A. 中水市场中水回用设备4大类
中水回用技术是一项环保策略,其应用根据不同区域和规模主要分为四类设备:
首先,针对小区域建筑群,如住宅小区、学校和机关团体大院,采用小区域建筑群中水回用系统。这些系统的水源来自建筑内部的杂排水,处理设施通常设置在小区内,用于满足建筑内部的非饮用水需求,如冲洗便器和绿化。
其次,对于更广泛的区域,如区域性建筑群,系统具备二级污水处理设施。这类系统可以从城市污水处理厂或工业废水获取水源,处理后供应给建筑内的冲洗用水和绿化用途。
在排水设施条件良好的地区,单位建筑中水回用系统则利用自身产生的杂用水和优质排水。经过集流处理后,这些水用于冲洗便器、清洗车和绿化,处理设施可设置于建筑内部或附近。
最后,对于排水设施不完善的地区,特别是城市排水系统不发达的地方,单位建筑采用排水设施不完善地区的中水回用系统。水源主要来自建筑物的排水净化池,这些池通常包含总的生活污水。处理设施的设置根据实际情况,可以设在室内或室外,以减轻污水对当地环境的影响。
中水是污水处理厂经过过滤、沉淀、加氯等工序净化而成的达标排放水,它的使用范围只能限于非人体接触领域。如道路清洗、园林喷洒、洗车等。像泳池、浴池、洗衣店等这些与人体密切接触的用水行业都不允许直接使用中水。
B. “中水处理回用系统按其供应的范围大小和规模,一般有四大类” 求这四大类的出处是在哪本书上
中水回用系统按其供应范围和规模分四大类
中水回用系统按其供应的范围大小和规模,一般有下面四大类:
1、区域性建筑群中水回用设备系统
本系统特点是小区域具有二级污水处理设施,区域中水水源可取城市污水处理厂处理后的水或利用工业废水,将这些水运至区域中水处理站,经进一步深度处理后供建筑内坤洗使器、绿化等用。
2、小区域建筑群中水回用设备系统
该系统的中水水源取自建筑小区内各建筑物所产生的杂排水。这种系统可用于建筑住宅小区、学校以及机关团体大院。其处理设施放置小区内。
3、排水设施不完善地区的单位建筑中水回用设备系统
城市排水体系不健全的地区,其水处理设施达不到二级处理标准,通过中水回用可以减轻污水对当地河流再污染。该系统中水水源取自该建筑韧的排水净化池(如沉淀池、化粪池、除油池等),该池内的水为总的生活污水。该系统处理设施根据条件可设于室内或室外。
4、排水设施完善地区的单位建筑中水回用设备系统
该系统中水水源取自本系统内杂用水和优质杂排水。该排水经集流处理后供建筑内冲洗便器、清洗车、绿化等。其处理设施根据条件可设于本建筑内部或临近外部。如北京新万寿宾馆中水处理设备设于地下室中。
有关中水设施的管理按照建设部发布的《城市中水设施管理暂行办法》执行,中水设施的设计按中国工程建设标准化协会编制的《建筑中水设计规范》。
C. 学校厕所洗手池的水龙头里的水,和厨房的水有什么区别么 能否烧开后直接饮用
学校厕所洗手池的水龙头里的水和厨房的水在本质上没有区别,都是自来水,经过了同样的处理流程,因此在水质上是一致的。只要水质合格,无论从哪个水龙头接出来的水,煮沸后都可以安全饮用。我国城市供水系统目前尚未普及双水源标准,即厨房和厕所用水分离供应,因此厕所用水同样适用。
中水管道的应用范围较为有限,主要是用于冲厕、绿化等非饮用场景,但在一些环保要求较高的地区,也开始逐步推广中水回用技术。中水是指经过处理后可以再次使用的废水,如生活污水、工业废水等,虽然其水质优于污水,但并不等同于自来水。
饮用水具有特殊性,其特点包括:pH值呈微碱性,不含任何对人体有毒、有害及异味物质,硬度适度,人体所需矿物质含量及比例适当,水中溶解氧及二氧化碳含量适度,水分子团小,水分子间结合角大,接近人体分子间的结合角,水的溶解力、渗透力、扩散力等营养生理功能较强。
食物可以根据其pH值分为碱性食物和酸性食物两大类。碱性食物包括蔬菜、茶叶、水果(高糖水果除外)、豆制品、牛奶等;酸性食物则包括肉、蛋、鱼、动物脂肪和植物油、米饭、面食、糖类甜食等。通过测试水的pH值,可以了解自己日常饮用的水是否属于弱碱性,这种水通常被认为更健康。
总之,无论水来自何处,只要经过适当处理并符合水质标准,都可以放心煮沸后饮用。在日常生活中,通过测试水质,选择更健康的饮用水,对维护身体健康有着积极作用。
D. 哪些地方有中水
哪些地方有中水?
一、
中水主要出现在城市地区,特别是那些拥有污水处理厂或中水回用设施的城市。中水通常用于工业冷却、市政绿化、冲洗厕所等。在一些大型公共设施,如机场、火车站、商业中心等地方也会存在中水的使用。另外,部分学校、办公楼等建筑也会使用到中水。城市中通过管道输送的中水供应系统,可以满足城市部分用水需求,减少新鲜饮用水的消耗。
二、详细解释:
1. 城市污水处理厂及周边区域
城市中建设的污水处理厂不仅仅是处理污水,很多时候也涵盖了中水的生产。经过处理的污水经过深度加工后,其水质达到一定标准,可用于多种非饮用水用途,即所谓的“中水”。这些中水可以在处理厂附近直接被用于工业、市政或特定用途。
2. 中水回用设施分布区域
除了污水处理厂,许多城市还设立了专门的中水回用设施。这些设施可以收集雨水、废水等,经过适当处理后供再利用。这样的设施在城市的各个区域都有可能存在,以满足当地对于非饮用水的需求。
3. 大型公共设施
大型公共设施如机场、火车站和购物中心等,由于其巨大的用水量和对节约水资源的需要,通常会采用中水系统。这些场所的中水多来自废水处理后的再利用,用于景观用水、清洁、冲厕等。
4. 建筑内部中水系统
在一些现代化的建筑或建筑群中,如学校和办公楼,也可能设有中水系统。这些系统的水源可能是建筑内部的废水,经过处理后供其他用途使用,以实现水资源的循环利用。
总的来说,随着环保意识的增强和水资源的日益紧缺,中水的使用将会越来越普遍。其在城市中的应用不仅有助于节约水资源,也是实现可持续发展的重要途径之一。
E. 高校宿舍生活污水处理与回用
高校宿舍生活污水处理与回用具体内容是什么,下面中达咨询为大家解答。
随着我国科学技术和生活质量的不断提高,污水的排放量逐渐增大,有效解决水资源污染和短缺的问题十分必要。在这种情况下,中水开发与回用技术得到了迅速发展,在美国、日本、印度、英国等国家(尤以日本为突出)得到了广泛的应用,对实现水资源可持续利用具有重要意义。在我国高校中,清华大学采用膜生物反应器一体化工艺处理洗浴水,将中水全部用于学生宿舍厕所冲洗,中水回用项目的净效益达到130.41万元。中国石油大学中水回用工程采用MBR工艺,直接经济效益52.50万元[1]。
据了解,目前我国高校在校生约为2300万人,以每人每天0.2m3计算,每天中水水源量为460万立方米[1],这些生活污水被排放到城市污水管网经城市污水处理厂集中处理,而校园绿化、学生公寓冲厕等消耗大量自来水,造成能源和资源的浪费,节水型校园数量不足,管理水平和节水效益参差不齐[2]。本研究以郑州大学为例,研究高校宿舍生活污水的水质特征,根据水质特征选取合适的工艺对其进行处理与回用。本研究选取“格栅-初沉池-A/O池-生物接触氧化池-二沉池-表面流人工湿地”新工艺对部分校园宿舍生活污水进行处理,达到城市杂用水及景观回用水标准,作为该校杂用水及景观用水的补充水源,不仅可以减少向排水系统的污水排放量,节省城市排水设施的运行费用及学校缴纳的污水处理费用,而且还可以有效缓解校园供水紧张状况[3],有利于水资源的循环利用,具有重要的经济效益。
1 高校生活污水水质分析及工艺选取
1.1 高校生活污水水质分析
经实地调查,郑大新区在校学生约4万人,每人每天可产生约70L的生活污水,则大约每天可产生生活污水2800m3,学生住宿区分为柳园、荷园、菊园和松园四个园区,柳园有学生1.4万人左右,且柳园部分楼层安装有污水回用装置,将生活污水经过简单处理回用为冲厕所用水,暂不考虑其污水排放情况;其他三个园区约有2.6万人,则每天共可产生生活污水约1800m3,2、7、8月份正常放假,则槐氏每年共产生生活污水约50万m3。同时郑州大学新校区的眉湖是该校区的人工湖,面积大,需水量多,若能将校园宿舍生活污水回用于该人工湖,则不但达到了污水的有效回用,还能减少学校眉湖的回用水的费用支出。
1.1.1 水质监测指标及方法(表1)
1.1.2 污水水质特征
高校用水的特点是学生用水量受季节和温度影响较大,高校用水具有规律性,变化系数较大[4],高校生活污水的水质特点是相对稳定且污染程度低。经对郑州大学新校区部分宿舍生活污水水质进行锋明晌长期监测,其水质情况如表2所示:
高校学生宿舍的生活污水不含厨房排水,只有沐浴和盥洗排水,属于优质杂排水,完全可以由高校内部自行处理再利用。
1.2 工艺选取
根据工艺选取的原则:①技术先进,处理效果稳定;②投资和运行费用低;③管理简单,运行可靠。确定本研究中高校宿舍生活污水处理与回用工艺如图1所示:
1)初沉池:初沉池可除去废水中的可沉物和漂浮物。废水经初沉后,约可去除可沉物、油脂和漂浮物的50%、BOD的20%,按去除单位质量BOD5或固体物计算,初沉池是经济上最为节省的净化步骤,
对于生活污水和悬浮物较高的工业污水均宜采用初沉池预处理(图1)。
2)A/O池:A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在厌氧段厌氧菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机银锋物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
3)生物接触氧化池:在曝气池中设置填料,将其作为生物膜的载体。待处理的废水经充氧后以一定流速流经填料,与生物膜接触,生物膜与悬浮的活性污泥共同作用,达到净化废水的作用。
4)二沉池:二沉池是活性污泥系统的重要组成部分,其作用主要是使污泥分离,使混合液澄清、浓缩和回流活性污泥。其工作效果能够直接影响活性污泥系统的出水水质和回流污泥浓度。
2 实验装置和内容
2.1 实验装置
本实验采用图1所示的工艺流程,小试装置如图2所示,主要组成部分有:初沉池,A/O池,生物接触氧化池,二沉池,处理水量为30-40L/h。
1)A/O:由两部分构成,比例为1:3,前为缺氧段,后为好氧段。其中包括池体,填料,搅拌器,曝气装置等。缺氧池内径800mm,高900mm,好氧池内径1200mm,高1500mm。
2)生物接触氧化池:结构包括池体,填料,布水装置,曝气装置。池型为长方体;池体尺寸长为460mm,宽为400mm,壁厚8mm,总高1400mm,超高50mm。 3)初沉池:池型为圆柱形;池体尺寸为外径340mm,壁厚8mm,总高540mm,超高50mm。
4)二沉池:池型为圆柱形;池体尺寸为外径340mm,壁厚8mm,总高600mm,超高80mm。
2.2工艺参数确定
本论文以郑州大学新校区宿舍生活污水为研究对象,其具体的水质指标为COD的浓度为100mg/L~394mg/L,氨氮浓度为10mg/L~40mg/L,总磷浓度为2mg/L~4mg/L,pH=7~9。以上述工艺对COD、氨氮和TP的去除效果为主要考察指标。
采用所选工艺对高校生活污水进行处理,影响本工艺的主要因素有pH,DO,HRT,SRT,回流比,缺氧好氧反应时间等。通过查阅文献,确定本实验运行参数中MLSS为3000~3500mg/L,曝气池溶解氧为2.0~3.5mg/L,污泥回流比为75%,水力停留时间为12h[5],缺氧好氧HRT为6h和12h,污泥回流比和硝化液回流比分别为100%和200%;生物接触氧化中最佳气水比为16:1,最佳水力负荷为5.0m3/(m3・d)[6]。
3 实验结果分析
采用接种污水处理厂污泥的方法培养菌群,运行小试装置,对COD、NH3-N、TP的去除情况如图3~图5所示:
反应器对COD去除效果如图3所示。进水COD波动变化范围较大,在109.1~328.5mg/L之间,平均值为214.1mg/L。而系统出水COD较为稳定,在13.6~29.5mg/L之间,平均值为21.3mg/L,出水满足城市杂用水标准。由图可见,COD去除率较为稳定,在74.0%~94.5%范围内波动,平均去除率为85.9%,可见该反应器对COD有较好的去除效果。反应器内混悬液污泥絮体中含有大量结构紧密的菌胶团,而菌胶团有较强生物吸附能力和氧化有机物的能力,对COD的去除有较大促进作用。在悬浮填料表面的污泥絮体中,生长着大量利于菌胶团吸附的丝状菌,不仅改善了污泥沉降性能,还有效促进了有机物氧化分解。
反应器对NH3-N去除效果如图4所示。宿舍生活污水氨氮浓度较低,进水氨氮在18.40~35.20mg/L范围内,平均值为28.02mg/L;出水氨氮在5.94~9.39mg/L范围内,平均值为7.95mg/L,满足城市杂用水标准。由图可以看出,氨氮的去除率较为稳定,在62.05%~76.64%范围内波动,平均去除率为71.11%,可见系统对氨氮去除效果一般。分析认为是由于生物挂膜时间太短,挂膜不充分,导致虽然填料为硝化菌生长提供了良好附着条件,但反应器内单位体积生物量并不是太充足,硝化能力不是太高。
反应器对TP的去除效果如图5所示。进水TP浓度为2.12~3.60mg/L,进水平均浓度为2.85mg/L;出水TP浓度为0.16~0.48mg/L,出水平均浓度为0.31mg/L,满足城市杂用水标准;TP去除率为85.33%~91.20%,平均去除率为89.28%,可见此工艺对TP有较好的去除效果。分析认为,是由于缺氧池内投加填料,阻碍了表面空气进入缺氧池内部,降低了氧传质效率,造成了缺氧段的厌氧微环境,形成了微型厌氧/缺氧/好氧系统,聚磷菌在厌氧环境下释磷,经过O段好氧吸磷,再随着脱落的生物膜和悬浮污泥排出系统,达到除磷效果,同时系统通过底部泥斗定期排泥,大量含磷污泥随底部积泥排出,保证了系统的磷平衡,也加快了聚磷菌的生长繁殖,故系统呈现出较好的TP效果。
4 结论与展望
4.1 结论
(1)通过分析高校宿舍生活污水水质特征,确定处理工艺为:“格栅-初沉池-A/O池-生物接触氧化池-二沉池-表面流人工湿地”。
(2)根据实际情况,按照工艺设计实验小试装置“格栅-初沉池-A/O池-生物接触氧化池-二沉池”,在MLSS为3000-3500mg/L,曝气池溶解氧为2.0-3.5mg/L的条件下,以污泥回流比为75%,水力停留时间为12h,缺氧好氧HRT为6h和12h,污泥回流比和硝化液回流比分别为100%和200%;生物接触氧化中最佳气水比为16:1,最佳水力负荷为5.0m3/(m3・d)为运行参数,结果表明COD去除率在93.77%~94.69%,NH3-N去除率在62.05%~76.64%,TP去除率在85.33%~93.82%,其出水中COD在4.98~7.83mg/L,,NH3-N在5.94~9.39mg/L,TP在0.16~0.48mg/L。
(3)景观娱乐用水C类水质标准中规定COD≤30mg/L,NH3-N≤0.5mg/L,TP≤0.05mg/L,城市杂用水水质标准中规定COD≤50mg/L,NH3-N≤10mg/L。由于NH3-N出水指标超过了景观娱乐用水C类水质标准中的规定,因此出水只达到了城市杂用水标准,并未达到景观娱乐用水C类标准。
4.2 展望
(1)由于氨氮去除率过低,未到达回用于景观用水水质标注的预期目标,分析原因应是因在本实验的小试装置运行时的运行参数是查阅文献所得最佳运行参数,未在实验过程中寻找适合本工艺流程的最佳运行参数,导致运行时未达到最佳状态;还有可能是由于生物接触氧化池形成的生物膜不够完善,在以后的研究中应加强注意。
(2)由于小试装置运行时未设置人工湿地环节,出水水质未达到景观用水的回用标准,而在实际工程应用中,可以在后续的研究中,可以对人工湖进行改造,通过大量种植芦苇、睡莲、香蒲等湿地植物,构建表面流人工湿地,充分利用学校资源,改善水质的同时达到减少人工湖地下补水量以及供人们观赏的景观价值。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
F. 建筑中水回用及其存在的问题
建筑中水回用是缓解城市水资源紧张的有效途径,同时也是促进城市水环境和谐发展的关键策略。中水,通常指的是经过处理后达到一定水质标准、可在一定范围内重复使用的非饮用水,其水质位于上水与下水之间,是水资源高效利用的一种形式。自20世纪80年代初国内开始提出“中水”概念以来,这一概念已逐渐被业内人士以及部分缺水城市和地区的民众所接受。起初,称之为“中水道”,源自日本,因其水质及其设施介于上水道和下水道之间。随着国外中水技术的引入,国内试点工程的实验研究,中水工程设施的建设,中水处理设备的研制,中水应用技术的研究、发展和相关规范、规定的建立、实施,逐渐形成了一整套工程技术,如同“给水”“排水”一样,称之为中水。中水是对应给水、排水的内涵而得名,翻译过来的名词有再生水、中水道、回用水、杂用水等,对建筑物、建筑小区的配套设施而言,又称为中水设施。中水(Reclaimed Water)是指各种排水经处理后,达到规定的水质标准,可在生活、市政、环境等范围内杂用的非饮用水。建设部制定了再生水回用分类标准,对再生水的释义是:“指污、废水经二级处理和深度处理后作回用的水。当二级处理出水满足特定回用要求,并已回用时,二级处理出水也可称为再生水。”显然,中水就是再生水。中水系统(Reclaimed Water System)由中水原水的收集、储存、处理和中水供给等工程设施组成的有机结合体,是建筑物或建筑小区的功能配套设施之一。建筑中水(Reclaimed Water System for Building)由于中水系统建立的范围不同又有不同的称谓,建筑物中水是在一栋或几栋建筑物内建立的中水系统;小区中水是在小区内建立的中水系统。小区主要指居住小区,也包括院校、机关大院等集中建筑区,统称建筑小区。建筑中水则是建筑物中水和小区中水的总称。中水设计本着充分利用微生物处理有机废水的稳定性,采用二级氧化处理方式,对洗浴废水进行处理。实践证明洗浴废水在低浓度BOD5下生长的改性轮虫对低浓度洗浴废水具有很好的处理功效,同时稳定性,及耐冲击性都得到验证。采用该工艺同时可以大量节省洗浴废水处理的物化过程,例如节省混凝段和活性炭保护段,从而减少混凝剂的投加及减少劳动强度,而活性炭作为中水保护剂,由于水中有机物的大量存在,会使得活性炭快速板结从而失效,需要更换活性炭,而活性炭的造价较高,这就造成经济的浪费及劳动强度的加大。从以上分析可以看出水中在现阶段处理工艺宜采用以生化为主物化为辅的方法,而生化的关键就在于填料的有机物的负荷及氧的利用率的提高,较好的氧化物其填料为日本新技术蜂窝填料BOD5达到2.2KG.BOD5/M3填料,整体的体积小1/3,氧化机采用台湾川源生产的设备,曝气效率较高,噪声较低。1 中水水源中水的水源较广,但对建筑中水而言,其水源一般包括盥洗排水、沐浴排水、洗衣排水、厨房排水和厕所排水等。若考虑到处理费用和处理的难易程度,对其选用的先后顺序一般为:沐浴排水→盥洗排水→洗衣排水→厨房排水→厕所排水[4]。在进行建筑中水系统的设计时,应根据实际情况,集流一种或多种排水作为中水水源,常见组合有以下几种情况:①空调系统排水、盥洗排水和沐浴排水等,其污染程度较轻,称为优质杂排水,在设计时应优先选择其作为中水水源;②冲厕以外的生活排水组合,其污染程度中等,称为杂排水;③所有生活排水的总称,其污染程度最重,称为生活污水,由于其处理费用较高,且难处理,所以在设计时应尽量不采用其作为中水水源[5]。就目前情况来看,我国现有的建筑中水回用系统采用的水源几乎都是优质杂排水或杂排水。2 中水处理工艺2.1 常用的中水处理工艺及其流程目前应用较多的中水处理工艺主要有混凝、沉淀、过滤、生物处理和活性炭吸附等[6]。处理工艺需根据原水水质的不同而采用某一工艺或某些工艺的组合[5],常见的中水处理工艺流程有以下这些:(1)对于优质杂排水,其处理工艺流程一般有:①原水→毛发聚集器→调节池→微絮凝→过滤→消毒→中水;②原水→毛发聚集器→调节池→混凝沉淀→消毒→出水;③原水旅运→毛发聚集器→调节池→微絮凝-过滤→微滤-超滤→消毒→出水。(2)对于杂排水,其处理工艺流程一般有:①原水→筛滤→调节池→微絮凝-过滤→活性炭吸附→微滤-过滤→消毒→出水;②原水→筛滤→调节池→生物接触氧化或生物转盘→沉淀→过滤→消毒→出水。(3)对于生活污水,其处理工艺流程一般有:①原水→筛滤→调节池→水解酸化→生物接触氧化→沉淀→过滤→消毒→出水;②原水→筛滤→调节池→生物接触氧化→沉淀→生物接触氧化→过滤→消毒→出水;③原水→筛滤→调节池→生物接触氧化→沉淀→微絮凝-过滤→活性炭吸附→消毒→出水。2.2 处理工艺的技术可行性中水处理在技术上是可行的,很多人的研究也已经无数次证明了这一点,特别是随着近几年工程技术人员对处理技术和处理设备开发,使中水处理技术又有了很大的发展。杜茂安等采用混凝-沉淀-过滤-消毒工艺处理洗浴排水,在水温为10℃时,主要控制指标浊度、COD、BOD5和ABS的平均去除率分别为98.1%,95.2%,93.3%和68.2%,出水水质完全满足中水控制指标要求[7];刘中平等研究序批式活性污泥工艺(SBR)处理学校洗浴废水的工程实例得出,该工艺对洗浴废水中的COD、BOD5、SS和LAS有较高的去除率,处理后的出水水质符合《城市污水再生利用 城市杂用水水质标准》(GB/T18920-2002),且该工艺设备简单,占地少,运行方便[8];大连香格里拉大饭店中水回用工程采用膜生物反应器(MBR)工艺,其设计规模为60m3/d,自2001年10月投产运行以来,其平均出水水质为COD=6.16mg/L,BOD=0.57 mg/L,SS=0 mg/L,这完全达到生活杂用水水质标准,实践证明,MBR是一种简单、高效的中水处理技术[9];北京华融大厦总建筑面积4.6万m2,中水原水为洗浴排水,水量为7.5m3/h,采用接触氧化-砂滤工艺,2000年9月经北京市环境保护监测中心测定,进水BOD、COD、SS和LAS分别由22mg/L、68 mg/L、14 mg/L和3.29 mg/L降低到2 mg/L、10 mg/L、5 mg/L和0.14 mg/L[10]。2.3 处理工艺的经济可行性莫慧等对3种居住区中水回用方案即经二级处理后回用、经三级处理后回用和经MBR处理后回用进行了经济分析,其运行费用分别为2.82元/m3、2.63元/m3和2.67元/m3[11];张捍民等采用MBR工艺处理大连香格里拉大饭店的污水并达到生活杂用水水质标准,其运行成本仅为1.665元/m3[9]。通过以上的试验分析可知,如果中水回用工程运行管理得当,其在经济上是可行的,并且随着水资源供需矛盾的进一步激化,自来水价格势必会升高,而随着处理技术的发展,中水处理费用却会降低,这更增加了中水回用的经济可行性。2.4 处理工艺的选择中水处理工艺的选择依据主要是根据进水水质和经济技术比较,选用在技术上可靠,经济上可行,且具有稳定出水水质的处理工艺,同时还要考虑其管理和维护及其对周围环境的影响等。3 中水回用存在的问题建筑中水回用存在的问题较多,首先,中水系统运行往往不正常,水质水量不稳定,用户难以放心依赖,造成这种现象的主要原因是有些工艺、设备不过关,达不到预想效果,同时对系统的运行管理水平不高,出现问题不能及时解决,使水质水量常常发生较大的波动,甚至停产[12]。其次,中水回用在实际工程中并不比使用城市给水更经济。张雅君等对北京22个运行中的中水设施进行调研,通过分析发现普遍存在设施能力不能充分利用、运行成本过高的现象,其总运行成本有的甚至高达11.