导航:首页 > 净水纯水 > 阳极氧化纯水电导率标准是多少

阳极氧化纯水电导率标准是多少

发布时间:2024-10-23 23:50:00

Ⅰ 电镀工艺的电镀分类

常见的电镀分类有:化学镀、电镀、电铸和真空镀等。

1、电镀就是利用电解的方式使金属或合金沉积在工件表面,以形成均匀、致密、结合力良好的金属层的过程,就叫电镀。

2、常见的电镀分类

(1)化学镀(自催化镀)

在经活化处理的基体表面上,镀液中金属离子被催化还原形成金属镀层的过程。这是在我们的工艺过程中大多都要涉及到的一个工艺工程,通过这样的过程才能进行后期电镀等处理,多作为塑件的前处理过程。

(2) 电镀

利用电解在制件表面形成均匀、致密、结合良好的金属或合金沉积层的过程,这种工艺过程比较烦杂,但是其具有很多优点,例如沉积的金属类型较多,可以得到的颜色多样,相比类同工艺较而言价格比较低廉。

(1)阳极氧化纯水电导率标准是多少扩展阅读:

工艺要求

1、镀层与基体金属、镀层与镀层之间,应有良好的结合力。

2、镀层应结晶细致、平整、厚度均匀。

3、镀层应具有规定的厚度和尽可能少的孔隙。

4、镀层应具有规定的各项指标,如光亮度、硬度、导电性等。5. 电镀时间及电镀过程的温度,决定镀层厚度的大小。

5、环境温度为-10℃~60℃;

6、输入电压为220V±22V或380V±38V;

7、水处理设备最大工作噪声应不大于80dB(A)。

8、相对湿度(RH)应不大于95%;

9、原水COD含量为100mg/L~150000mg/L。

Ⅱ 聚苯胺的化学氧化是怎样的过程呢

常用的聚苯胺合成方法有化学氧化合成与电化学合成。化学氧化合成法适宜大批量合成聚苯胺,易于进行工业化生产;电化学合成法适宜小批量合成特种性能聚苯胺,多用于科学研究。 化学氧化法通常是在酸性介质中,采用水溶性引发剂引发单体发生氧化聚合。合成主要受反应介质酸种类及浓度、氧化剂种类及浓度、苯胺单体浓度、反应温度和反应时间等的影响。所用的引发剂主要有(NH4)2SO8、K2Cr2O7、KIO3、FeCl3、FeCl4、H2O2、Ce(SO4)2、MnO2、BPO(过氧化苯甲酰),其中(NH4)2SO8由于不含金属离子,氧化能力强,后处理方便,是最常用的氧化剂。也有用(NH4)2S2O8和碳酸酯类过氧化物组成复合氧化剂。而以Fe2+为催化剂和H2O2为氧化剂可合成高溶解性的聚苯胺。

聚苯胺聚合反应历程图册参考资料。
聚苯胺在酸性介质中合成的同时可能被掺杂。盐酸掺杂虽然可使聚苯胺获得较高的导电率,但由于HCl易挥发,容易发生去掺杂;而用H2SO4、HClO4等非挥发性的质子酸掺杂时,在真空干燥下它们会残留在聚苯胺的表面,影响产品的质量。从应用的角度考虑,有机质子酸掺杂的聚苯胺具有更广阔的应用前景,十二烷基磺酸、十二烷基苯磺酸、樟脑磺酸、萘磺酸以及2,4-二硝基萘酚-7-磺酸(NONSA)等作为酸性介质的同时又可作为掺杂剂,可获得功能质子酸掺杂的聚合物。这是提高掺杂态聚苯胺稳定性和溶解性的重要手段之一。
化学氧化法所得到的高分子溶液可通过流涎法来制备大面积自撑膜,适用于制备大构件元件和进行结构剪裁,并可通过选用合适的氧化还原剂来调节氧化态。常用的化学聚合方法主要有溶液聚合、乳液聚合、微乳液聚合、模板聚合和酶催化法等。不使用模板的方法也可以叫自组装法(self-assembled method, SAM)。
溶液聚合
通常采用盐酸、硫酸或高氯酸水溶液为介质,将引发剂溶液缓慢滴入单体溶液中引发聚合,产物易于纯化;缺点是聚合过程影响因素多,分子量分布较宽,所得产品在导电率、溶解性以及熔融加工性等方面均有缺陷。一般溶液法合成路线为:取定量的苯胺单体滴入盐酸稀溶液,再向其中缓慢滴入引发剂,如要求较高质量可通N2保护,低温搅拌,反应结束后直接过滤、洗涤、干燥后即得聚苯胺产品。
非均相聚合
非均相聚合通常是先将反应单体分散在水溶液中并利用机械搅拌或超声波振荡等方法,使单体形成具有一定直径的液滴,再利用表面活性剂改性,使形成的液滴能稳定悬浮分散于溶液中。链反应引发剂通常溶解于连续相中,而聚合反应则被限制在液滴中进行,从而实现对产物尺寸和形貌的控制。非均相聚合法可分为乳液聚合、胶束聚合、悬浮聚合、分散聚合和溶胶-凝胶聚合等。根据乳液滴或悬浮微粒的尺寸,又可分为乳液聚合、微乳液聚合、悬浮聚合和微悬浮聚合。
乳液聚合
乳液聚合能获得较大分子量,聚合过程中使用较低的氧化剂(引发剂)用量,优点在于聚合热有效分散于水相,避免局部过热,体系黏度变化小,而且其溶解性、分子量、热稳定性及结晶形态方面的性能都明显优于溶液聚合;但乳液聚合体系中乳化剂的浓度大,不易完全去除,给产物的纯化不利,并且需要大量的有机溶剂和沉淀剂,制备成本较高。经典乳液聚合法为:采用十二烷基苯磺酸(DBSA)作为乳化剂,同时加入水、二甲苯及苯胺,加入过硫酸铵引发反应,反应一定时间加入丙酮使PAn/DBSA 沉淀,洗涤、干燥即可得到聚苯胺产物。多用十二烷基苯磺酸是因为它在反应体系中既是乳化剂又能提供酸性条件,还会以掺杂酸进入聚苯胺分子。
微乳液聚合
微乳液是一种外观透明或半透明、低黏度的热力学稳定体系,其分散液滴小于100nm。可分成反相微乳液(W/O)、双连续相微乳液和正相微乳液(O/W,其实正向乳液聚合就是一般意义上的乳液聚合,但因为在微乳液中反相聚合用的较多,正相反而显得另类)。尤其是反相微乳液聚合已经越来越多地用于制备聚苯胺纳米粒子,其粒径可达10nm,而且分布较均一。反相微乳液聚合中的水油比是制备的关键的因素,能影响到粒子的大小和形态。一般随水油比的增大,纳米粒子直径逐渐增大。
微乳液聚合被认为是最理想的聚苯胺合成方法之一。该法反应条件容易控制、产物粒径均匀,而且因其粒径都在纳米级别,从而使产物具有了纳米粒子的特性。所得聚苯胺产物的电导率、产率和溶解性均有提高,且其链结构规整性好、结晶度高。
反相微乳液聚合制备的聚苯胺粒径小,导电性和结晶度也较好。但有时其粒子形状会发生从球形到针形乃至薄片形的转化。合成聚苯胺方法为:向HCl溶液中加入过硫酸铵、SDBA、丁醇(助乳化剂),这样的混合液一经搅拌很容易配成透明的微乳液,接着往上述乳液中滴加一定量的苯胺单体,在室温下持续搅拌反应24 h,破乳即得聚苯胺。
与反相微乳液不同,利用O/W微乳液(正相微乳液)制备纳米粒子的例子并不多。这种方法可以得到分散在水相中的憎水高分子纳米颗粒,其优点是快速聚合和可以形成分子量很高的聚合物。在O/W微乳液体系中乳化剂及助乳化剂的浓度很高,水溶性引发剂存在于水连续相中,苯胺单体浓度很低,主要被增溶于微乳液液滴内,极少量存在于水连续相中。在微乳液聚合过程中,溶解于水中的活性基团会迅速被胶束中的单体捕捉而引发聚合。因胶束数量很大,故聚合反应速率很快。典型的聚苯胺正相微乳液聚合过程为:将苯胺、十二烷基硫酸钠和盐酸搅拌混合,滴加APS溶液,整个聚合过程应控制在20℃,反应持续12 h后,破乳即可。有报道电导率达9.1S/cm。
模板聚合
具有特殊形貌与功能的聚苯胺的设计与合成一直是聚苯胺研究的热点之一。所采用的主要是模板聚合法。这也是最有效、最简便的制备纳米结构的方法之一。在反应体系中加入沸石、多孔膜、多孔氧化铝膜等作为模板,使聚合反应发生在模板孔洞中实现结构有序排列的方法叫做硬模板合成,它可以通过调节模板孔洞尺寸来改变产物的直径及长度,可控性较好,但由于需要分离模板以及在分离时可能会破坏高分子结构或形成额外的共聚结构而限制了其应用。
采用模板法合成聚苯胺纳米材料的一般步骤为:先将模板(多孔氧化铝膜、沸石和多孔膜等)浸入溶有苯胺单体的酸性溶液中,再通过氧化剂(APS和KPS等)、电极电位或其他方式引发聚合链反应。反应进行一段时间后,模板的孔径中会生成直径略小的聚苯胺纳米材料。模板法的优点是产物的形貌和尺寸易于控制,有效地防止了分子链间的相互作用、交联以及结构缺陷的产生。用做聚苯胺合成的模板主要是胶束和反胶束。胶束聚合多采用阴离子型表面活性剂,尤其是能自掺杂的表面活性剂,但产品粒度不均,导电率也相对较低。研究表明反应物在胶束中的位置是影响反应速率、选择性以及产率的重要因素之一,而苯胺的聚合发生在胶束/水的界面上,生成的聚苯胺颗粒以静电斥力吸附或嵌入表面活性剂分子而得以稳定。
模板聚合的优势之一在于有可能合成结构单一的聚苯胺,即所谓的模板导向聚合,在反应体系中加入聚阴离子电解质,在反应过程中,模板在促使苯胺单体对位取代以保证获得头-尾聚合的同时,为聚苯胺的掺杂提供补偿离子和使聚苯胺具有水溶性。这也叫做软模板合成或自组装方法。用作软模板的有表面活性剂和有机掺杂剂,其原理是可在水溶液中自组装成具有特定形貌的有序结构,但是该方法在需要使用结构相对复杂、体积相对庞大的特殊功能性掺杂剂,可能会影响产物的结构及性能,且不利于大规模的合成。
有一个较新的趋势是使用酶,主要用过氧化氢酶(辣根过氧化氢酶,horseradish peroxidase,HRP)来催化过氧化氢的分解,利用过氧化氢氧化使苯胺聚合。但由于聚合是在水体系中进行,而聚苯胺不溶于水,因此很快会从水中析出,导致仅能得到分子量很低的寡聚体。其他可作为酶催化的模板有聚苯乙烯磺酸钠(SPS)和聚乙烯磺酸钠(PVS)等。
模板合成麻烦之处在于需要用碱液等试剂移除模板,模板的溶解会导致孔径中的纳米材料因失去支撑而团聚,而且碱性环境会导致聚苯胺解掺杂,改变产物的原有形貌。有人尝试选取萘磺酸(NSA)作为模板,因为NSA在作为模板的同时又作为掺杂剂进入反应产物中,并不需要在反应结束后除去。还有人使用阳极氧化铝(AAO)作为模板,在其孔隙中合成的聚苯胺纳米纤维具有良好的取向性、规整度和力学性能。这主要是由于AAO的孔隙是定位取向的,聚苯胺沿着孔壁生成所致。
界面聚合
2003年首先采用此法合成了聚苯胺纳米纤维。界面聚合(interfacial polymerization)利用油/水界面将苯胺与氧化剂分离,苯胺单体溶解于有机相中(如CCl4,CS2,苯和甲苯等),氧化剂和掺杂酸(如:HCl,HNO3和H2SO4等)溶解于水相中,二者在相界面接触并发生氧化反应。随着反应的进行,在相界面处,反应物浓度不断降低,促使未反应的苯胺和氧化剂由于浓度差而不断扩散至相界面,从而保证反应的连续进行,直至反应物消耗完毕。两相界面既是苯胺与氧化剂的接触面又是反应面,从而控制了聚合反应发生的剧烈程度,避免了苯胺的过度氧化和二次生长,有利于规整形貌的聚苯胺的合成。界面聚合的优点包括:产物的合成和纯化较为简便,无需移除模板;产物形貌规整,一致性很高;聚合反应的规模可控,重现性好。
在界面聚合过程中,通过加入一定量的表面活性剂,可以控制合成的聚苯胺纤维的直径,而加入乳化剂可有效减少有机溶剂的用量,提高/油/水两相界面面积,缩短聚合反应时间。
有人把界面聚合和传统化学聚合相结合,提出了直接混合法(rapid mixing method, RMM)。反应在室温下进行,且不控制反应温度。以掺杂酸溶液作为溶剂,将苯胺和氧化剂分别配成溶液后在室温下迅速混合,静置反应一定时间,反应液经纯化处理后,即可得到产物。
种子聚合
种子聚合法是以一定形貌的晶种作为结构引导剂,使得单体在聚合的过程中,PAn 形貌的形成朝着晶种的形貌生长。在晶种法中,以纤维状聚苯胺/无机NCs为例,少量的无机纳米纤维如单层碳纳米管束、V2O5的纳米纤维等作为种子,采用种子聚合法合成了PAn纳米复合纤维。核壳粒子的形貌由晶种粒子的形貌和HCl与苯胺单体的比决定;在强酸性介质中用亲水晶种颗粒种子聚合苯胺制备了覆盆子结构的颗粒,而在中性介质中用疏水晶种颗粒种子聚合了表面平滑的颗粒。 在电场作用下使电解液中的单体在惰性电极表面发生氧化聚合,其优点是能直接获得与电极基体结合力较强的高分子薄膜,并可通过电位控制聚合物的性质,也可直接进行原位电学或光学测定。在含苯胺的电解质溶液中,选择适当的电化学条件,使苯胺在阳极上发生氧化聚合反应,生成黏附或沉积于于电极表面的聚苯胺薄膜或粉末。操作过程为:氨与氢氟酸反应制得电解质溶液,以铂丝为对电极,铂微盘电极为工作电极,Cu/CuF2为参比电极,在含电解质和苯胺的电解池中,以循环伏安法进行电化学聚合,反应一段时间后,聚苯胺便吸附在电极上,形成薄膜。与化学聚合法相比,电化学方法操作简便,聚合和掺杂同时进行;可通过改变聚合电势和电量控制聚苯胺膜的氧化态和厚度;所得产物无需分离步骤。
不同环境下电化学聚合机理图册参考资料。
电化学法包括循环伏安法、恒电流法、恒电势法、脉冲电流法等。其中,循环伏安法制得的聚苯胺膜质地均匀、导电性良好、氧化还原可逆性优良、膜厚易控制以及膜与基体结合牢固、可获得自支撑膜,应用最为广泛。聚合体系多为三电极系统,主要由电解液、工作电极、对电极、参比电极和电化学工作站组成。常用的工作电极为铂片、阳极铝氧化物和铟锡氧化物玻璃(ITO)等,对电极多采用铂电极,而参比电极为饱和甘汞电极或标准Ag/AgCl电极等。电极材料、电极电位、电解质溶液的pH值及其种类对苯胺的聚合都有一定的影响。其中,电解质阴离子对苯胺阳极聚合速度有较大影响,聚合速度顺序为H2SO4>H3PO4>HClO4,但所得聚苯胺结构基本相似。
苯胺在电化学聚合时颜色根据外界有所变化,在酸性溶液中是蓝色的,而在碱性溶液中阳极氧化时生成深黄色的物质。
电化学聚合中反应选择性差,因为单体的氧化电位一般比所得高分子的可逆氧化还原电位高,因此在聚合过程中可能出现聚合物链的过氧化;单体聚合活性中心的选择性较差,几乎所有电化学聚合都存在不同程度的交联;反应完成后从电极表面转移聚苯胺的过程有可能导致产物形貌发生变化。此外,电化学聚合受电极面积制约,不利于大规模生产,所得产物的可加工性差、批量小。 辐射合成法是通过光能或其他射线引发苯胺单体聚合。该法合成的聚苯胺形貌受辐射源的波长、照射面积和辐射形状等因素的影响。采用紫外辐射时易得到球型形貌,而采用可见光辐射时产物则倾向于纤维形貌。
声化学聚合法与化学氧化法类似,区别在于声化学聚合法在滴加APS到ANI溶液中引发链反应时,利用超声波振荡使混合溶液充分分散并发生聚合反应。 由于苯胺的化学聚合速度很快,很难跟踪和分离中间产物,而电化学聚合相对较易控制和跟踪观察,所以聚苯胺早期机理的研究主要建立在电化学的基础上。一般认为苯胺的聚合是一种介于典型逐步增长与典型自由基链增长之间的聚合反应。由于苯胺的氧化电位远高于二聚体,苯胺单体氧化形成二聚体是聚合反应的控制步骤;二聚体形成后,立即氧化成阳离子自由基,进一步氧化脱氢芳构化而生成三聚体;这样重复亲电取代-芳构化过程,即可使链增长持续进行。不过有人提出苯胺氧化到二聚体的形成并不是聚合反应中的最慢步骤,只是表现出需要最高的电化学氧化电位。速率的决定步骤是与体系平衡电位由0.40V上升到0.78V的聚合阶段相关。
Nicolas-Debarnot 提出的苯胺化学聚合过程图册参考资料。
有人认为苯胺氧化聚合是按类似于缩聚反应的历程进行,即各种阳离子自由基间缩合形成聚合物。首先苯胺氮原子失去一个电子形成自由基阳离子,与pH值大小无关;这是速率决定步骤,可通过氧化剂来加速,随后的反应便是自动加速的。阳离子自由基存在三种共振形式,其中形式取代基诱导效应最强而位阻最弱,因此反应性最强;接着自由基阳离子在酸性介质中发生“头-尾”偶合反应,从而形成二聚体,二聚体氧化形成新的自由基阳离子,再与单体阳离子自由基或二聚体阳离子自由基反应形成三聚体或四聚体;继续进行缩合反应形成聚合物。
酸性溶液中制得的聚苯胺一般为墨绿色,具有较高的导电性、电化学活性和稳定性。研究表明苯胺在酸性溶液中的聚合是通过头-尾偶合,即通过N原子和芳环上的C-4位的碳原子间的偶合,从而形成分子长链。而一旦反应中间体被氧化,则整个聚合反应停止。
苯胺在碱性溶液中阳极氧化时生成深黄色的物质。苯胺在碱性溶液中氧化时生成两种可溶性中间物,其氧化机理可能为形成的自由基在碱性溶液中不稳定,很容易失去一个质子形成新自由基,后者在 1.1 V左右进一步氧化带正电荷的可溶性中间物并在电极上发生聚合,还有少部分在传递过程中分解。 反应温度对聚苯胺的电导率影响不是很大,在低温下(冰水浴)聚合有利于提高聚苯胺的分子量并获得分子量分布较窄的产物。在过硫酸铵体系中,在一定温度范围内,随着反应体系温度升高,产物产率增加。不过苯胺聚合是放热反应,且聚合过程有一个自加速过程。如果单体浓度过高会发生暴聚。
在一定范围内,随着氧化剂用量的增加,高分子产率和电导率也增加。当氧化剂用量过多时,体系活性中心相对较多,不利于生成高分子量的聚苯胺,且聚苯胺的过氧化程度增加,电导率下降。
苯胺在HCl,HBr,H2SO4,HClO4,HNO3,CH3COOH,HBF4及对甲苯磺酸等介质中聚合都能得到聚苯胺,而在H2SO4,HCl,HClO4体系中可得到高电导率的聚苯胺,在HNO3,CH3COOH体系中所得到的聚苯胺为绝缘体。非挥发性的质子酸如H2SO4,HClO4最终会残留在聚苯胺的表面,影响产品质量,最常用的介质酸是HCl。质子酸在苯胺聚合过程中的主要作用是提供质子,并保证聚合体系有足够酸度的作用,使反应按1,4-偶联方式发生。只有在适当的酸度条件下,苯胺的聚合才按1,4-偶联方式发生。酸度过低,聚合按头-尾和头-头两种方式相连,得到大量偶氮副产物。当酸度过高时,又会发生芳环上的取代反应使电导率下降。当单体浓度为0.5mol.L-1时,最佳酸浓度范围为1.0~2.0mol.L-1。

Ⅲ 阳极氧化工艺流程

1.通用工艺流程:

铝工件→上挂具→脱脂→水洗→碱蚀→水洗→出光→水洗→阳极氧化→水洗→去离子水洗→染色或电解着色→水洗→去离子水洗→封闭→水洗→下挂具

2.高光亮度的铝制品工艺流程:

铝工件→机械抛光→脱脂→水洗→中和→水洗→化学或电化学抛光→水洗→阳极氧化→水洗→去离子水洗→染色或电解着色→水洗→去离子水洗→封闭→水洗→机械光亮

(3)阳极氧化纯水电导率标准是多少扩展阅读:

阳极氧化(anodic oxidation),金属或合金的电化学氧化。铝及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用下,在铝制品(阳极)上形成一层氧化膜的过程。阳极氧化如果没有特别指明,通常是指硫酸阳极氧化。

为了克服铝合金表面硬度、耐磨损性等方面的缺陷,扩大应用范围,延长使用寿命,表面处理技术成为铝合金使用中不可缺少的一环,而阳极氧化技术是目前应用最广且最成功的。

所谓铝的阳极氧化是一种电解氧化过程,在该过程中,铝和铝合金的表面通常转化为一层氧化膜,这层氧化膜具有保护性、装饰性以及一些其他的功能特性。从这个定义出发的铝的阳极氧化,只包括生成阳极氧化膜这一部分工艺过程。

将金属或合金的制件作为阳极,采用电解的方法使其表面形成氧化物薄膜。金属氧化物薄膜改变了表面状态和性能,如表面着色,提高耐腐蚀性、增强耐磨性及硬度,保护金属表面等。例如铝阳极氧化,将铝及其合金置于相应电解液(如硫酸、铬酸、草酸等)中作为阳极,在特定条件和外加电流作用下,进行电解。

阳极的铝或其合金氧化 ,表面上形成氧化铝薄层 ,其厚度为5~30微米 ,硬质阳极氧化膜可达25~150微米 。阳极氧化后的铝或其合金,提高了其硬度和耐磨性,可达250~500千克/平方毫米,良好的耐热性 ,硬质阳极氧化膜熔点高达2320K ,优良的绝缘性 ,耐击穿电压高达2000V ,增强了抗腐蚀性能 ,在ω=0.03NaCl盐雾中经几千小时不腐蚀。

氧化膜薄层中具有大量的微孔,可吸附各种润滑剂,适合制造发动机气缸或其他耐磨零件;膜微孔吸附能力强可着色成各种美观艳丽的色彩。有色金属或其合金(如铝、镁及其合金等)都可进行阳极氧化处理,这种方法广泛用于机械零件,飞机汽车部件,精密仪器及无线电器材,日用品和建筑装饰等方面。

一般来讲阳极都是用铝或者铝合金当作阳极,阴极则选取铅板,把铝和铅板一起放在水溶液,这里面有硫酸、草酸、铬酸等,进行电解,让铝和铅板的表面形成一种氧化膜。在这些酸中,最为广泛的是用硫酸进行的阳极氧化。

Ⅳ 大连沙河口普兰认证咨询培训Nadcap认证-标准清单

AC7004-Nadcap认证的质量管理体系要求

AC7005-非关键过程供应商的Nadcap认证的质量管理体系要求化学加工(CP)

AC7108- Nadcap化学品加工审核标准

AC7108 / 1- 适用于油漆和干膜涂料的Nadcap审核标准

AC7108 / 2- 蚀刻工艺的Nadcap审核标准

AC7108 / 3- 金属粘结前的表面准备的Nadcap审核标准

AC7108 / 4- 支持化学加工的溶液分析和测试的Nadcap审核标准

AC7108 / 5- 用于Alpha案例删除和化学研磨的Nadcap审核标准

AC7108 / 6- Nadcap清洁度验证的审核标准

AC7108 / 7- 铝的真空镉沉积或离子蒸汽沉积的Nadcap审核标准

AC7108 / 8- Nadcap阳极氧化审核标准

AC7108 / 9- Nadcap电镀审核标准

AC7108 / 10- 化学镀的Nadcap审核标准

AC7108 / 11- 转化膜的Nadcap审核标准

AC7108 / 12- 酸洗、除垢、钝化和电抛光的Nadcap审核标准

AC7108 / 13- 刷子阳极氧化和电镀的Nadcap审核标准

AC7108 / 14- 作为分包过程剥离涂层的Nadcap审核标准

AC7108 / 15- 渗透前蚀刻的Nadcap审核标准

AC7109- Nadcap涂料审核标准

AC7109 / 1- Nadcap热喷涂审核标准

AC7109 / 2- 气相沉积涂层的Nadcap审核标准

AC7109 / 3- 扩散涂层工艺的Nadcap审核标准

AC7109 / 4- Nadcap剥离的审核标准

AC7109 / 5- Nadcap涂层评估的审核标准(实验室)

AC7109 / 6- Nadcap镀膜零件的审核标准

AC7109 / 7- 涂料供应商热处理的Nadcap审核标准

AC7109 / 8- 磨削涂层特殊工艺的Nadcap审核标准

AC7118- Nadcap复合材料审核标准

AC7122-P-非金属材料的Nadcap审核标准-测试实验室P-零件制造商专属实验室

AC7122 / 1- 非金属材料的Nadcap审核标准-测试实验室-机械测试

AC7122 / 2- 非金属材料的Nadcap审核标准-测试实验室-物理测试

AC7122 / 3- 非金属材料的Nadcap审核标准-测试实验室-化学测试

AC7122 / 4- 非金属材料的Nadcap审核标准-测试实验室-热分析

AC7122 / 5- 非金属材料的Nadcap审核标准-测试实验室-易燃性测试

AC7126- 传统加工的Nadcap审核标准(制孔、拉削、车削、铣削、磨削、边缘处理)

AC7126 / 1- Nadcap孔加工审核标准

AC7126 / 2- Nadcap拉网审核标准

AC7126 / 3- Nadcap车削审核标准

AC7126 / 4- Nadcap铣削审核标准

AC7126 / 5- Nadcap磨削审核标准

AC7126 / 6- Nadcap边缘处理审核标准

AC7115- Nadcap弹性密封件制造的审核标准

AC7122-P-非金属材料的Nadcap审核标准-测试实验室P-零件制造商专属实验室

AC7122 / 1- 非金属材料的Nadcap审核标准-测试实验室-机械测试

AC7122 / 2- 非金属材料的Nadcap审核标准-测试实验室-物理测试

AC7122 / 4- 非金属材料的Nadcap审核标准-测试实验室-热分析

AC7119- 电子印制板的Nadcap审核标准

AC7119 / 2- 电子挠性和刚性挠性印制板的Nadcap审核标准

AC7119 / 4- Nadcap印刷电路板人员资格审核标准

AC7120- 电路卡组件的Nadcap审核标准

AC7120 / 1- Nadcap电路卡装配人员资格审核标准

AC7120 / 2- Nadcap印刷电路板组件总焊接的审核标准

AC7120 / 3- 镀通孔保持技术(PTH)的Nadcap审核标准

AC7120 / 4- 适用于表面贴装技术(SMT)的Nadcap审核标准

AC7120 / 5- 球栅阵列(BGA)混合冶金的Nadcap审核标准

AC7120 / 6- 无铅焊接的Nadcap审核标准

AC7120 / 7- 印刷板组件的保形涂层审核标准

AC7120 / 8- 封装审核标准

AC7120 / 9- Nadcap审核标准

AC7120 / 10- 最终测试的Nadcap审核标准

AC7120 / 11- 重新包装的Nadcap审核标准

AC7121- 电子电缆和线束组件的Nadcap审核标准

AC7121 / 1- 电子电缆和线束组件人员资格的Nadcap审核标准

AC7112- Nadcap流体系统制造商审核标准

AC7112 / 1- Nadcap软管制造审核标准

AC7112 / 2- 配件和其他机械零件的Nadcap审核标准

AC7112 / 3- Nadcap联轴器和钣金零件的审核标准

AC7112 / 4- Nadcap软管组装审核标准

AC7112 / 6- Nadcap钛3A1-2.5V合金,无缝液压油管制造要求审核清单

AC7123- Nadcap流体分配系统增值软管组件分配器的审核标准

AC7108 / 1- Nadcap油漆和干膜涂料审核标准

AC7102- Nadcap热处理审核标准

AC7102 / S- Nadcap热处理补充审核标准

AC7102 / 1- Nadcap钎焊审核标准

AC7102 / 2- Nadcap铝热处理审核标准

AC7102 / 3- Nadcap渗碳审计标准

AC7102 / 4- Nadcap气体和/或离子氮化的审核标准

AC7102 / 5- 用于热处理的硬度和/或电导率测试的Nadcap审核标准

AC7102 / 6- 热等静压(HIP)的Nadcap审核标准

AC7102 / 7- 感应淬火的Nadcap审核标准

AC7102 / 8- 热处理高温法的Nadcap审核标准

AC7102 / 9- 烧结的Nadcap审核标准

AC7102 / 10- 局部热处理的Nadcap审核标准

AC7101 / 3- 材料测试实验室的Nadcap审核标准-机械测试

AC7101 / 4- 材料测试实验室的Nadcap审核标准-金相和微压痕硬度

AC7110 / 13- Nadcap焊缝评估审核标准

AC7110 / 13S- Nadcap焊缝评估补充审核标准

AC7130- Nadcap度量和检查(M&I)审核标准

AC7130 / 1- Nadcap度量衡检查标准(M&I)-坐标测量机(CMM)

AC7130 / 2- Nadcap测量和检查(M&I)审核标准-激光跟踪仪

AC7130 / 3- Nadcap度量衡检查标准(M&I)-铰接臂

AC7130 / 4- 用于测量和检查(M&I)的Nadcap审核标准-三维结构光系统(3DSL)

AC7130 / 5- Nadcap测量和检查(M&I)审核标准-涡轮发动机零件的大流量测量

AC7130 / 6- Nadcap度量和检查(M&I)审核标准- 常规检查

AC7140- Nadcap锻件审核标准

AC7114- 无损检测(NDT)供应商认可计划的Nadcap审核标准

AC7114S- 无损(NDT)供应商认可计划的Nadcap补充审核标准

AC7114 / 1- Nadcap无损检测(NDT)供应商渗透调查的审核标准

AC7114 / 1S- Nadcap无损检测(NDT)供应商渗透调查补充审核标准

AC7114 / 2- Nadcap无损检测(NDT)供应商的磁粉探伤审核标准

AC7114 / 2S- 用于

Ⅳ 阴极电泳的工艺流程是什么

色消光电泳生产线前处理彩碱性化学脱脂、碱洗(或酸洗)、硝酸中和方式;铝型材氧化着色处理采用硫酸阳极氧化及单镍盐均匀着色技术。彩色消光电泳铝合金建筑开标的生产工艺流程为:

上料→脱脂→水洗→碱洗→中和→纯水洗→硫酸阳极氧化→纯水洗→均匀着色→纯水洗→纯水洗→热纯水洗→冷纯水洗→彩色消光电泳→R01水洗→R02水洗→沥干→烘烤→冷却→检验→下料→覆膜→包装(R01、R02为铝型材电泳工艺专用缩写,分别指第一道水洗回收和第二道水洗回收工序)。

1前处理与常规铝锅型材表面处理方法相同,包括脱脂、碱洗(或酸洗)、中和、碱洗时间的长短可根据型材表面状况确定。

2硫酸阳极氧化氧化膜厚度的变化会引起后续电泳漆膜厚度的变化,从而引起产品颜色的差异,阳极氧化膜越薄,电泳涂膜越厚。氧化膜厚度一般控制在10~12μm,膜厚差在±2.5μm内对颜色无明显影响。后道工序着黑色生产蓝灰色消光电泳型材时,氧化膜厚度应适当提高,否则难以着成真正的黑色。

3单镍盐均匀着色均匀着色颜色深浅,对最终产品的颜色起着决定作用,因而在生产过程中应尽量减少着色色差。

4热纯水洗热纯水洗的目的是去除氧化膜微孔中残留的硫酸根和其它杂质离子,防止污染电泳槽液。水洗温度一般控制在60~80℃,时间1~10min,水温高可适当缩短水洗时间,电导率控制在30~60μs/cm,pH控制在4.0~6.0。

5冷纯水洗冷纯水洗的目的一方面是进一步去除氧化膜微孔中残留的硫酸根和其它杂质离子,另一方面是为了降低铝型材的温度。要求电导率小于50μs/cm。

6电泳电压180~250V,JA为10~20A/m2,槽液温度为20~25℃,槽液固体部分的质量分数为10%~13%,时间为2~5min,电泳漆膜厚度15~20μm。电泳漆膜的厚度会影响到最终复合色的深浅,因而漆膜厚度尽量控制在一个较小的范围内,一般允许在±3μm的范围内波动。

7沥干沥干是指型材进烘烤炉前将其表面的水晾干,否则型材烘烤时,表面的水珠挥发时,会留下水滴斑痕,一般需沥干15~20min。

8烘烤烘烤温度160~190℃,时间30~40min,炉温低时可适当延长烘烤时间,反之亦然。

阅读全文

与阳极氧化纯水电导率标准是多少相关的资料

热点内容
俗称管道超滤机6 浏览:566
西湖净水是用什么药粉螺丝都没了 浏览:649
反渗透芯子怎样取出来 浏览:224
怎样去除不锈钢门的水垢 浏览:200
鲜花蒸馏的功效怎么呀 浏览:835
水处理试运行记录 浏览:617
反渗透设备除铁吗 浏览:100
污水提升泵缺点 浏览:206
新的超滤膜出水很多泡沫 浏览:338
edi整流器 浏览:470
半透膜电池 浏览:999
余杭区捞污水池 浏览:233
沁园饮水机怎么接线 浏览:566
缓蚀阻垢剂可以除垢吗 浏览:385
污水处理的数学模型的构建 浏览:249
混凝土污水处理池施工 浏览:618
北京高盐废水费用多少 浏览:710
饮水机保温表怎么设置 浏览:643
净水器种草视频怎么拍 浏览:875
饮水机一年不用了怎么办 浏览:597