻类)急剧繁殖生长,生长周期变短.藻类及其他浮游生物死亡后被需氧生物分解,不断消耗水中的溶解氧,或被厌氧微生物所分解,不断产生硫化氢等气体,使水质恶化,造成鱼类和其他水生生物的大量死亡.藻类及其他浮游生物残体在腐烂过程中,又把生物所需的氮、磷等营养物质释放到水中,供新的一代藻类等生物利用.因此,水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平.水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地.局部海区可变成"死海",或出现"赤潮"现象. 常用氮、磷含量,生产率(O2)及叶绿素-α作为水体富营养化程度的指标.表3-7是用总磷、无机氮划分水体富养化程度的指标.防治富营养化,必须控制进入水体的氮、磷含量.
有毒污染物
有毒污染物指的是进入生物体后累积到一定数量能使体液和组织发生生化和生理功能的变化,引起暂时或持久的病理状态,甚至危及生命的物质.如重金属和难分解的有机污染物等.污染物的毒性与摄入机体内的数量有密切关系.同一污染物的毒性也与它的存在形态有密切关系.价态或形态不同,其毒性可以有很大的差异.如Cr(Ⅵ)的毒性比Cr(Ⅲ)大;As(Ⅲ)的毒性比As(Ⅴ)大;甲基汞的毒性比无机汞大得多.另外污染物的毒性还与若干综合效应有密切关系.从传统毒理学来看,有毒污染物对生物的综合效应有三种:(1)相加作用,即两种以上毒物共存时,其总效果大致是各成分效果之和.(2)协同作用,即两种以上毒物共存时,一种成分能促进另一种成分毒性急剧增加.如铜、锌共存时,其毒性为它们单独存在时的8倍.(3)拮抗作用,两种以上的毒物共存时,其毒性可以抵消一部分或大部分.如锌可以抑制镉的毒性;又如在一定条件下硒对汞能产生拮抗作用.总之,除考虑有毒污染物的含量外,还须考虑它的存在形态和综合效应,这样才能全面深入地了解污染物对水质及人体健康的影响.? 污水
有毒污染物主要有以下几类:(1)重金属.如汞、镉、铬、铅、钒、钴、钡等,其中汞、镉、铅危害较大;砷、硒和铍的毒性也较大.重金属在自然界中一般不易消失,它们能通过食物链而被富集;这类物质除直接作用于人体引起疾病外,某些金属还可能促进慢性病的发展.(2)无机阴离子,主要是NO2-、F-、CN-离子.NO2-是致癌物质.剧毒物质氰化物主要来自工业废水排放.(3)有机农药、多氯联苯.目前世界上有机农药大约6000种,常用的大约有200多种.农药喷在农田中,经淋溶等作用进入水体,产生污染作用.有机农药可分为有机磷农药和有机氯农药.有机磷农药的毒性虽大,但一般容易降解,积累性不强,因而对生态系统的影响不明显;而绝大多数的有机氯农药,毒性大,几乎不降解,积累性甚高,对生态系统有显著影响.多氯联苯(PCB)是联苯分子中一部分氢或全部氢被氯取代后所形成的各种异构体混合物的总称. 多氯联苯剧毒,脂溶性大,易被生物吸收,化学性质十分稳定,难以和酸、碱、氧化剂等作用,有高度耐热性,在1000~1400℃高温下才能完全分解,因而在水体和生物中很难降解.(4)致癌物质.致癌物质大体分三类:稠环芳香烃(PAHs),如3,4-苯并芘等;杂环化合物,如黄曲霉素等;芳香胺类,如甲、乙苯胺,联苯胺等.(5)一般有机物质.如酚类化合物就有2000多种,最简单的是苯酚,均为高毒性物质;腈类化合物也有毒性,其中丙烯腈的环境影响最为注目.
石油类污染物?
石油污染是水体污染的重要类型之一,特别在河口、近海水域更为突出.排入海洋的石油估计每年高 黄河干流石油污染严重
数百万吨至上千万吨,约占世界石油总产量的千分之五.石油污染物主要来自工业排放,清洗石油运输船只的船舱、机件及发生意外事故、海上采油等均可造成石油污染.而油船事故属于爆炸性的集中污染源,危害是毁灭性的.? 石油是烷烃、烯烃和芳香烃的混合物,进入水体后的危害是多方面的.如在水上形成油膜,能阻碍水体复氧作用,油类粘附在鱼鳃上,可使鱼窒息;粘附在藻类、浮游生物上,可使它们死亡.油类会抑制水鸟产卵和孵化,严重时使鸟类大量死亡.石油污染还能使水产品质量降低.
放射性污染物?
放射性污染是放射性物质进入水体后造成的.放射性污染物主要来源于核动力工厂排出的冷却水,向海洋投弃的放射性废物,核爆炸降落到水体的散落物,核动力船舶事故泄漏的核燃料;开采、提炼和使用放射性物质时,如果处理不当,也会造成放射性污染.水体中的放射性污染物可以附着在生物体表面,也可以进入生物体蓄积起来,还可通过食物链对人产生内照射. 水中主要的天然放射性元素有40K、238U、286Ra、210Po、14C、氚等.目前,在世界任何海区几乎都能测出90Sr、137Cs.
酸、碱、盐无机污染物
各种酸、碱、盐等无机物进入水体(酸、碱中和生成盐,它们与水体中某些矿物相互作用产生某些盐类),使淡水资源的矿化度提高,影响各种用水水质.盐污染主要来自生活污水和工矿废水以及某些工业废渣.另外,由于酸雨规模日益扩大,造成土壤酸化、地下水矿化度增高. 水体中无机盐增加能提高水的渗透压,对淡水生物、植物生长产生不良影响.在盐碱化地区,地面水、地下水中的盐将对土壤质量产生更大影响.
热污染
热污染是一种能量污染,它是工矿企业向水体排放高温废水造成的.一些热电厂及各种工业过程中的冷却水,若不采取措施,直接排放到水体中,均可使水温升高,水中化学反应、生化反应的速度随之加快,使某些有毒物质(如氰化物、重金属离子等)的毒性提高,溶解氧减少,影响鱼类的生存和繁殖,加速某些细菌的繁殖,助长水草丛生,厌气发酵,恶臭. 鱼类生长都有一个最佳的水温区间.水温过高或过低都不适合鱼类生长,甚至会导致死亡.不同鱼类对水温的适应性也是不同的.如热带鱼适于15~32℃,温带鱼适于10~22℃,寒带鱼适于2~10℃的范围.又如鳟鱼虽在24℃的水中生活,但其繁殖温度则要低于14℃.一般水生生物能够生活的水温上限是33~35℃. 除了上述八类污染物以外,洗涤剂等表面活性剂对水环境的主要危害在于使水产生泡沫,阻止了空气与水接触而降低溶解氧,同时由于有机物的生化降解耗用水中溶解氧而导致水体缺氧.高浓度表面活性剂对微生物有明显毒性. 京航大运河北段遭污染
水体污染的例子很多,如京杭大运河(杭州段)两岸有许多工厂,每天均有大量废水排入运河,使水体中固体悬浮物、有机物、重金属(Zn,Cd,Pb,Cu等)及酚、氰化物等含量大大超过地面水标准,有的超过几十倍,使水体处于厌氧的还原状态,乌黑发臭,鱼虾绝迹,不能用于生活、农业等用水;水体自净能力差,若不治理,并控制污染源,水体污染还会进一步扩大. 水环境中的污染物,总体上可划分为无机污染物和有机污染物两大类.在水环境化学中较为重要的,研究得较多的污染物是重金属和有机物.我国水污染化学研究始于70年代,从重金属、耗氧有机物、DDT、六六六等农药污染开始,目前研究的重点已转向有机污染物,特别是难降解有机物,因其在环境中的存留期长,容易沿食物链(网)传递积累(富集),威胁生物生长和人体健康,因而日益受到人们重视.本章着重介绍重金属和有机污染物在水体中迁移转化的环境化学行为.

⑺ 洗煤后的废水有什么成分

洗煤废水是由原生煤泥、次生煤泥和水混合组成的一种多项体系内。
洗煤废水中包含有煤泥容颗粒(粗煤泥颗粒0.5~1mm,细煤泥颗粒0~0.5mm),矿物质,粘土颗粒等。洗煤废水一般具有SS、CODcr、BOD5浓度高、ζ电位极负的特点,因此,煤泥水不仅具有悬浊液的性质,还往往带有胶体的性质;细煤泥颗粒、粘土颗粒等粒度非常小,不易静沉。

⑻ 生活污水中的主要有机污染物是什么

1.病原体污染:生活污水、医院污水、畜禽饲养场污水等,常含有病原体,如病毒、病菌和寄生虫.这类污水如不经过适当的净化处理,流入水体后,即会通过各种渠道,引起痢疾、伤寒、传染性肝炎及血吸虫病等.
2.需氧性污染物:生活用水,造纸和食品工业污水中,含有蛋白质、油脂、碳水化合物、木质素等有机物.这类物质随污水进入水体后,在微生物对它们的分解过程中,需要消耗水体中的溶解氧,使水体含氧减少,从而影响鱼类和其它生物的生长繁殖.当水中的溶解氧耗尽后,水中的有机物即产生厌氧消化,生成甲烷、硫化氢等,使水体出现臭味,危害水生生物的生存.
3.植物营养污染物:造纸、皮革、食品、炼油、合成洗涤剂等工业污水和生活污水以及施用磷肥、氮肥的农田水,含有氮、磷、钾等营养物,如果大量的这类污水排入水体,使营养物质增多,引起藻类及其它浮游生物暴发性繁殖.这类物质多呈红色,称“赤潮生物”.赤潮生物的大量繁殖,会覆盖水面,附在鱿类肋上,使它们呼吸困难.死亡的赤潮生物被微生物分解,消耗掉水中的溶解氧.有些赤潮生物体内及其代替产物含有生物毒素,常常引起鱼贝类中毒死亡,并能通过食物链,危害人体健康.
4.石油污染物:多发生在海洋中,主要来自油船的事故泄露、海底采油、油船压舱水以及陆上炼油厂和生化工厂的废水.
5.剧毒污染物:主要是重金属、氰化物、氟化物和难分解的有机污染物,它们大都来自矿山、冶炼废水,它们都富集在生物体中,通过食物链,危害人类健康.此外,水体的污染还有放射性污染,这是由于放射性物质进入水体造成的.盐类污染,各种酸碱盐无机化合物进入水体,使淡水含盐量增加,影响水质.热污染,发电站等的冷却水是热污染的主要来源,大量热水排入水体,使水温增高,水体中溶解氧减少,影响鱼类的生存与繁殖.

阅读全文

与煤炭污水一般都有哪些杂质相关的资料

热点内容
如何除去丙烯酸树脂漆 浏览:180
汽车空气滤芯英文什么意思 浏览:233
超滤膜膜丝怎样防止爬胶 浏览:364
污水处理漂白粉加多少 浏览:467
净水机有水碱是什么原因 浏览:233
东莞污水厂废气治理多少钱 浏览:708
污水泡沫对人体有什么危害 浏览:250
日本排入废水最新消息 浏览:238
社区紧急联系抢修污水外流怎么办 浏览:239
不锈钢蜂蜜化晶过滤器 浏览:278
香港蒸馏水广告古天乐 浏览:489
三聚异氰胺树脂 浏览:396
超滤膜正冲洗 浏览:914
qq音乐播放器音质会提升吗 浏览:761
河北污水排水管多少钱 浏览:37
污水水池要做什么实验 浏览:487
小米净水废水怎么排 浏览:430
什么水不会起水垢 浏览:577
纯净水比普通水有什么好处 浏览:766
温度降低半透膜 浏览:762