导航:首页 > 废水污水 > 园区污水排查过程怎么写

园区污水排查过程怎么写

发布时间:2022-02-26 23:49:35

『壹』 污水管排查报告,污水管网排查报告怎么写

这个还是需要具体知道要求的。

『贰』 污水处理厂处理污水的流程

污水处理厂处理污水的流程如下图:

1、生物除磷

在经济发展过程中,我国的主要河流和湖泊由于受磷污染,富营养化严重,国家环保局为控制磷污染,对磷排放制定了比较严格的标准。化学强化生物除磷污水处理工艺以除去污水中有机污染物和各种形态的磷为主,此污水处理工艺将化学除磷和生物除磷一体化,通过厌氧消化生物系统中活性污泥产生挥发性有机酸,作为聚磷菌生长的基质或称之为营养物,使聚磷菌在活性污泥中选择性增殖,并将其回流到生物系统中,使生物污水处理系统工作在高效除磷状态;同时污泥在厌氧条件下产生的磷释放,通过化学除磷消除。这是一种高效市政污水处理工艺技术,满足了我国现阶段,为解决水体富营养化,需要在常规二级污水处理基础上进一步除磷的要求。

2、循环间隙

我国经济发展水平各地相差较大,经济发展滞后的城市还不能拿出很多资金用于污水治理,因此,怎样利用有限的资金,降低环境污染,是很多城市政府面临的问题。在污水处理方面,直到不久前,一些城市还采用一级或一级强化处理工艺技术,出水达不到国家二级排放标准对除去有机污染物的要求。循环间歇曝气工艺充分发挥高负荷氧化沟处理效率高的优点,又充分利用序批式活性污泥污水处理工艺出水好的特点,保证了系统出水达到国家污水排放一级标准在除去有机污染物方面的要求。在投资和运行费用上比通常以除去有机污染物为主的二级生物污水处理系统降低30%左右,是适合我国现阶段污水处理要求的工艺技术。

3、旋转接触

旋转接触氧化污水处理工艺技术是在生物转盘技术基础上,结合生物接触氧化技术优点发展起来的新一代好氧生物膜处理技术。旋转接触氧化污水处理工艺技术和成套设备提供了一种简单和可靠的污水处理方法。整个污水处理系统中的转轴是唯一的转动部分,一旦机器出了故障,一般机械人员都可以进行维修。系统生物量会根据有机负荷的变化而自动补偿。附在转盘上的微生物是有生命的,当污水中的有机物增加时,微生物随之增加,相反,当污水中的有机物减少时,微生物随之减少。所以这污水处理系统的工作效果不容易受到流量和负荷的突然变化和停电的影响。运行费用低,只有其他曝气污水处理系统耗电的八分之一到三分之一。占地面积仅相当常规活性污泥法一半。由于生物系统中生长的微生物种类多,能够高效处理各种难降解工业污水。

『叁』 关于工业园区污水治理的论文可以写些什么

这个方面的稿子其实很好写的,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文、、、其实这个挺好写的啊,我会。

『肆』 工业园区污水必须集中处理吗

现在整个污水处理局势,都是各个厂自己处理一次,然后在片区集中到集中污水厂再处理一次

『伍』 工地污水生产过程简介怎么写

摘要 工地污水主要有三大来源.一、是工地厕所及黑水、灰水,用于养护水以及施工人员的日常生活污水等。二、是施工过程中,比喻说钻孔、打桩、挖坑等以及冲洗车辆、机械的产生的各种泥水、泥浆,三、各种原因导致的含油、重金属或是有危害性的化学物质的废水

『陆』 去关于污水处理厂处理的实践报告3000个字

环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。随着我国社会和经济的高速发展,城市环境污染特别是水污染的问题日趋严重。城镇生活污水的排放量逐年增加,2002年全国工业和城镇生活废水排放总量为439.5亿吨,比上年增加1.5%。其中工业废水排放量207.2亿吨,比上年增加2.3%;城镇生活污水排放量232.3亿吨,比上年增加0.9%,其中仅有10%得到处理。[1]生活污水中含有较高的氮、磷等营养物质,未经处理直接排入江河湖海,是导致水域富营养化污染的主要原因。2002年监测数据显示,辽河、海河水系污染严重,劣V类水体占60%以上;淮河干流水质以III-V类水体为主,支流及省界河段水质仍然较差;黄河水系总体水质较差,干流水质以III-IV类水体为主,支流污染普通严重;松花江水系以III-IV类水体为主;珠江水系水质总体良好,以II类水体为主;长江干流及主要一级支流水质良好,以II类水体为主。由于“污染性”造成的水资源短缺,已成为严重制约我国社会经济持续发展的突出问题,丞待解决。目前我国水污染控制的重点已从以工业点源为主,逐步转变为以城市污水污染为主的控制。根据预测 [2],到2010年我国城市污水排放总量为1050亿m3,城市污水处理率要达到50%,预计需新建污水处理厂1000余座,而决定城市污水处理厂投资和运行成本的主要因素是污水处理工艺和技术的选择,因此开发适合我国国情的、高效、低耗、能满足排放要求、基建和运行费用低的污水处理新技术和新工艺,具有十分重要的现实意义。
二、生活污水处理工艺研究和应用领域共同关注的问题
长期以来,城市生活污水的二级生物处理多采用活性污泥法,它是当前世界各国应用最广的一种二级生物处理流程,具有处理能力高,出水水质好等优点。但却普遍存在着基建费、运行费高,能耗大,管理较复杂,易出现污泥膨胀、污泥上浮等问题,且不能去除氮、磷等无机营养物质。对于我国这样一个资源不足、人口众多的发展中国家,从可持续发展的角度来看,并不适合中国国情。由于污水处理是一项侧重于环境效益和社会效益的工程,因此在建设和实际运行过程中常受到资金的限制,使得治理技术与资金问题成为我国水污染治理的“瓶颈”。归纳起来,目前在城市生活污水处理研究和应用领域,普遍存在的问题有:
(1)采用传统的活性污泥法,往往基建费、运行费高,能耗大,管理较复杂,易出现污泥膨胀现象;工艺设备不能满足高效低耗的要求。
(2)随着污水排放标准的不断严格,对污水中氮、磷等营养物质的排放要求较高,传统的具有脱氮除磷功能的污水处理工艺多以活性污泥法为主,往往需要将多个厌氧和好氧反应池串联,形成多级反应池,通过增加内循环来达到脱氮除磷的目的,这势必要增加基建投资的费用及能耗,并且使运行管理较为复杂。
(3)目前城市污水的处理多以集中处理为主,庞大的污水收集系统的投资远远超过污水处理厂本身的投资,因此建设大型的污水处理厂,集中处理生活污水,从污水再生回用的角度来说不一定是唯一可取的方案。
因此,如何使城市污水处理工艺朝着低能耗、高效率、少剩余污泥量、最方便的操作管理,以及实现磷回收和处理水回用等可持续的方向发展。已成为目前水处理技术研究和应用领域共同关注的问题,就要求污水处理不应仅仅满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能耗和少资源损耗为前提。
三、生物膜法处理工艺在生活污水处理中的应用研究发展
在污水生物处理的发展和应用中,活性污泥和生物膜法一直占据主导地位。随着新型填料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜法处理工艺在近年来得以快速发展。由于生物膜法具有处理效率高,耐冲击负荷性能好,产泥量低,占地面积少,便于运行管理等优点,在处理中极具竞争力。
1.生物膜法净化污水机理
污水中有机污染物质种类繁多,成分复杂。但对于生活污水来说,其有机成分归纳起来主要包括:蛋白质(40%-60%),碳水化合物(25%-50%)和油脂(10%),此外还含有一定量的尿素[3]。生物膜法依靠固定于载体表面上的微生物膜来降解有机物,由于微生物细胞几乎能在水环境中的任何适宜的载体表面牢固地附着、生长和繁殖,由细胞内向外伸展的胞外多聚物使微生物细胞形成纤维状的缠结结构,因此生物膜通常具有孔状结构,并具有很强的吸附性能。
生物膜附着在载体的表面,是高度亲水的物质,在污水不断流动的条件下,其外侧总是存在着一层附着水层。生物膜又是微生物高度密集的物质,在膜的表面上和一这深度的内部生长繁殖着大量的微生物及微型动物,形成由有机污染物 →细菌→原生动物(后生动物)组成的食物链。生物膜是由细菌、真菌、藻类、原生动物、后生动物和其他一些肉眼可见的生物群落组成。其中细菌一般有:假单苞菌属、芽苞菌属、产碱杆菌属和动胶菌属以及球衣菌属,原生动物多为钟虫、独缩虫、等枝虫、盖纤虫等。后生动物只有在溶解氧非常充足的条件下才出现,且主要为线虫。污水在流过载体表面时,污水中的有机污染物被生物膜中的微生物吸附,并通过氧向生物膜内部扩散,在膜中发生生物氧化等作用,从而完成对有机物的降解。生物膜表层生长的是好氧和兼氧微生物,而在生物膜的内层微生物则往往处于厌氧状态,当生物膜逐渐增厚,厌氧层的厚度超过好氧层时,会导致生物膜的脱落,而新的生物膜又会在载体表面重新生成,通过生物膜的周期更新,以维持生物膜反应器的正常运行。
生物膜法通过将微生物细胞固定于反应器内的载体上,实现了微生物停留时间和水力停留时间的分离,载体填料的存在,对水流起到强制紊动的作用,同时可促进水中污染物质与微生物细胞的充分接触,从实质上强化了传质过程。生物膜法克服了活性污泥法中易出现的污泥膨胀和污泥上浮等问题,在许多情况下不仅能代替活性污泥法用于城市污水的二级生物处理,而且还具有运行稳定、抗冲击负荷强、更为经济节能、具有一定的硝化反硝化功能、可实现封闭运转防止臭味等优点。
通过人工强化作用将生物膜引入到污水处理反应器中,便形成了生物膜反应器。近年来,物物膜反应器发展迅速,由单一到复合,有好氧也有厌氧,逐步形成了一套较完整的生物处理系统。
填料是生物膜技术的核心之一,它的性能对废水处理工艺过程的效率、能耗、稳定性以及可靠性均有直接关系。
2、厌氧生物膜法处理工艺在生活污水处理中的应用研究进展
(1)、复杂物料的厌氧降解阶段
在废水的厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响,相互制约,形成复杂的生态系统。对复杂物料的厌氧过程的叙述,有助于我们了解这一过程的基本内容。所谓复杂物料,即指那些高分子的有机物,这些有机物在废水中以悬浮物或胶体形式存在。
复杂物料的厌氧降解过程可以被分为四个阶段。
水解阶段:高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用。因此它们在第一阶段被细菌胞外酶分解为小分子。例如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。
发酵(或酸化)阶段:在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有挥发性脂肪酸(简写作VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此未酸化废水厌氧处理时产生更多的剩余污泥。
产乙酸阶段:在此阶段,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
产甲烷阶段:这一阶段里,乙酸、氢气、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新的细胞物质。
在以上阶段里,还包含着以下这些过程:a、水解阶段里有蛋白质水解、碳水化合物的水解和脂类水解;b、发酵酸化阶段包含氨基酸和糖类的厌氧氧化与较高级的脂肪酸与醇类的厌氧氧化;c、产乙酸阶段里有从中间产物中形成乙酸和氢气和由氢气和 氧化碳形成乙酸;d、甲烷化阶段包括由乙酸形成甲烷和从氢气和二氧化碳形成甲烷。除以上这些过程之外,当废水含有硫酸盐时还会有硫酸盐还原过程。复杂化合物的厌氧降解可以利用图来表述(见图1)
(2)厌氧生物膜法处理工艺的应用研究进展
a、厌氧滤器(AF)
厌氧滤器是60年代末由美国McCarty 等在Coulter等研究基础上发展并确立的第一个高速厌氧反应器。传统的好氧生物系统一般容积负荷在2KgCOD/(m3?d)以下。而在AF发明之前的厌氧反应器一般容积负荷也在4-5kgCOD/(m3?d)以下。但AF在处理溶解性废水时负荷可高达10-15 kgCOD/(m3?d)。[4]因此AF的发展大大提高了厌氧反应器的处理速率,使反应器容积大大减少。
AF作为高速厌氧反应器地位的确立,还在于它采用了生物固定化的技术,使污泥在反应器内的停留时间(SRT)极大地延长。McCarty发现在保持同样处理效果时,SRT的提高可以大大缩短废水的水力停留时间(HRT),从而减少反应器容积,或在相同反应器容积时增加处理的水量。这种采用生物固定化延长SRT,并把SRT和HRT分别对待的思想推动了新一代高速厌氧反应器的发展。
SRT的延长实质是维持了反应器内污泥的高浓度,在AF内,厌氧污泥的浓度可以达到10-20gVSS/L。AF内厌氧污泥的保留由两种方式完成:其一是细菌在AF内固定的填料表面(也包括反应器内壁)形成生物膜;其二是在填料之间细菌形成聚集体。高浓度厌氧污泥在反应器内的积累是AF具有高速反应性能的生物学基础,在一定的污泥比产甲烷活性下,厌氧反应器的负荷与污泥浓度成正比。同时,AF内形成的厌氧污泥较之厌氧接触工艺的污泥密度大、沉淀性能好,因而其出水中的剩余污泥不存在分离困难的问题。由于AF内可自行保留高浓度的污泥,也不需要污泥的回流。
在AF内,由于填料是固定的,废水进入反应器内,逐渐被细菌水解酸化、转化为乙酸和甲烷,废水组成在不同反应器高度逐渐变化。因此微生物种群的分布也呈现规律性。在底部(进水处),发酵菌和产酸菌占有最大的比重,随反应器高度上升,产乙酸菌和产甲烷菌逐渐增多并占主导地位。细菌的种类与废水的成分有关,在已酸化的废水中,发酵与产酸菌不会有太大的浓度。
细菌在反应器内分布的另一特征是反应器进水处(例如上流式AF的内部)细菌由于得到营养最多因而污泥浓度最高,污泥的浓度随高度迅速减少。
污泥的这种分布特征赋予AF一些工艺上的特点。首先,AF内废水中有机物的去除主要在AF底部进行(指上流式AF),据Young和Dahab报道[4], AF反应器在1m以上COD的去除率几乎不再增加,而大部分COD是在0.3m以内去除的。因此研究者认为在一定的容积负荷下,浅的AF反应器比深的反应器能有更好的处理效率。其次,由于反应器底部污泥浓度特别大,因此容易引起反应器的堵塞。堵塞问题是影响AF应用的最主要问题之一。据报道,上流式AF底部污泥浓度可高达60g/L。厌氧污泥在AF内的有规律分布还使得反应器对有毒物质的适应能力较强,可以生物降解的毒性物质在反应器内的浓度也呈现出规律性的变化,加之厌氧生物膜形成各种菌群的良好共生体系,因此在AF内易于培养出适应有毒物质的厌氧污泥。例如在处理三氯甲烷和甲醛废水中,发现AF反应器内的污泥产生了良好的适应性,这些有毒物质的去除效果和允许的进液浓度逐渐上升。AF同时也具有较大的抗冲击负荷能力。一般认为在相同的温度条件下,AF的负荷可高出厌氧接触工艺2~3倍,同时会有较高的COD去除率。
AF在应用上的问题除了堵塞和由局部堵塞引起的沟流以外,另一个问题是它需要大量的填料,填料的使用使其成本上升。由于以上问题,国外生产规模的AF系统应用也不是很多。据Le-ttinga在1993年估计,国外生产规模的AF系统大约仅有30~40个。[4]
作为升流式厌氧滤池的革新技术——厌氧膜床(S?pecial Anaerobic Film Bed, SAFB),采用较大颗粒及孔隙率的填料代替传统的小粒径填料,有效地解决了反应器的堵塞问题。厌氧膜床具有如下特点:
有效克服了厌氧滤池易堵塞和出水水质差的缺点;
生物固体浓度高,因此可获得较高的有机负荷;
在厌氧膜床内微生物通过附着在填料表面形成生物膜,以及悬浮于填料孔隙间形成细菌聚集体,因此在厌氧膜床内可以保持较高的生物量。因此可缩短水力停留时间,耐冲击负荷能力较强;
启动时间短,停止运行后再启动也较容易;
不需要回流污泥,运行管理方便;
在水量和负荷有较大变化的情况下,耐冲击性较好。
b、厌氧流化床反应器(AFBR)
在流化床系统中依靠在惰性的填料微粒表面形成的生物膜来保留厌氧污泥,液体与污泥的混合、物质的传递依靠使这些带有生物膜的微粒形成流态化来实现。
流化床反应器的主要特点可归纳如下:
流态化能最大程度使厌氧污泥与被处理的废水接触;
由于颗粒与流体相对运动速度高,液膜扩散阻力小,且由于形成的生物膜较薄,传质作用强,因此生物化学过程进行较快,允许废水在反应器内有较短的水力停留时间;
克服了厌氧滤器堵塞和沟流问题;
高的反应器容积负荷可减少反应器体积,同时由于其高度与直径的比例大于其它厌氧反应器,因此可以减少占地面积。
但是,厌氧流化床反应器存在着几个尚未解决的问题。其一,为了实现良好的流态化并使污泥和填料不致从反应器流失,必须使生物膜颗粒保持均匀的形状、大小和密度,但这几乎是难以做到的,因此稳定的流态化也难以保证。[5]其次,一些较新的研究认为流化床反应器需要有单独的预酸化反应器。同时,为取得高的上流速度以保证流态化,流化床反应器需要大量的回流水,这样导致能耗加大,成本上升。由于以上原因,流化床反应器至今没有生产规模的设施运行。有人认为它在今后应用的前景也不大。[5]
c、厌氧附着膜膨胀床反应器(AAFEB)
厌氧附着膜膨胀床(Anaerobic Attached Film Expanded Bed)是Jewell等人在1974年研究和开发出来的一种污水处理工艺。与生物流化床相比,区别在于载体的膨胀程度。以填料层高度计,膨胀床的膨胀率约为10%~20%,此时颗粒间仍保持互相接触,而流化床则为20%~70%。Bruce J.Alderman等[6]通过对比厌氧膨胀床、滴滤池和活性污泥法等工艺的经济性,发现对于小型污水处理厂而言,厌氧膨胀床后续滴滤池的设计是最为经济的选择,能耗量少,污泥产率量低。但目前此工艺仍主要停留在小试和中试研究阶段。
综上所述,采用厌氧生物膜反应器为主体的厌氧处理技术,作为生活污水处理的核心方法,在技术上已经成熟,并且较之其它方法有独到的一些优势。但是,厌氧方法在浓缩营养物(氮和磷)方面效果不大,同时它仅能除去部分病源微生物。此外,残存的BOD、悬浮物或还原性物质可能影响到出水的质量。所以厌氧生物膜反应器要成为完整的环境治理技术,合适的后处理手段必不可少。
3、好氧生物膜法处理技术——生物接触氧化
生物接触氧化法是由生物滤池和接触曝气氧化池演变而来的。早在20世纪30年代,已在美国出现生产型装置。当时的生物接触氧化池,填料的材质是砂石、竹木制品和金属制品,主要用于处理低浓度、低有机负荷的污水,它克服了活性污泥法在处理此类污水时,因污泥流失而不能维持正常运行的缺点,并取得了较好的效果。进入70年代,随着大孔径、高比表面积的蜂窝直管填料和立体波纹塑料填料的出现,使生物接触氧化法的应用范围得到拓宽,它不仅可用于处理生活污水,而且可用于处理高浓度有机废水和有毒有害工业废水,与其他生物处理方法相比,展现出了优越性,我国在70年代开始对生物接触氧化法进行了研究,第一座生产性试验装置用于处理城市污水,在处理效果、动力消耗、经济效益和管理维护等方面都明显优于活性污泥法。与活性污泥法比较,生物接触氧化具有以下主要优点:①生物接触化法以填料作为载体,供生物群栖息生长,形成稳定的生态体系,有较高的微生物浓度,一般可达10~20g/l;氧的利用率高,可达10%。具有较高的耐冲击负荷能力和对环境变化的适应能力,剩余污泥量少。②生物接触氧化法可以充分利用丝状菌的强氧化能力且不产生污泥膨胀。并且不需要象活性污泥法那样采用污泥回流以调整污泥量和溶解氧浓度,易于管理和操作。随着十余年的大量实践,对氧化池结构形式、填料的品种和安装方式、供气装置的种类和布置形式等方面进行了不断创新、不断优化。目前,生物接触氧化技术已经广泛应用处理生活污水、生活杂用水和不同有机物浓度的工业废水。
填料是微生物栖息的场所、生物膜的载体。填料的表面生长生物膜,生物膜的新陈代谢过程使污水得利净化。填料的性能直接影响着生物接触氧化技术的效果和经济上的合理性,因而填料的选择是生物接触氧化技术的关键。
填料的特性取决于填料的材质和结构形式。填料的材质应具有分子结构稳定、抗老化、耐腐蚀和生物稳定性好等特性。填料的结构形式应具有比表面积大、空隙率高、硬度高、有布水布气和切割气泡的功能。填料之间的空隙在外力作用下可发生变化,有利于剥落的生物膜及时排出填料区,以及填料的体积应具有可压缩性,并在复原后不发生变形,便于运输和安装。
固定化载体的发展
(1)固定式填料
固定式填料以蜂窝状及波纹状填料为代表,多用玻璃钢、各种薄形塑料片构成。新近有陶土直接烧结生产的陶瓷蜂窝填料,孔形为六角形,孔径在20~100mm之间。由于比表面积小,生物膜量小,表面光滑,生物膜易脱落,填料横向不流通,造成布气不均匀,易堵塞以至无法正常运转,且造价较高,近年来,此类填料已逐渐淘汰。
(2)悬挂式填料
悬挂式填料包括软性、半软性及组合填料、软性填料,理论比表面积大,空隙率>90%,挂膜快,空隙的可变性使之不易堵塞,而且造价低,组装方便,出水稳定,处理效果较好,COD和BOD5去除率达80%以上。但废水浓度高或水中悬浮物较大时,填料丝会结团,大大减少了实际利用的比表面积,且易发生断丝、中心绳断裂等情况,影响使用寿命,其寿命一般为1~2年。半软性填料,具有较强的气泡切割性能和再行布水布气的能力、挂膜脱膜效果较好、不堵塞;COD和BOD去除率在70-80%。使用寿命较软性填料长。但其理论比表面积较小(87-93m2/m3)生物膜总量不足影响污水处理效果,且造价偏高。
组合式填料,是鉴于软性、半软性存在的上述缺点并吸取软性填料比表面积大、易挂膜和半软性填料不结团,气泡切割性能好而设计的新型填料,在填料中央设计半软性部件支撑着外围的软性纤维束,其平面有如盾形,故又称盾式填料。其比表面积1000~2500 m2/m3,空隙率98%-99%,具有挂膜快,生物总量大,不结团等优点。污水处理能力优于软性、半软性填料,在正常水力负荷条件下COD去除率70%-85%,BOD5去除率达80%~90%,与之类似的还有灯笼式(或龙式)和YDT弹性立体填料。
(3)分散式填料
分散式填料包括堆积式、悬浮式填料,种类繁多。特点是无需固定和悬挂,只需将之放置于处理装置之中,使用方便,更换简单。北京晓清环保公司的多孔球形悬浮填料和北京桑德公司的SNP无剩余污泥悬浮填料等,具有充氧性能好,挂膜快,使用寿命长等优点。江西萍乡佳能环保工程公司新近开发的堆积式填料—球形轻质陶料,填料粒径2~4 mm,有巨大的比表面积,使反应器中单位体积内可保持较高的生物量,而且填料上的生物膜较薄,其活性相对较高,具有完全符合曝气生物滤池填料的国际性能标准,在法国承建的我国大连马栏河污水处理厂使用,这是我国新型填料开发的一项重大突破。
四、水解酸化—好氧活性污泥工艺在生活污水处理中的应用
城市污水经厌氧处理后,在现有的技术条件下,要达到二级出水标准,需要相当长的停留时间,结果使厌氧处理虽然在运行管理费用上占有优势,但在基建投资上却失去了竞争力。因此从微生物和化学角度讲,厌氧处理仅仅提供了一种预处理,它一般需要后处理方能满足新的污水排放标准。印度和南美国家在积极推广应用厌氧生活污水处理技术的同时,普遍意识到由于厌氧处理后氮和磷基本上没有去除,因此对厌氧出水进一步处理很有必要。缺乏合适的后处理技术,是导致厌氧生物处理技术在生活污水处理领域应用缓慢的主要原因之一。虽然已有的小试实验结果表明,两级厌氧系统组合可以获得良好的处理效果。但目前,在实际生产中,应用最为广泛的仍然是厌氧与好氧组合系统。在印度,氧化塘是最常用的后处理方法。经厌氧、氧化塘两级处理后的出水BOD5、CODcr和TSS去除率分别为87%、81%和90%。在巴西NovaVista市的7000人生活污水处理工程中,以及哥伦比亚Bucarmanga镇的160000人生活污水处理工程中,后处理均采用的是兼性氧化塘。在墨西哥的厌氧生活污水处理工程中,后处理方法比较多样化,二沉池+氯消毒、淹没滤池+二沉池+氯消毒、氧化沟等,最后直接排入城市污水管网或用于农灌。在日本,城镇生活污水一般采用厌氧消化+好氧活性污泥法联合处理、厌氧滤池+好氧滤池以及厌氧滤池+接触氧化法组合处理。并且最新研制的具有脱氮除磷功能的高级型JOHKASO小型家用生活污水净化器系统,广泛应用于分散处理生活污水方面。[7]厌氧和好氧生物处理技术的组合能够有效的去除大部分有机和无机污染物。厌氧生物专家G·Lettinga教授断言厌氧处理生物技术如果有合适的后处理方法相配合,可以成为分散型生活污水处理模式的核心手段,这一模式较之于传统的集中处理方法更具有可持续性和生命力,尤其适合发展中国家的情况。[8]
厌氧-好氧组合处理工艺,充分发挥了厌氧技术节能、好氧技术高效的优势,成为目前污水处理工艺发展的主要趋势。在国外,由上流式厌氧污泥床反应器(UASB)和好氧生物膜反应器组成的厌氧—好氧组合处理工艺一直是研究的重点,[9,10,11]并针对组合工艺的硝化/反硝化性能和动力学机理展开了较为深入的研究。[12,13]近年来,Ricardo Franci Goncalves等[14,15]进行的小试和中试的研究结果表明,采用UASB和淹没式曝气生物滤池(BF)组合工艺处理生活污水,两段HRT分别为6h和0.17h时系统对CODcr 、BOD5 和SS去除率均在90%以上,并且该组合系统相对单一的UASB污水处理系统而言,有更好的稳定出水水质的作用。当BF段的污泥回流至UASB段时,厌氧反应器内有机物甲烷化的能力提高,使产气量增加、剩余污泥量减少,可以减少甚至省去污泥浓缩池和消化池。
由于以UASB为主体的厌氧-好氧组合处理工艺,受温度的影响较大,特别是在低温条件下,系统的性能不能得到充分的发挥。Igor Bodik等[16]通过中试试验研究了厌氧折流板生物滤池反应器和淹没式曝气生物滤池组合工艺低温下处理生活污水时的脱氮性能。系统经过一年的运行,在厌氧段和好氧段的水力停留时间分别为15 h和4h的条件下,即使环境温度低于10℃(平均气温5.9℃),对CODcr、BOD5和SS的去除率仍达80%左右。低温使硝化的活性受到一定的影响,温度在4.5-23℃范围内,TKN的去除率在46.4-87.3%间变化,并且该系统也具有一定的反硝化功能,为低温环境下生活污水的脱氮处理提供了参考。

『柒』 污水处理调试的方案怎么写谢谢了,大神帮忙啊

污水处理站工艺调试方案 污水处理站工艺调试的目的在于及时修理和改正工程缺陷和错误,确保处理站达到设计功能。在调试污水处理工艺过程中,离不开机电设备、自控仪表、化验分析等相关专业的配合,因此调试实际是设备、自控、工艺实现联动的过程。 工艺调试是污水站投产前的一项重要工作,其重要性表现在以下几个方面:一是发现并解决设备、设施、控制、工艺等方面出现的问题,使污水站投入正常运行;二是实现工艺设计目标,即出水各项指标达到设计要求;三是确定符合实际进水水量和水质的各项控制参数,在出水水质达到设计要求的前提下,尽可能的降低运行成本。 一、调试内容及目的 调试的主要内容有: 第一, 单机试运,包括各种设备安装后的单机运转和各处理单元构筑物的试水,以便检查水工构筑物的水位和高程是否满足设计要求; 第二,对整个工艺系统进行设计水量的清水联动,打通工艺流程,考察设备在清水流动下的运行情况,检验部分自控仪表和连接各个工艺的管道,阀门是否满足设计要求; 第三,带负荷试车,检验各处理单元的处理效果,解决影响连续运行的各种问题,为下一步工作(活性污泥培养,主要是积累处理所需微生物的量)打好基础,如若已有污泥,则主要工作为污泥的驯化; 第四,活性污泥驯化,其目的是选择适应实际水质情况的微生物,淘汰无用的微生物,这是保证工艺有良好出水指标的关键; 第五,确定符合实际进水水质水量的工艺控制参数,在确保出水水质达标的前提下,尽可能降低能耗,并编制工艺控制规程,以指导今后的运行(规程已编好)。 二、调试方法 (一)准备工作 1.人员准备: a.工艺、化验、设备、自控、仪表等相关专业技术人员各一人。 b.接受过培训的各岗位人员到位,人数视岗位设置和可以进行轮班而定。 c.仪器设备: 1600倍显微镜 1台; DO、 pH、温度快速测定仪 1台; 采样器 1个; 100ml量筒 2个; 玻璃棒 2支; 500ml烧杯 2个 试管刷 1个; 移液管10ml、2ml 各1个 ; 吸球 1个; pH广泛试纸 2包; 定时钟: 1个; 弹簧秤 1个 (如现场监测COD Mn 需另加: 250ml锥形瓶 3个; 50ml酸式滴定管 2个; 1000ml棕色容量瓶 3个; 1+3硫酸 200ml; 沸水浴装置 1套 ; 0.01mol/L KMnO 4 标液1000ml; 0.01mol/L Na 2 C 2 O 4 标液1000ml;) (如有物化处理单元,仅需增加相应混、絮凝剂即可。) d . 化验人员配备: 2人。 1人晚上操作,1人化验兼白天操作。 3 、 处理单元试压、试漏;管道系统通水、通气。 4 、 测定原水水质(COD Cr 、BOD 5 、N、P、pH、SS、水温)水量,制定调试方案。 5.其他准备工作: a.收集工艺设计图及设计说明、自控、仪表和设备说明书等相关资料。 b.检查化验室仪器、器皿、药品等是否齐全,以便开展水质分析。 c.检查各构筑物及其附属设施尺寸、标高是否与设计相符,管道及构筑物中有无堵塞物。 d.检查总供电及各设备供电是否正常。 e.检查设备能否正常开机,各种闸阀能否正常开启和关闭。 f.检查仪表及控制系统是否正常。 g.检查维修、维护工具是否齐全,常用易损件有无准备。 h.购置絮凝剂。 (二)带负荷试车(单机试清水,和系统的清水联动详细步骤同下) 开启水处理设施、管道中所有阀门和闸阀,启动进水泵送水,根据各构筑物进水情况,沿工艺流程适时启动其他设备。在此过程中应做好以下几方面工作: 第一、检查进线总电流是否符合要求,变配电设备工作是否正常,各种设备工作情况是否正常以及能否满足设计要求,仪器仪表工作是否正常,自控系统能否满足设计要求。 第二、用容积法校核进出水、回流以及剩余污泥流量计计量是否准确,校核各种仪表,检测进水水质,测量流速,测量并记录设备的电压、电流、功率和转速。 第三、及时解决试车过程中发现的问题。 第四、编制设备操作规程(已编好)。 (三)活性污泥培养(或者购买现有污水厂的污泥) (四)活性污泥驯化 SBR 工艺调试(同 ICEASE 的污泥驯化) 1 、 SBR 工艺简介 该工艺是通过程序化控制充水、反应、沉淀、排水排泥和闲置5个阶段(ICEASE无闲置阶段),实现对废水的生化处理。SBR反应器可分为限制曝气、非限制曝气和半限制曝气3种。限制曝气是污水进入曝气池只作混和而不作曝气;非限制曝气是边进水边曝气;半限制曝气是污水进入的中期开始曝气,在反应阶段,可以始终曝气,为了生物脱氮,也可以曝气后搅拌,或者曝气、搅拌交替进行;其剩余污泥可以在闲置阶段排放,也可在进水阶段或反应阶段后期排放。 2 、调试方案的制定 SBR反应器运行方式应根据废水的性质确定,易降解的有机废水宜采用限制曝气进水方式,难降解的有机废水宜采用非限制进水方式。其周期各工序的时间控制与最终处理指标要求有关。如:若处理中仅考虑COD Cr 和BOD 5 的处理效果,曝气时间可适当减少,以达到节能的目的;若考虑N、P的去除,曝气时间至少需4小时;以处理工业废水及有毒有害废水为目标的运行方式建议采用短时间的搅拌加上长时间的曝气。 不同的污水处理工程其调试方案及操作步骤各不相同,以济源皮毛厂生产废水治理工程为例说明如下: 1 、接种:(已有菌种) 根据反应器有效容积及污泥浓度(一般3—4g/l)计算所需接种污泥总量。SBR池有效池容为:7×4×4=112m 3 。以每池容按100m 3 ,接种污泥含水率为97%计,需外拉污泥量为20--26 m 3 ,每池接种10--13 m 3 。 具体情况为将外拉污泥量平均放入 ICEASE 反应池中。 2 、驯化、启动: a 、 配料: 在调节池(有效池容为:12.0×4.0×3.5m=168m 3 按施工时准确尺寸)中进行。因原污水中含一定量的有毒有害物质,按原污水∶稀释水=1∶4的比例进行配制料液,即原污水33.6 m 3 ,加入稀释水134.4m 3 。根据该污水水质情况,配好的料液其营养可能不够,需加入一定量的营养源(粪便水)(一般要求配制好的料液其COD Cr =1500—2000mg/l,pH=6—9 , SS≤200mg/l 温度:10--35℃),打开调节池空气阀,使调节池曝气搅拌均匀。 b 、进料运行 :料配好搅拌半小时后即可直接往SBR反应器中进料,每个SBR池进料150m 3 进料1小时后开始连续曝气约3—4天(注意观察污泥性状,以接种污泥恢复活性为准)。 c 、排水: 当污泥恢复活性,停止曝气,,静沉1.0---1.5小时。放出上清液,约50---60m 3 。 d 、 重复上述a、b、c步骤。换料间隙为1天1次。 e 、 当污泥活性明显增强,沉降性能良好,污泥中含有大量的菌胶团和纤毛类原生动物,如种虫、等枝虫、盖纤虫等,SV=10---30%时,表明污泥已经成熟,强制驯化期基本结束。 f 、注意事项: 在曝气过程中,每天至少测2次溶解氧、pH、污泥沉降比;记录测量数据。一般正常指标为:DO=1—2mg/l pH=6---9 SV=10---30% 。 污泥沉降比( SV )是指将混匀的曝气池活性污泥混合液迅速倒进 1000ml 量筒中至满刻度,静置沉淀 30 分钟后,则沉淀污泥与所取混合液之体积比为污泥沉降比( % ),又称污泥沉降体积( SV30 )以 mL/L 表示。 因为污泥沉降 30 分钟后,一般可达到或接近最大密度,所以普遍以此时间作为该指标测定的标准时间。也可以 15 分钟为准( SV15 )。 g 、 此强制驯化阶段大约需时5—7天。 3 、调试运行: 当污泥恢复活性、强制驯化完成以后即可进入驯化试运行阶段。此阶段不但要培养出适当的菌种,还要确定活性污泥系统的最佳运行条件。 第一阶段: A 、配料 :在调节池(按施工时准确尺寸)中进行。按原污水∶稀释水=1∶3的比例进行配制料液,即原污水42 m 3 ,加入稀释水126 m 3 。根据情况可适当加入一定量的营养源(粪便水)。打开调节池空气阀,使调节池曝气搅拌均匀。监测该水质指标(COD Cr 、pH、水温、SS)。 B 、 强制驯化完成后,停止曝气,静沉记录,根据固液分离情况决定静沉时间(一般为0.5---1.0小时),记录静沉时间。 C 、 排出上清液约40---50m 3 。取上清液100ml放入锥形瓶中,以备监测COD值所用。 D 、进料运行: 将配好的料液以10m 3 /h的流量加入SBR反应器,进料量为80m 3 /池,两个池子交替运行。先按22个小时为一周期进行运行。进料1小时后开始曝气,连续曝气4小时,停曝气0.5小时;再连续曝气4小时,停曝气1.0小时;再曝气3小时,停曝气0.5小时;再曝气3小时,停曝气1.0小时;再曝气2小时,静沉0.5—1.0小时,开始排水约80m 3 ,记录排水时间(约0.5小时),闲置0.5---1.0小时(ICEASE无需闲置)。曝气过程中要及时监测DO和SV%;停曝后,重新曝气前要监测DO,并作纪录。一般指标为:DO=1—2mg/l pH=6---9 SV=10---30% 水温:10--35℃。 E 、 按以上A、B、C、D四步骤重复操作3---4天。注意观察污泥性状及生长情况,有条件时用显微镜观察活性污泥中的微生物生长状况,并及时监测排水水质指标(DO、COD Cr 、pH、SS),做好记录。 第二阶段: 可根据第一阶段调试情况调整运行周期如下,也可按上阶段周期运行,这主要根据处理后水质情况及污泥性能而定。 A 、配料 :在调节池(按施工时准确尺寸)中进行。按原污水∶稀释水=1∶2的比例进行配制料液,即原污水56 m 3 ,加入稀释水112 m 3 。根据情况可适当加入一定量的营养源(粪便水),也可不加。打开调节池空气阀,使调节池曝气搅拌均匀。监测该水质指标(COD Cr 、PH、水温、SS)。 B 、进料运行: 将配好的料液以10m 3 /h的流量加入SBR反应器,进料量为80m 3 /池,两个池子交替运行。按12个小时为一周期进行运行。进料1小时后开始曝气,连续曝气3小时,停曝气0.5小时;再曝气3小时,停曝气0.5小时;再曝气2小时,静沉0.5—1.0小时,开始排水约80m 3 ,记录排水时间(约0.5小时),闲置0.5---1.0小时(ICEASE无需闲置)。曝气过程中要及时监测DO和SV%;停曝后,重新曝气前要监测DO,并作纪录。一般指标为: DO=1—2mg/l pH=6---9 SV=10---30% 水温:10--35℃。 C 、 按以上A、B步骤重复操作3---4天。注意观察污泥性状,有条件时用显微镜观察活性污泥中的微生物生长状况,并及时监测排水水质指标(DO、COD Cr 、PH、SS),做好记录。 第三阶段: A 、配料: 在调节池(按施工时准确尺寸)中进行。按原污水∶稀释水=1∶1的比例进行配制料液,即原污水84 m 3 ,加入稀释水84 m 3 。打开调节池空气阀,使调节池曝气搅拌均匀。监测该水质指标(COD Cr 、pH、水温、SS)。 B 、进料运行: 将配好的料液以10m 3 /h的流量加入SBR反应器,进料量为80m 3 /池,两个池子交替运行。按12个小时为一周期进行运行,进料1小时后开始曝气,连续曝气3小时,停曝气0.5小时;再曝气3小时,停曝气0.5小时;再曝气2小时,静沉0.5—1.0小时,开始排水约80m 3 ,记录排水时间(约0.5小时),闲置0.5---1.0小时(ICEASE无需闲置)。曝气过程中要及时监测DO和SV%;停曝后,重新曝气前要监测DO,并作纪录。一般指标为:DO=1—2mg/l PH=6---9 SV=10---30% 水温:10--35℃。 C 、 按以上A、B步骤重复操作3---4天。注意观察污泥性状,有条件时用显微镜观察活性污泥中的微生物生长状况,并及时监测排水水质指标(DO、COD Cr 、pH、SS),做好记录。 第四阶段: A 、配料: 在调节池中进行。直接进入原生产污水,根据情况可适当加入一定量的营养源(粪便水),也可不加。打开调节池空气阀,使调节池曝气搅拌均匀。监测该水质指标(COD Cr 、pH、水温、SS)。 B 、进料运行: 将配好的料液以10m 3 /h的流量加入SBR反应器,进料量为80m 3 /池,先按12个小时为一周期进行运行,进料1小时后开始曝气,连续曝气3小时,停曝气0.5小时;再曝气3小时,停曝气0.5小时;再曝气2小时,静沉0.5—1.0小时,开始排水约80m 3 ,记录排水时间(约0.5小时),闲置0.5---1.0小时(ICEASE无需闲置)。曝气过程中要及时监测DO和SV%;停曝后,重新曝气前要监测DO,并作纪录。一般指标为:DO=1—2mg/l pH=6---9 SV=10---30% 水温:10--35℃。 C 、 按以上A、B步骤重复操作三天。注意观察污泥性状,有条件时用显微镜观察活性污泥中的微生物生长状况,并及时监测排水水质指标(DO、COD Cr 、pH、SS),做好记录。 第五阶段: 根据以上四阶段调试情况记录,寻找最佳菌群的生存条件,选择最佳运行周期,最佳的运行方式,完成调试。 A 、配料: 在调节池中进行。直接进入生产水,打开调节池空气阀,使调节池曝气搅拌均匀。监测该水质指标(COD Cr 、PH、水温、SS)。 B 、进料运行: 按选择好的最佳运行周期及运行模式运行。控制曝气及停滞时间,曝气过程中要及时监测DO和SV%;停曝后,重新曝气前要监测DO,并作纪录。一般指标为:DO=1—2mg/l pH=6---9 SV=10---30% 水温:10--35℃。 C 、 按以上A、B步骤重复操作3---4天。注意观察污泥性状,有条件时用显微镜观察活性污泥中的微生物生长状况,并及时监测排水水质指标(DO、COD Cr 、pH、SS),做好记录。若出水COD Cr 在300mg/l左右,污泥处于稳定增长状态,SV=30%左右,即可认为调试结束。进入正式全负荷运行阶段。 4 、注意事项: a 、 为了顺利完成调试工作,一定要保证此阶段SBR反应器运行条件的稳定,避免进水浓度、悬浮物、酸碱度的较大波动,而给SBR反应器造成较大的冲击负荷,导致污泥恶化。 b 、 运行过程中,每运行周期一定要至少测量一次DO、pH、SV水质指标。改变污染物浓度前、后一定要监测反应器中及要进入反应器的水质的全套指标,重点COD Cr 、SS、PH ,保证反应器中污泥负荷的合理性。 c 、 每次改变污水加入量的初期一定要注意观察污泥性状,及记录其适应时间,为下次污水加入量的改变提供参考依据。 d 、 当污泥SV%≥30时,要少量排泥,每次排泥水量大约为10---15m 3 。 驯化的目的是选择适应实际水质情况的微生物,淘汰无用的微生物,对于有脱氮除磷功能的处理工艺,通过驯化使硝化菌、反硝化菌、聚磷菌成为优势菌群。具体做法是首先保持工艺的正常运转,然后,严格控制工艺控制参数,DO在厌氧池控制在0.1mg/l以下,在缺氧池控制在0.5mg/l以下,在好氧池控制在2-3mg/l,好氧池曝气时间不小于5小时,外回流比50%~100%,内回流比200%~300%,并且,每天排除日产泥量30%~50%的剩余污泥。在此过程中,每天测试进出水水质指标,直到出水各指标达到设计要求。 (五)工艺控制参数的确定 设计中的工艺控制参数是在预测的水量、水质条件下确定的,而实际投入运行时的污水站其水量水质往往与设计有较大的差异,因此,必须根据实际水量水质情况来来确定合适的工艺控制参数,以保证运行的正常进行和使出水水质达标的的同时尽可能降低能耗。 1.工艺参数内容: 需确定的重要工艺参数有进水泵房的控制水位、生物池溶解氧DO及氧化还原电位ORP、污泥回流比R、污泥浓度MLVSS,污泥沉降比SV%、污泥指数SVI、污泥龄SRT、剩余污泥排放周期及日排放量、二沉池泥面高度等,其中影响能耗大小的主要因素是进水水位的高低和污泥浓度MLVSS的大小,影响脱氮除磷效果的主要因素是溶解氧DO和污泥龄SRT。 a. 污泥回流比:曝气池中回流污泥的流量与进水流量的比值。 b. 污泥浓度:单位体积污泥含有的干固体重量,或干固体占污泥重量的百分比。 c. 用重量法测定,以 g / L 或 mg / L 表示。该指标也称为悬浮物浓度( MLSS )。 d. 污泥指数 SVI :( 1 )污泥体积指数( SVI ) 曝气池出口处的混合液在静置 30min 后,每克是悬浮固体所占的体积( mL )称为污泥体积指数( SVI ),其值按下式计算: 例如:某曝气池污泥沉降比 SV=30% ,混合液悬浮固体浓度为 X=3000mg/l ,则 SVI=30x10000/3000=100 e. 污泥龄 : 就是曝气池中工作着的活性污泥总量与每日排放的剩余污泥数量的比 θc 。单位:日。(一般 3 到 10d ) 2.确定方法: 进水泵房水位在保证进水系统不溢流的前提下尽可能控制在高水位运行。生物池DO及ORP根据厌氧池放磷情况、缺氧池反硝化情况、好氧池吸磷和硝化情况来确定,一般情况下厌氧池的DO小于0.1mg/l,缺氧池的DO小于0.5mg/l,好氧池的DO控制在2~3mg/l之间,厌氧池ORP(氧化还原电位,PH计中的MV档测的是氧化还原电位)小于-250mv,缺氧池ORP在-100mv左右,好氧池ORP大于40mv。回流比R的大小应根据污泥在二沉池的停留时间和磷的释放来确定,一般情况下80%左右较合适。污泥浓度MLVSS通过污泥负荷来确定,脱氮除磷工艺的污泥负荷一般在0.12kgBOD5/(kgMLVSS*d)左右较合适。污泥龄SRT要考虑设计水质的要求,对脱氮除磷工艺而言,其一般控制在8天左右。 (六)工艺控制规程: 工艺控制规程主要是用来指导生产运行的,是工艺运行的主要依据,其主要包含以下几方面的内容:第一,各构筑物的基本情况;第二,各构筑物运行控制参数;第三,设施设备运行方式;第四,工艺调整方法;第五,处理设施维护维修方式。工艺控制规程应在工艺参数确定后编制。 (七)调试中的其他工作: 污水厂要正确运行,还应有一套完善的制度,其主要包括管理制度、岗位职责、操作规程、运行记录、设备设施档案等,在调试过程中可分步完成上述工作。 三、应注意的问题 1.通过前对所有设施、管道及水下设备进行检查,彻底清理所有杂物,以避免通水后管道、设备堵塞和维修水下设备影响调试的顺利进行。通水后进行水下设施设备的维护困难相当大,主要是因为维修需将水池放空,而水池的容积小则几千个立方,大则上万立方,放空一次相当费时费工,特别是有活性污泥后,水往哪放本身就是个问题,放出去会发生污染事故,放到别的池子往往又装不下。因此,在通水前一定要认真检查、清理。 2.对进水水质严格进行监控,尤其是pH,超过要求时应立即采取相应措施,否则会使培菌工作前功尽弃。 3.培菌初期,曝气池会出现大量的白色泡沫,严重时会堆积两三米高,污染走道和现场仪器仪表,这一问题是培菌初期的必然现象,只要控制好溶解氧和采取适当的消泡措施就可以解决。(无培菌阶段无需担心) 4.自来水水量和压力大小往往容易被大家忽视,在调试过程中,化验室和污泥脱水的一些仪器、设备对水量和水压有严格的要求,若达不到要求,这些仪器、设备将无法使用。污水厂一般远离城市,处于自来水的管网末梢,水量水压通常很小,因此,应设置一定的装置以提高水量水压。 四、建议: 工艺调试是关系到污水处理站能否正常运行及效益能否充分发挥的重要工作,它有技术性强、难度高等特点,需要具备污水处理知识和长期运行经验的专业人员或专业机构来实施,因此,建议有关部门将工艺调试列入项目,并安排足够的资金,以保证调试工作的有效开展。 安排表 ( PS :具体操作必须详细阅读方案) 强制驯化 5-7 天 原污水与稀释水比例为1 :4 进料1h 后连续曝气3-4 天 试运行第一阶段 3-4 天 原污水与稀释水比例为1 :3 进料1h 后 曝气4h 停曝0.5h 曝气4h 停曝1h 曝气3h 停曝0.5h 曝气3h 停曝1h 曝气2h 停曝0.5-1h (排水) 第二阶段 3-4 天 原污水与稀释水比例为1 :2 进料1h 后 曝气3h 停曝0.5h 曝气3h 停曝0.5h 曝气2h 停曝0.5-1h (排水) 第三阶段 3-4 天 原污水与稀释水比例为1 :1 同第二阶段 第四阶段 3 天 进水全为原污水 同第二阶段 第五阶段 3-4 天 调试完成,获得最佳运行参数 (按控制程序进行)
满意请采纳

阅读全文

与园区污水排查过程怎么写相关的资料

热点内容
产生渗透现象的条件是半透膜和 浏览:579
反渗透膜滤芯为什么那么贵 浏览:799
树脂翻模 浏览:378
测定纯水硬度用什么作指示剂 浏览:447
城镇污水排放标准1级b标准 浏览:747
什么是汽车空调滤芯多久换 浏览:387
净水器什么样的水最好 浏览:612
纯水机用的什么型号的滤芯 浏览:995
海尔的净水机双出水什么意思 浏览:424
裸缸养鱼粪便如何过滤 浏览:268
怎样勾对蒸馏酒 浏览:370
石灰去氟离子沉淀槽有浮泥 浏览:62
生活废水占比 浏览:631
加热脲醛树脂 浏览:847
反渗透进水orp多少合适 浏览:981
弹性漆树脂改性 浏览:148
为什么测纯水最大压力差 浏览:766
膜电池出去废水中乙酸钠 浏览:292
脱硫废水澄清器刮泥机扭矩 浏览:113
武汉水垢处理设备 浏览:5