Ⅰ 降尘的测定
1.1 主题内容
本标准规定了降尘的测定方法。本标准采用乙二醇水溶液做收集液的湿法采样,用重量法测定环境空气中的降尘。
1.2 适用范围
本标准适用于测定环境空气中可沉降的颗粒物。方法的检测限为0.2t/km2·30d。 本标准所用试剂除另有说明外,均为公认的分析纯试剂和蒸馏水或同等纯度的水。
4.1 乙二醇(C2H6O2)。 5.1 集尘缸,内径15±0.5cm,高30cm的圆筒形玻璃缸。缸底要平整。
5.2 100mL瓷坩埚。5.3 电热板,2000W。
5.4 搪瓷盘。
5.5 分析天平,感量0.1mg。 6.1 采样点的设置
6.1.1 在采样前,首先要选好采样点。选择采样点时,应先考虑集尘缸不易损坏的地方,还要考虑操作者易于更换集尘缸。普通的采样点一般设在矮建筑物的屋顶,或根据需要也可以设在电线杆上。
6.1.2采样点附近不应有高大建筑物,并避开6.1.3 集尘缸放置高度应距离地面5~12m。在某一地区,各采样点集尘缸的放置高度尽力保持在大致相同的高度。如放置屋顶平台上,采样口应距平台1~1.5m,以避免平台扬尘的影响。
6.1.4 集尘缸的支架应该稳定并很坚固,以防止被风吹倒或摇摆。
6.1.5 在清洁区设置对照点。
6.2 样品的收集
6.2.1 放缸前的准备
集尘缸在放到采样点之前,加入乙二醇60~80mL,以占满缸底为准,加水量视当地的气候情况而定。譬如:冬季和夏季加50mL,其他季节可加100~200mL。加好后,罩上塑料袋,直到把缸放在采样点的固定架上再把塑料袋取下,开始收集样品。记录放缸地点、缸号、时间(年、月、日、时)。
注:加乙二醇水溶液既可以防止冰冻,又可以保持缸底湿润,还能抑制微生物及藻类的生长。
6.2.2 样品的收集
按月定期更换集尘缸一次(30±2d)。取缸时应核对地点、缸号,并记录取缸时间(月、日、时),罩上塑料袋,带回实验室。取换缸的时间规定为月底5d内完成。在夏季多雨季节,应注意缸内积水情况,为防水满溢出,及时更换新缸,采集的样品合并后测定。 7.1 瓷柑埚的准备
将100mL的瓷坩蜗洗净、编号,在105±5℃下,烘箱内烘3h,取出放入干燥器内,冷却50min,在分析天平上称量,再烘50min,冷却50min,再称量,直至恒重(两次重量之差小于0.4mg),此值为W0。然后将其在600℃灼烧2h,待炉内温度降至300℃以下时取出,放入干燥器中,冷却50min。称重。再在600℃下灼烧1h,冷却,称量,直至恒重,此值为Wb。
7.2 降尘总量的测定
首先用尺子测量集尘缸的内径(按不同方向至少测定三处,取其算术平均值),然后用光洁的镊子将落入缸内的树叶、昆虫等异物取出,并用水将附着在上面的细小尘粒冲洗下来后扔掉,用淀帚把缸壁擦洗干净,将缸内溶液和尘粒全部转入500mL烧杯中,在电热板上蒸发,使体积浓缩到10~20mL,冷却后用水冲洗杯壁,并用淀帚把杯壁上的尘粒擦洗干净,将溶液和尘粒全部转移到已恒重的100mL瓷坩埚中,放在搪瓷盘里,在电热板上小心蒸发至干(溶液少时注意不要崩溅),然后放入烘箱于105±5℃烘干,按上述方法称量至恒重。此值为W1。 注:淀帚是在玻璃棒的一端,套上一小段乳胶管,然后用止血夹夹紧,放在105±5℃的烘箱中,烘3h后使乳胶管粘合在一起,剪掉不粘合的部分制得,用来扫除尘粒。
7.3 降尘总量中可燃物的测定
7.3.1 将上述已测降尘总量的瓷坩埚放入马福炉中,在600℃灼烧3h,待炉内温度降至300℃以下时取出,放入干燥器中,冷却50min,称重。再在600℃下灼烧1h,冷却,称量,直至恒重,此值为W2。
7.3.2 将与采样操作等量的乙二醇水溶液,放入500mL的烧杯中,在电热板上蒸发浓缩至10~20mL,然后将其转移至已恒重的瓷坩埚内,将瓷坩埚放在搪瓷盘中,再放在电热板上蒸发至干,于105±5℃烘干,按7.1条称量至恒重,减去瓷坩埚的重量W0,即为W0。然后放入马福炉中在600℃灼烧,按7.1条称量至恒重,减去瓷坩埚的重量Wb,即为Wd。测定W0、Wd时所用乙二醇水溶液与加入集尘缸的乙二醇水溶液应是同一批溶液。 降尘量为单位面积上单位时间内从大气中沉降的颗粒物的质量。其计量单位为每月每平方公里面积上沉降的颗粒物的吨数(即t/km2·30d)。
8.1 计算方法
8.1.1 降尘总量按式(1)计算:
式中:M——降尘总量,t/km2·30d
Wl——降尘、瓷坩埚和乙二醇水溶液蒸发至干并在105±5℃恒重后的重量,g
W0——在105±5℃烘干的瓷坩埚重量,g;
Wc——与采样操作等量的乙二醇水溶液蒸发至干并在105±5℃恒重后的重量,g
s——集尘缸缸口面积,cm2
n——采样天数,(准确到0.1d)。
8.1.2 降尘中可燃物按式(2)计算:
式中:M/——可燃物量,t/km2·30d
Wb——瓷坩埚于600℃灼烧后的重量,g
W2——降尘、瓷坩埚及乙二醇水溶液蒸发残渣于600℃灼烧后的重量,g
Wd——与采样操作等量的乙二醇水镕液蒸发残渣于600℃灼烧后的重量,g
s——集尘缸缸口面积,cm2
n——采样天数,(准确到O.1d)。
8.2 报告结果
结果要求保留一位小数。 五个实验室分别发放A、B两个统一样品。
9.1 精密度
9.1.1 重复性
重复性相对标准偏差样品A为0.2%~3.5%,样品B为0.2%~2.2%。
9.1.2 再现性
再现性相对标准偏差样品A为2.3%,样品B为1.0%。
9.2 准确度
样品A的相对误差为-3.1%;样品B的相对误差为-1.8%。 10.1 大气降尘系指可沉降的颗粒物,故应除去树叶、枯枝、鸟粪、昆虫、花絮等干扰物。
10.2 每一个样品所使用的烧杯、瓷坩埚等的编号必须一致,并与其相对应的集尘缸的缸号一并及时填入记录表中。
10.3 瓷坩埚在烘箱、马福炉及干燥器中,应分离放置,不可重叠。
10.4 蒸发浓缩实验要在通风柜中进行,样品在瓷坩埚中浓缩时,不要用水洗涤坩埚,否则将在乙二醇与水的界面上发生剧烈沸腾使溶液溢出。当浓缩至20mL以内时应降低温度并不断摇动,使降尘粘附在瓷坩埚壁上,避免样品溅出。
10.5 应尽量选择缸底比较平的集尘缸,可以减少乙二醇的用量。
Ⅱ 煤矿的降尘方法
喷雾降尘雾化效果好,雾粒超细微,直径仅3-5um,呈烟雾状,快速融入空气之中.增湿量可以自由调节,短期内可以达到空气中的湿度,不滴水、不凝水、因此不会弄湿机台、地面。其原理是利用喷雾产生的微粒由于其及其细小,表面张力基本上为零,喷洒到空气中能迅速吸附空气中的各种大小灰尘颗粒,形成有效控尘。对大型开阔范围的控尘降尘有很好的效果。同时这种效果完全是一种雾化效果。
更主要的优点是:其雾化水颗粒粒径特别小,容易与粉尘颗粒结合而凝聚沉降下来,故其用水量比湿法除尘大大减小,只需传统湿式除尘用水量的千分之一,甚至更小;喷嘴每小时的耗电量为0.02度,电费支出只需0.015元。由此可见,高压喷雾的运行费用是相当低的。
希望能帮到你
Ⅲ 国标要求纯净水的臭氧浓度是多少!最低多少可以杀菌!
水应用中臭氧溶解度在0.1mg/L~10mg/L之间。低值作为水消毒净化要求的最低浓度,高值作为“臭氧水消毒剂” 可达到的浓度值。
自来水臭氧睁化,国际常规标准为0.4mg/L的溶解度值,保持4分钟,即CT值为1.6。
水中余臭氧浓度保持在0.1~0.5mg/L作用5~10min可达消毒目的。
臭氧水消毒灭菌是急速的,消毒作用在瞬间发生。清水中臭氧浓度一旦达,在0.5~1分钟内就杀死细菌,在浓度达4mg/L,在1分钟内乙肝病毒灭活率为100%。
Herbold报道:20℃条件下,水中臭闹镇氧浓度达0.43mg/L时,可将大肠杆菌100%杀灭,10℃时仅需0.36mg/L即可全部杀灭。
臭氧浓度为0.25~38mg/L时,仅需几秒或几分钟完全灭活甲型肝炎病毒(HAV)
矿泉水中臭氧溶解度在0.4~0.5mg/L时,即可满足杀菌保质要求。合理的臭氧投放量为1.5~2.0mg/L。
瓶装水处者弯樱理应达0.3~0.5mg/L的臭氧溶解度值,要求投加臭氧应满足 1m3水2gO3的发生量。根据实践经验,臭氧发生浓度高于8mg/L时容易达到浓度。
(3)降尘的纯水加多少扩展阅读
臭氧杀菌还可以应用在哪些领域
室内消毒领域首丛
臭氧具有杀灭空气中含有的细菌和病毒,有降尘的功能,使空气清新自然,起到消除疲劳,提神醒脑的效果。
果蔬保鲜消毒领域
水果、蔬菜的运输、贮藏一直是急需解决的问题,处理不当将带来极大损失。据悉,我国每年有30-40%的蔬菜因储运不当和局部积压而成为垃圾。臭氧与负离子共同作用有极好的果蔬保鲜功能,因此利用臭氧技术可以大大延长果蔬的保鲜、贮存时间,扩大其外运范围。
另外,臭氧技术还可以用于净菜处理中的杀菌消毒。日本川岛播磨重工业公司开发了利用臭氧水自动对蔬菜进行杀菌的系统。据其研究,低浓度臭氧水杀菌效率高,没有二次污染。
通过实验对比臭氧水和次氯酸钠对很容易在蔬菜中繁殖的枯草菌的杀菌效果发现,用浓度为50ppm的次氯酸钠杀菌2分钟后细菌还没有被杀死,而用浓度为5ppm的臭氧水杀菌20秒后99.9%的细菌被杀死。臭氧水将成为最佳的蔬菜杀菌剂。
同时,臭氧水能有效氧化蔬菜水果表面农药,降低农药残留量,保护身体健康。
环境资源保护领域
产生水危机的主要原因是浪费、污染、用水分配不均和灌溉,其中约有5.5亿立方米/年的水体被污染。作为高效杀菌、解毒剂的臭氧自然吸引了众多的科学家研究将其应用于水资源污染处理及节约工业用水领域的技术。
美国地下水技术公司在试验用臭氧化技术处理土壤及地下水污染取得成功。该公司的试验表明,臭氧化技术可以在几个月内消除35 ~ 98%的有毒物质,而这些有毒物质用挥发、生物降解等传统方法来处理则需几年时间。
有研究表明,用臭氧配合紫外线照射可以将工业废水中有毒碳氢化合物氧化分解,同时去除重金属离子。
这种方法在染料业废水处理中已取得95%的净化率,比传统方法提高25%。处理后的工业污水可以循环使用,避免了水土污染,节约了工业用水。在发达国家,臭氧技术在处理饮用水、海水淡化等方面也已获得应用。
除以上这些领域外,臭氧技术还应用在养殖业、渔业、农业、食品加工业等领域。
医疗卫生领域
医院是治疗疾病的地方,但是由于到医院就诊的人很大部分是危重患者,其炎症正处于高峰时期,来自病人身上的有害病菌极易散发于空气中。
因此,医院又是容易感染疾病的场所。所以到医院就诊引起交叉感染的事已司空见惯。医院手术和护理操作前大夫或护士的双手及手术器具的消毒问题也是亟待解决的课题之一。具有高效、迅速杀菌作用的臭氧在医院环境消毒、术前消毒等方面大有用武之地。
比如,日本科学家就研究过用于医院的臭氧水消毒法。据其研究结果,用臭氧水对医院手术前医生、护士的双手消毒,可杀死所有细菌,不仅时间极短,而且其消毒效果也是其他碘类消毒剂无法比拟的。传统进行同样的消毒操作至少需要10分钟。
在医院中最易引起感染的黄色葡萄球菌和绿脓杆菌等在臭氧水中只需5秒钟即可全部杀死,其杀菌力远远超过酒精和氯。而且臭氧水具有可靠的安全性,经常使用不会伤及肌肤,即使误喝也不会中毒。
臭氧还可以用于治疗。如俄罗斯研究出一种特殊的液压液来治愈伤口,其基本方法就是在高压下用雾状富含臭氧的生理溶液冲洗伤口,水流就象手术刀一样将伤口中的脓血、坏死组织及细菌分解物清除,同时杀死伤口表面的致病微生物。
然后变换"臭氧刀"的结构,继续增大液体的压力,使臭氧化的溶液渗进发炎组织几毫米至3厘米深,并增加氧气,杀死更深层的致病细菌。据报道,用这种方法已治疗过200例病人,他们都是一些糖尿病、脓毒病、血管动脉硬化及不宜施行通常外科手术的患者,结果这些病人的伤口全都完全愈合。
参考资料来源网络-臭氧
参考资料来源网络-臭氧杀菌