导航:首页 > 废水知识 > 10万吨节能型城市污水处理

10万吨节能型城市污水处理

发布时间:2024-11-04 21:24:56

① 中小型污水处理厂处理水量

你好,你想问中小型污水处理厂处理水量是多少吗?中小型污水处理厂处理水量是10万吨以下。污水处理厂是处理污水的重要地点,其大型污水处理厂日处理量一般在几十万吨/日至百万吨/日,中型污水处理厂可以达到几万吨至十万吨,小型污水处理厂从千吨至万吨,所以中小型污水处理厂处理水量是10万吨以下。

② 日处理量10万吨的污水处理厂每天产生多少污泥

日处理量10万吨的污水处理厂每天会产生100吨的湿污泥。
污水处理厂在选购污泥处理设备时首先要计算每日产生的污泥量,这里所说的污泥产生量包括污水处理每个工序产生的污泥,以及处理完最终产生的污泥。
影响污水处理厂污泥产山枯量的原因有许多方面,其中污水处理工艺,以及水质的影响比较大。投产的污水处理厂,一般一万吨污水会产生10吨以上的污泥,这些污泥含水率较高,一般在80%以上。而污水处理厂都要求配有相应的污泥处理设备,对污泥减量化、无害化处理后,才可运输到污水处理厂外。
污泥压干机、污泥压滤机等经过多个污水处理厂使用,可将含水率90%以上的污泥压干成含水率40%的泥饼,使污泥体积减小为原来的1/10,很大程度的实现了污泥的减量化,既便于运输,又解决了占地面积大、污染范围大的难题。
通过以逗稿洞上数据可粗略估算,如果一座污水处理厂日污水处理量为10万吨,则会产生100吨的湿污泥。因此也需要处理量不小于100吨/日的污泥处理设备,才能顺利运行,不因污泥堆置问题影响正常运营。

城市污水处理厂的污泥量按照南方的多个城市统计;1万吨污水处理厂年平均值1吨 / 日绝干污泥,折
合含含水率80%,产污泥5吨。10万吨污水处理厂敬渣含水率80%,产污泥50吨 / 日。
一般夏季多一点,冬季略少一点。

拓展资料

污水处理 (sewage treatment,wastewater treatment):为使污水达到排入某一水体或再次使用的水质要求对其进行净化的过程。污水处理被广泛应用于建筑、农业、交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。

处理污水的方法很多,一般可归纳为物理法、化学法和生物法等。

污水处理厂:有人调查100多座大处理厂,一半晒太阳呢,还有资金不足成本高效率低的,普遍效率不足70%,低的只有40%。

(参考资料:网络 污水处理)

③ 污水处理中的SASS工艺具体是什么

1、CASS概述

CASS(CyclicActivatedSludgeSystem——循环活性污泥系统)工艺是近年来国际公认的处理生活污水及工业废水的先进工艺。其基本结构是:在序批式活性污泥法(SBR)的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法的二沉池和污泥回流系统;同时可连续进水,间断排水。

该工艺最早在国外应用,为了更好地将其引进、消化,开发出适合我国国情的新型污水处理新工艺,总装备部工程设计研究总院环保中心于1994年在实验室进行了整套系统的模拟试验,分别探讨了CASS工艺处理常温生活污水、低温生活污水、制药和化工等工业废水的机理和特点以及水处理过程中脱氮除磷的效果,获得了宝贵的设计参数和对工艺运行的指导性经验。我院将研究成果成功地应用于处理生活污水及不同种工业废水的工程实践中,取得了良好的经济、社会和环境效益。我院开发的CASS工艺与ICEAS工艺相比,负荷可提高1-2倍,节省占地和工程投资近30%。

2CASS工艺的主要技术特征

2.1连续进水,间断排水

传统SBR工艺为间断进水,间断排水,而实际污水排放大都是连续或半连续的,CASS工艺可连续进水,克服了SBR工艺的不足,比较适合实际排水的特点,拓宽了SBR工艺的应用领域。虽然CASS工艺设计时均考虑为连续进水,但在实际运行中即使有间断进水,也不影响处理系统的运行。

2.2运行上的时序性

CASS反应池通常按曝气、沉淀、排水和闲置四个阶段根据时间依次进行。

2.3运行过程的非稳态性

每个工作周期内排水开始时CASS池内液位最高,排水结束时,液位最低,液位的变化幅度取决于排水比,而排水比与处理废水的浓度、排放标准及生物降解的难易程度等有关。反应池内混合液体积和基质浓度均是变化的,基质降解是非稳态的。

2.4溶解氧周期性变化,浓度梯度高

CASS在反应阶段是曝气的,微生物处于好氧状态,在沉淀和排水阶段不曝气,微生物处于缺氧甚至厌氧状态。因此,反应池中溶解氧是周期性变化的,氧浓度梯度大、转移效率高,这对于提高脱氮除磷效率、防止污泥膨胀及节约能耗都是有利的。实践证实对同样的曝气设备而言,CASS工艺与传统活性污泥法相比有较高的氧利用率。

3CASS工艺的主要优点

3.1工艺流程简单,占地面积小,投资较低

CASS的核心构筑物为反应池,没有二沉池及污泥回流设备,一般情况下不设调节池及初沉池。因此,污水处理设施布置紧凑、占地省、投资低。

3.2生化反应推动力大

在完全混合式连续流曝气池中的底物浓度等于二沉池出水底物浓度,底物流入曝气池的速率即为底物降解速率。根据生化动力反应学原理,由于曝气池中的底物浓度很低,其生化反应推动力也很小,反应速率和有机物去除效率都比较低;在理想的推流式曝气池中,污水与回流污泥形成的混合流从池首端进入,成推流状态沿曝气池流动,至池末端流出。作为生化反应推动力的底物浓度,从进水的最高浓度逐渐降解至出水时的最低浓度,整个反应过程底物浓度没被稀释,尽可能地保持了较大推动力。此间在曝气池的各断面上只有横向混合,不存在纵向的返混。

CASS工艺从污染物的降解过程来看,当污水以相对较低的水量连续进入CASS池时即被混合液稀释,因此,从空间上看CASS工艺属变体积的完全混合式活性污泥法范畴;而从CASS工艺开始曝气到排水结束整个周期来看,基质浓度由高到低,浓度梯度从高到低,基质利用速率由大到小,因此,CASS工艺属理想的时间顺序上的推流式反应器,生化反应推动力较大。

3.3沉淀效果好

CASS工艺在沉淀阶段几乎整个反应池均起沉淀作用,沉淀阶段的表面负荷比普通二次沉淀池小得多,虽有进水的干扰,但其影响很小,沉淀效果较好。实践证明,当冬季温度较低,污泥沉降性能差时,或在处理一些特种工业废水污泥凝聚性能差时,均不会

影响CASS工艺的正常运行。实验和工程中曾遇到SV30高达96%的情况,只要将沉淀阶段的时间稍作延长,系统运行不受影响。

3.4运行灵活,抗冲击能力强,可实现不同的处理目标

CASS工艺在设计时已考虑流量变化的因素,能确保污水在系统内停留预定的处理时间后经沉淀排放,特别是CASS工艺可以通过调节运行周期来适应进水量和水质的变比。当进水浓度较高时,也可通过延长曝气时间实现达标排放,达到抗冲击负荷的目的。在暴雨时,可经受平常平均流量6信的高峰流量冲击,而不需要独立的调节地。多年运行资料表明,在流量冲击和有机负荷冲击超过设计值2-3信时,处理效果仍然令人满意。而传统处理工艺虽然已设有辅助的流量平衡调节设施,但还很可能因水力负荷变化导致活性污泥流失,严重影响排水质量。

当强化脱氮除磷功能时,CASS工艺可通过调整工作周期及控制反应池的溶解氧水平,提高脱氮除磷的效果。所以,通过运行方式的调整,可以达到不同的处理水质。

3.5不易发生污泥膨胀

污泥膨胀是活性污泥法运行过程中常遇到的问题,由于污泥沉降性能差,污泥与水无法在二沉池进行有效分离,造成污泥流失,使出水水质变差,严重时使污水处理厂无法运行,而控制并消除污泥膨胀需要一定时间,具有滞后性。因此,选择不易发生污泥膨胀的污水处理工艺是污水处理厂设计中必须考虑的问题。

由于丝状菌的比表面积比菌胶团大,因此,有利于摄取低浓度底物,但一般丝状菌的比增殖速率比非丝状菌小,在高底物浓度下菌胶团和丝状菌都以较大速率降解底物与增殖,但由于胶团细菌比增殖速率较大,其增殖量也较大,从而较丝状菌占优势。而CASS反应池中存在着较大的浓度梯度,而且处于缺氧、好氧交替变化之中,这样的环境条件可选择性地培养出菌胶团细菌,使其成为曝气池中的优势菌属,有效地抑制丝状菌的生长和繁殖,克服污泥膨胀,从而提高系统的运行稳定性。

3.6适用范围广,适合分期建设

CASS工艺可应用于大型、中型及小型污水处理工程,比SBR工艺适用范围更广泛;连续进水的设计和运行方式,一方面便于与前处理构筑物相匹配,另一方面控制系统比SBR工艺更简单。

对大型污水处理厂而言,CASS反应池设计成多池模块组合式,单池可独立运行。当处理水量小于设计值时,可以在反应地的低水位运行或投入部分反应池运行等多种灵活操作方式;由于CASS系统的主要核心构筑物是CASS反应池,如果处理水量增加,超过设计水量不能满足处理要求时,可同样复制CASS反应池,因此CASS法污水处理厂的建设可随企业的发展而发展,它的阶段建造和扩建较传统活性污泥法简单得多。

3.7剩余污泥量小,性质稳定

传统活性污泥法的泥龄仅2-7天,而CASS法泥龄为25-30天,所以污泥稳定性好,脱水性能佳,产生的剩余污泥少。去除1.0kgBOD产生0.2~0.3kg剩余污泥,仅为传统法的60%左右。由于污泥在CASS反应池中已得到一定程度的消化,所以剩余污泥的耗氧速率只有10mgO2/gMLSS.h以下,一般不需要再经稳定化处理,可直接脱水。而传统法剩余污泥不稳定,沉降性差,耗氧速率大于20mgO2/gMLSS.h,必须经稳定化后才能处置。

4CASS设计中应注意的问题

4.1水量平衡

工业废水和生活污水的排放通常是不均匀的,如何充分发挥CASS反应池的作用,与选择的设计流量关系很大,如果设计流量不合适,进水高峰时水位会超过上限,进水量小时反应池不能充分利用。当水量波动较大时,应考虑设置调节池。

4.2控制方式的选择

CASS工艺的日益广泛应用,得益于自动化技术发展及在污水处理工程中的应用。CASS工艺的特点是程序工作制,可根据进水及出水水质变化来调整工作程序,保证出水效果。整套控制系统可采用现场可编程控制(PLC)与微机集中控制相结合,同时为了保证CASS工艺的正常运行,所有设备采用手动/自动两种操作方式,后者便于手动调试和自控系统故障时使用,前者供日常工作使用。

4.3曝气方式的选择

CASS工艺可选择多种曝气方式,但在选择曝气头时要尽量采用不堵塞的曝气形式,如穿孔管、水下曝气机、伞式曝气器、螺旋曝气器等。采用微孔曝气时应采用强度高的橡胶

曝气盘或管,当停止曝气时,微孔闭合,曝气时开启,不易造成微孔堵塞。此外,由于CASS工艺自身的特点,选用水下曝气机还可根据其运行周期和DO等情况适当开启不同的台数,达到在满足废水要求的前提下节约能耗的目的。

4.4排水方式的选择

CASS工艺的排水要求与SBR相同,目前,常用的设备为旋转式撇水机,其优点是排水均匀、排水量可调节、对底部污泥干扰小,又能防止水面漂浮物随水排出。

CASS工艺沉淀结束需及时将上清液排出,排水时应尽可能均匀排出,不能扰动沉淀在池底的污泥层,同时,还应防止水面的漂浮物随水流排出,影响出水水质。目前,常见的排水方式有固定式排水装置如沿水池不同深度设置出水管,从上到下依次开启,优点是排水设备简单、投资少,缺点是开启阀门多、排水管中会积存部分污泥,造成初期出水水质差。浮动式排水装置和旋转式排水装置虽然价格高,但排水均匀、排水量可调、对底部污泥干扰小,又能防止水面漂浮物随出水排出,因此,这两种排水装置目前应用较多,尤其旋转式排水装置,又称滗水器,以操作灵活、运行稳定性高等优点受到设计人员和用户的青睐。

4.5需要注意的其它问题

1、冬季或低温对CASS工艺的影响及控制

2、排水比的确定

3、雨季对池内水位的影响及控制

4、排泥时机及泥龄控制

5、预反应区的大小及反应池的长宽比

6、间断排水与后续处理构筑物的高程及水量匹配问题。

5CASS的经济性

实践证明,CASS工艺日处理水量小则几百立方米,大则几十万立方米,只要设计合理,与其它方法相比具有一定的经济优势。它比传统活性污泥法节省投资20%-30%,节省土地30%以上。当需采用多种工艺串联使用时,如在CASS工艺后有其它处理工艺时,通常要增加中间水池和提升设备,将影响整体的经济优势,此时,要进行详细的技术经济比较,以确定采用CASS工艺还是其它好氧处理工艺。

由于CASS工艺的曝气是间断的,利于氧的转移,曝气时间还可根据水质、水量变化灵活调整,均为降低运行成本创造了条件。总体而言,CASS工艺的运行费用比传统活性污泥法稍低。

曝气盘或管,当停止曝气时,微孔闭合,曝气时开启,不易造成微孔堵塞。此外,由于CASS工艺自身的特点,选用水下曝气机还可根据其运行周期和DO等情况适当开启不同的台数,达到在满足废水要求的前提下节约能耗的目的。

4.4排水方式的选择

CASS工艺的排水要求与SBR相同,目前,常用的设备为旋转式撇水机,其优点是排水均匀、排水量可调节、对底部污泥干扰小,又能防止水面漂浮物随水排出。

CASS工艺沉淀结束需及时将上清液排出,排水时应尽可能均匀排出,不能扰动沉淀在池底的污泥层,同时,还应防止水面的漂浮物随水流排出,影响出水水质。目前,常见的排水方式有固定式排水装置如沿水池不同深度设置出水管,从上到下依次开启,优点是排水设备简单、投资少,缺点是开启阀门多、排水管中会积存部分污泥,造成初期出水水质差。浮动式排水装置和旋转式排水装置虽然价格高,但排水均匀、排水量可调、对底部污泥干扰小,又能防止水面漂浮物随出水排出,因此,这两种排水装置目前应用较多,尤其旋转式排水装置,又称滗水器,以操作灵活、运行稳定性高等优点受到设计人员和用户的青睐。

4.5需要注意的其它问题

1、冬季或低温对CASS工艺的影响及控制

2、排水比的确定

3、雨季对池内水位的影响及控制

4、排泥时机及泥龄控制

5、预反应区的大小及反应池的长宽比

6、间断排水与后续处理构筑物的高程及水量匹配问题。

5CASS的经济性

实践证明,CASS工艺日处理水量小则几百立方米,大则几十万立方米,只要设计合理,与其它方法相比具有一定的经济优势。它比传统活性污泥法节省投资20%-30%,节省土地30%以上。当需采用多种工艺串联使用时,如在CASS工艺后有其它处理工艺时,通常要增加中间水池和提升设备,将影响整体的经济优势,此时,要进行详细的技术经济比较,以确定采用CASS工艺还是其它好氧处理工艺。

由于CASS工艺的曝气是间断的,利于氧的转移,曝气时间还可根据水质、水量变化灵活调整,均为降低运行成本创造了条件。总体而言,CASS工艺的运行费用比传统活性污泥法稍低。

CyclicActivatedSludgeSystem,简称CASS,即循环式活性污泥生物反应工艺。

适用范围:CASS法适用于生活污水、城市污水和大多数工业污水。

概述

CASS工艺是在SBR(序列间歇式反应器,SequencingBatchReactor)工艺上发展起来的.,目前已在实践中得到广泛应用。整个污水厂进出水是连续的,所有设备的维护可以都在水面上进行。简单,灵活,可靠,耐冲击负荷;剩余污泥比传统活性污泥法和普通SBR少。无需调节池和初沉池。还具有较好的脱氮除磷效果,占地少、耗能低、投资省。

工艺流程

CASS工艺集反应、沉淀、排水于一体,对污染物质的降解是一个时间上的推流过程,微生物处于好氧--缺氧--厌氧周期性变化之中。

完整的CASS周期可分为以下四个步骤:

曝气阶段-->沉淀阶段-->滗水阶段-->闲置阶段

工艺特点

处理效率高,出水水质好;

占地面积省,建设费用低;

能耗低,管理方便,运行费用省;

运行可靠,对冲击负荷的适应性强,不发生污泥膨胀。

CASS池分预反应区和主反应区。在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。CASS工艺集反应、沉淀、排水、功能于一体,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。CASS生物处理法是周期循环活性污泥法的简称,最早产生于美国,90年代初引入中国,目前,由于该工艺的高效和经济性,应用势头迅猛,受到环保部门及拥护的广泛关注和一致好评。经过模拟试验研究,已成功应用于生活污水、食品废水、制药废水的治理,取得了良好的处理效果,为CASS法在我国的推广应用奠定了良好的基础。

CASS法是在间歇式活性污泥法(SBR法)的基础上演变而来的,其工作原理如下图所示:

(见附图)

在反应器的前部设置了生物选择区,后部设置了可升降的自动滗水装置。其工作过程可分为曝气、沉淀和排水三个阶段,周期循环进行。污水连续进入预反应区,经过隔墙底部进入主反应区,在保证供氧的条件下,使有机物被池中的微生物降解。根据进水水质可对运行参数进行调整。CASS法的特点与SBR相比,CASS法的优点是:其反应池由预反应区和主反应区组成,因此,对难降解有机物的去除效果更好。进水过程是连续的,因此,进水管道上无需电磁阀等控制元件,单个池子可独立运行;而SBR进水过程是间歇的,应用中一般要2个或2个以上池子交替使用。排水是由可升降的堰式滗水器完成的,随水面逐渐下降,均匀将处理后的清水排出,最大限度降低了排水时水流对底部沉淀污泥的扰动。CASS法每个周期的排水量一般不超过池内总水量的1/3,而SBR则为3/4,所以,CASS法比SBR法的抗冲击能力更好。

与传统活性污泥法相比,CASS法的优点是:建设费用低:省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可节省10-25%。以10万吨的城市污水处理厂为例,传统活性污泥法的总投资约1.5亿,CASS法总投资约1.1亿。工艺流程短,占地面积少:污水厂主要构筑物为集水池、沉砂池、CASS曝气池、污泥池,而没有初次沉淀池、二次沉淀池,布局紧凑,占地面积可减少20-35%。以10万吨的城市污水厂为例,传统活性污泥法占地面积约为180亩,CASS法占地面积约120亩。运转费用省:由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧的浓度梯度大,传递效率高,节能效果显著,运转费用可节省10-25%。有机物去除率高,出水水质好:根据研究结果和工程应用情况,通过合理的设计和良好的管理,对城市污水,进水COD为400mg/L时,出水小于30mg/L以下。对可生物降解的工业废水,即使进水COD高达3000mg/L,出水仍能达到50mg/L左右。对一般的生物处理工艺,很难达到这样好的水质。所以,对CASS工艺,二级处理的投资,可达到三级处理的水质。管理简单,运行可靠:污水处理厂设备种类和数量较少,控制系统比较简单,工艺本身决定了不发生污泥膨胀。所以,系统管理简单,运行可靠。污泥产量低,污泥性质稳定。具有脱氮除磷功能。无异味。CASS工艺特点设备安装简便,施工周期短,具有较好的耐水、防腐能力,设备使用寿命长;对原水的水质水量的变化有较强的适应能力,处理效果稳定,出水水质好,可回用于污水处理厂内的如绿化、浇地、洗车等有关杂用用途;处理工艺在国内外处于先进水平,设备自动化程度高,可用微机进行操作和控制;整个工艺运转操作较为简单,维修方便,处理厂内不产生污染环境的臭气和蚊萤;投资较省,处理成本低,工艺有推广应用价值。

CASS操作周期一般可分为四个步骤:曝气阶段由曝气装置向反应池内充氧,此时有机污染物被微生物氧化分解,同时污水中的NH3-N通过微生物的硝化作用转化为NO3--N。沉淀阶段此时停止曝气,微生物利用水中剩余的DO进行氧化分解。反应池逐渐由好氧状态向缺氧状态转化,开始进行反硝化反应。活性污泥逐渐沉到池底,上层水变清。滗水阶段沉淀结束后,置于反应池末端的滗水器开始工作,自上而下逐渐排出上清液。此时反应池逐渐过渡到厌氧状态继续反硝化。

闲置阶段:闲置阶段即是滗水器上升到原始位置阶段。

④ 超大型污水处理厂每天消耗多少度电

根据污水处理厂的工艺不同,选用的设备不同及排放指标不同差异很大。
一般污水处理厂10万吨/天处理量为例:每吨污水耗电 0.15~0.3kwh。电价以当地的计算。

⑤ 污水处理厂生活污泥的产生量大概有多少

一般来来说大约1万吨日处理量产自生大约10吨不到的含水率80%的污泥。城市污水处理厂的污泥量按照南方的多个城市统计;1万吨污水处理厂年平均值1吨/日绝干污泥,折合含含水率80%,产污泥5吨。10万吨污水处理厂含水率80%,产污泥50吨/日。一般夏季多一点,冬季略少一点。干基大概是废水处理量的万分之五到十五,假如是十万方水厂,那一天产干泥量5~15吨,通常污泥脱水到80%含水率,所以湿泥饼的量大概在25~75t/d。影响污水处理厂污泥产量的原因有许多方面,其中污水处理工艺,以及水质的影响比较大。污水处理中产生的污泥数量,依污水水质与处理工艺而异。城市生活污水按每人每天产生的污泥量计算。例如,当沉淀时间为1.5h,含水率为95%,每人每天产生初沉池污泥量为0.4~0.5L/d·人。

⑥ 10万吨城市生活污水处理厂产泥一天大概多少吨

如果要实际计算,是根据水质和工艺决定的;
一些规范里面有一个数值,市政厂,1万吨污水大约产1-1.2吨绝干污泥。

⑦ 请问一个日处理能力为10万吨的污水处理厂占地多大

日处理量与占地面积的关系可以查《给水排水设计手册》——第五册 城镇排水。
100000吨处理量
一级内处理:容5.0~6.5 万平米
二级处理——生物滤池:40~60万平米
二级处理——活性污泥法:10.0~12.5万平米

⑧ 求cass资料

http://www.chinacitywater.org/bbs/search.php?searchid=84&orderby=lastpost&ascdesc=desc&searchsubmit=yes

可以去看看

CCAS工艺,即连续循环曝气系统工艺(Continuous Cycle Aeration System),是一种连续进水式SBR曝气系统。这种工艺是在SBR(Sequencing Batch Reactor,序批式处理法)的基础上改进而成。SBR工艺早于1914年即研究开发成功,但由于人工操作管理太烦琐、监测手段落后及曝气器易堵塞等问题而难以在大型污水处理厂中推广应用。SBR工艺曾被普遍认为适用于小规模污水处理厂。进入60年代后,自动控制技术和监测技术有了飞速发展,新型不堵塞的微孔曝气器也研制成功,为广泛采用间歇式处理法创造了条件。1968年澳大利亚的新南威尔士大学与美国ABJ公司合作开发了“采用间歇反应器体系的连续进水,周期排水,延时曝气好氧活性污泥工艺”。1986年美国国家环保局正式承认CCAS工艺属于革新代用技术(I/A),成为目前最先进的电脑控制的生物除磷、脱氮处理工艺。 CCAS工艺对污水预处理要求不高,只设间隙15mm的机械格栅和沉砂池。生物处理核心是CCAS反应池,除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成,出水可达标排放。
经预处理的污水连续不断地进入反应池前部的预反应池,在该区内污水中的大部分可溶性BOD被活性污泥微生物吸附,并一起从主、预反应区隔墙下部的孔眼以低流速(0.03-0.05m/min)进入反应区。在主反应区内依照“曝气(Aeration)、闲置(Idle)、沉淀(Settle)、排水(Decant)”程序周期运行,使污水在“好氧-缺氧”的反复中完成去碳、脱氮,和在“好氧-厌氧”的反复中完成除磷。各过程的历时和相应设备的运行均按事先编制,并可调整的程序,由计算机集中自控。

CASS工艺发展至今,已在城市污水和工业废水处理领域逐步得到应用。但是,CASS工艺设计方法的研究却发展缓慢,目前还处于经验阶段,究其原因有两点:一是专业技术人员比较侧重于主要设备(如滗水器)和自控系统的研究开发,而忽略了对CASS工艺设计方法的研究;二是CASS工艺乃至所有的间歇式活性污泥工艺的反应过程都比较复杂,其部分生物作用机理至今仍在研究之中。
高氨氮污水对于环境的危害日益引起人们的重视,国内外目前对于应用CASS工艺处理高氨氮污水的研究还处于起步阶段,处理效果也不理想,脱氮率较低。研究如何改进CASS工艺设计方法,将其用于高氨氮污水的处理,充分发挥CASS工艺脱氮除磷效果好、耐冲击负荷能力强、防止污泥膨胀、建设费用低和管理方便等优点,对于促进CASS工艺的发展和改善水体环境具有现实意义。
1.现行的CASS工艺设计方法
1.1 活性污泥工艺设计计算方法
活性污泥工艺的设计计算方法有三种:污泥负荷法、泥龄法和数学模型法。三种方法各有其特点,分述如下:
1、污泥负荷法
污泥负荷法是目前国内外最流行的活性污泥设计方法,几十年来,污泥负荷法设计了成千上万座污水处理厂,充分说明其正确性和适用性。
污泥负荷法也有其弊端,主要表现为:一是污泥负荷法设计参数的选择主要依靠设计者的经验,这对于经验较少的设计者来讲相当困难;二是对脱氮要求未加考虑,影响了设计的精确性和可靠性。
2、泥龄法
泥龄法是经验和理论相结合的设计计算方法,比污泥负荷法更加精确可靠;泥龄法可以根据泥龄的选择,实现工艺的硝化和反硝化功能;同时,泥龄参数的选择范围比污泥负荷法窄,设计者选择起来难度较小。
泥龄法的设计参数大多是根据国外污水试验得出的,需结合我国的城市生活污水水质加以修正,这是其目前应用的困难所在。
3、数学模型法
1986年,原国际水污染与控制协会IAWPRC提出了活性污泥1号数学模型,其后十几年里,随着数学模型的完善,越来越多的活性污泥系统开始采用它进行工程设计和优化。
数学模型在理论上是比较完美的,但具体应用则存在不少问题,主要是由于污水处理的复杂性和多样性,模型中所包含的大量工艺参数需要根据具体的水质进行调整和确定,这需要大量的工程积累,即使简化了的数学模型,应用也相当困难。到目前为止,数学模型在国外尚未成为普遍采用的设计方法,而在我国还停留在研究阶段。
1.2 目前CASS工艺设计计算方法
CASS工艺属于活性污泥法范畴,但由于其运行方式独特,与传统活性污泥法又有很大的差别。在同一周期内,池内的污水体积、污染物的浓度、DO和MLSS时刻都在发生变化,是一种非稳态的反应过程。
目前CASS工艺设计采用污泥负荷法,该方法不考虑反应池内基质浓度、MLSS和DO含量在时间上的变化,只考虑进出水有机物的浓度差,并忽略同一反应周期内沉淀、滗水和闲置阶段的生物降解作用,采用与传统活性污泥法基本相同的计算公式。
CASS工艺采用污泥负荷法进行设计时,除反应池容积计算与传统活性污泥法不同,其它如反应池DO和剩余污泥排放量等计算方法与传统活性污泥工艺相同,因此,本节着重介绍CASS工艺反应池容积的计算方法。
1.2.1 计算BOD-污泥负荷(Ns)
BOD-污泥负荷是CASS工艺的主要设计参数,其计算公式为:
(1)
式中: Ns——BOD-污泥负荷,kgBOD5/(kgMLSS•d),生活污水取0.05~0.1
kgBOD5/(kgMLSS•d),工业废水需参考相关资料或通过试验确定;
K2——有机基质降解速率常数,L/(mg•d);
Se——混合液中残存的有机物浓度,mg/L;
η——有机质降解率,%;
?——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,一般在生活污水中,?=0.75。
(2)
式中: MLVSS——混合液挥发性悬浮固体浓度,mg/L;
MLSS——混合液悬浮固体浓度,mg/L;
1.2.2 CASS池容积计算
CASS池容积采用BOD-污泥负荷进行计算,计算公式为:
(3)
式中:V——CASS池总有效容积,m3;
Q——污水日流量,m3/d;
Sa、Se——进水有机物浓度和混合液中残存的有机物浓度,mg/L;
X——混合液污泥浓度(MLSS),mg/L;
Ns——BOD-污泥负荷,kgBOD5/(kgMLSS•d);
?——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值。
1.2.3 容积校核
CASS池的有效容积由变动容积和固定容积组成。变动容积(V1)指池内设计最高水位和滗水器排放最低水位之间的容积;固定容积由两部分组成,一部分是安全容积(V2),指滗水水位和泥面之间的容积,安全容积由防止滗水时污泥流失的最小安全距离决定;另一部分是污泥沉淀浓缩容积(V3),指沉淀时活性污泥最高泥面至池底之间的容积。
CASS池总的有效容积:
V=n1×(V1+V2+V3) (4)
式中:V——CASS池总有效容积,m3;
V1——变动容积,m3;
V2——安全容积,m3;
V3——污泥沉淀浓缩容积,m3;
n1——CASS池个数。
设池内最高液位为H(一般取3~5m),H由三个部分组成:
H=H1+H2+H3 (5)
式中:H1——池内设计最高水位和滗水器排放最低水位之间的高度,m;
H2——滗水水位和泥面之间的安全距离,一般取1.5~2.0m;
H3——滗水结束时泥面的高度,m;
其中:
(6)
式中: A——单个CASS池平面面积,m2;
n2——一日内循环周期数;
H3=H×X×SVI×10-3 (7)
式中:X——最高液位时混合液污泥浓度,mg/L;
污泥负荷法计算的结果,若不能满足H2≥H-(H1+H3),则必须减少BOD-污泥负荷,增大CASS池的有效容积,直到条件满足为止。
1.2.4 设计方法分析
从上述设计方法的描述中可以看出,现行的CASS工艺设计具有以下几个方面的特点:
1、设计方法简单,设计参数单一,在传统的以污泥负荷为主要设计参数的活性污泥设计法基础上,采用容积进行校核,以保证滗水过程中的污泥不流失。
2、设计只针对主反应区容积,而生物选择区容积则是按照主反应区容积的5%设计。
3、污泥负荷法设计重点针对有机物质的降解,对脱氮未加考虑,难以满足污水排放对于氮的要求,故此方法具有片面性,难以满足高氨氮污水处理后达标排放。
2 CASS工艺设计方法改进
CASS工艺目前广泛应用的设计方法是污泥负荷法,污泥负荷法立足于有机物的去除,对系统脱氮效果则未加考虑,而对于高氨氮污水,脱氮效果的考虑更为重要,因此需结合目前已有的CASS工艺设计方法,加入脱氮工艺设计,对传统的CASS工艺设计方法进行改进。
2.1 CASS工艺设计方法改进的思路
高氨氮的污水脱氮设计的改进思路如下:
1、设计采用静态法。设计方法不追踪CASS反应池内基质和活性污泥浓度在时间上的变化过程,而是着重于在某一进水水质条件下经系统处理后能达到的最终处理效果。对于同步硝化反硝化,由于其机理还处在进一步研究阶段,在设计中不加考虑。对于沉淀和滗水阶段的生物反应,其作用并不明显,因此在设计中对这两个阶段的生物反应不加考虑。
2、将主反应区和预反应区分开设计,主反应区主要功能为有机物降解和硝化,而预反应区的功能主要为生物选择和反硝化脱氮。
3、主反应区采用泥龄法设计,而将污泥负荷作为导出参数,结合试验研究的结论,通过污泥负荷对设计结果进行校核。
4、反应池的尺寸通过进水量和污泥沉降性能确定。
2.2 主反应区容积设计
主反应区设计采用泥龄法,并用污泥负荷进行校核,其设计步骤如下:
1、计算硝化菌的最大比增长速率
当污水pH和DO都适合于硝化反应进行时,计算亚硝酸菌的比增长速率公式为:
(8)
式中:μN,max——硝化菌的最大比增长速率,d-1;
T——硝化温度,℃;
2、计算稳定运行状态下的硝化菌比增长速率
(9)
式中:μN——硝化菌的比增长速率,d-1;
N——硝化出水的NH3-N浓度,mg/L;
KN——饱和常数,设计中一般取1.0mg/L。
3、计算完成硝化反应所需的最小泥龄
(10)
式中: ——最小泥龄,d;
μN——硝化菌的比增长速率,d-1。
4、计算泥龄设计值
本处采用Lawrence和McCarty在应用动力学理论进行生物处理过程设计时提出的安全系数(SF)概念,SF可以定义为:
SF= / (11)
式中: ——设计泥龄,d;
SF使生物硝化单元在pH值、溶解氧浓度不满足要求或者进水中含有对硝化有抑制作用的有毒有害物质时仍能保证达到设计所要求的处理效果。美国环保局建议一般取1.5~3.0。
5、计算以VSS为基础的含碳有机物(COD)的去除速率
活性异养菌生物固体浓度X1可用下式计算:
(12)
式中:X1——活性异养菌生物固体浓度,mg/L;
YH——异养菌产率系数,gVSS/gCOD或gVSS/gBOD;
bH——异养菌内源代谢分解系数,d-1;
S0——进水有机物浓度,mgCOD/L或mgBOD/L;
S1——出水有机物浓度,mgCOD/L或mgBOD/L;
——设计泥龄,d;
t——水力停留时间,d;
活性生物固体表观产率系数,YH,NET
将含碳有机物的去除速率定义为:
(13)
则可以得到下式:
1/=YH,NET•qH (14)
曝气池混合液VSS由三部分组成:活性生物固体、微生物内源代谢分解残留物和吸附在活性污泥上面不能为微生物所分解的进水有机物,VSS浓度可以表示为:
(15)
式中:X——VSS浓度,mg/L;
△S——基质浓度变化,mgCOD/L或mgBOD/L;
YH——以VSS为基础的产率系数,gVSS/gCOD或gVSS/gBOD;
b——以VSS为基础的活性污泥分解系数,d-1;
以VSS为基础的(浓度为X)的有机物去除速率可以表示为:
1/ =YH,NET•qOBS (16)
6、计算生化反应器水力停留时间t
(17)
7、主反应区容积:
VN=Q t (18)
式中:VN——主反应区容积,m3;
Q——进水流量,m3/d;
8、有机负荷校核
有机负荷F/M:
(19)
式中:?——MLVSS/MLSS,一般取0.7。
根据相关试验结论,若F/M不在0.18~0.25 kgCOD/(kgMLSS•d),则需改变泥龄,进行重新设计。
10、氨氮负荷校核
氨氮负荷SNR:
(20)
式中:N——主反应区产生NO3-N总量TKN,mg/L。
根据相关试验结论,若SNR>0.045 kg NH3-N/(kgMLSS•d),则需增大泥龄,进行重新设计。
2.3 预反应区容积设计
预反应区的功能设计为反硝化,其设计步骤如下:
1、计算反硝化速率SDNR
反硝化速率可以根据试验结果或文献报道值确定,也可以按下面的方法计算:
温度20℃时:SDNR ( 2 0) =0.3F/M+0.029(21)
温度T℃时: SDNR (T)= SDNR (2 0) •θ( T- 2 0 ) (θ为温度系数,一般取1.05) (22)
2、缺氧池的MLVSS总量为:
LA=QND/ SDNR (T) (23)
式中:ND——反硝化去除的NO3-N,kgN/d。
3、缺氧池的容积:
VAN=1000LA/X? (24)
4、缺氧池的水力停留时间:
tA=VAN/Q (25)
5、系统的总泥龄:
(26)
2.4 反应器尺寸的确定
CASS反应器尺寸的确定主要是确定反应器的高度和面积,以满足泥水分离和滗水的需要。由于预反应区始终处于反应状态,不存在泥水分离的问题,且预反应区底部通过导流孔与主反应区相连,其水面高度与主反应区平齐,因此计算出主反应区的设计高度也同时计算出了预反应区的水面高度。所以反应区尺寸的确定主要是主反应区尺寸的确定。
CASS池的泥水分离和SBR相同,生物处理和泥水分离结合在CASS池主反应区中进行,在曝气等生物处理过程结束后,系统即进入沉淀分离过程。在沉淀过程初期,曝气结束后的残余混合能量可用于生物絮凝过程,至池子趋于平静正式开始沉淀一般持续10min左右,沉淀过程从沉淀开始后一直延续至滗水阶段结束,沉淀时间为沉淀阶段和滗水阶段的时间总和。
污泥泥面的位置则主要取决于污泥的沉降速度,污泥沉速主要与污泥浓度、SVI等因素有关,在CASS系统中,污泥的沉降速度vS可简单地用下式计算:
vS=650/(XT×SVI) (27)
式中:vS——污泥沉速(m/h);
XT——在最高水位时浓度(kg/m3),为安全计,采用主反应区中设计值 X,一般取3000~4200 mg/L;
SVI——污泥沉降指数(mL /g)。
为避免在滗水过程中将活性污泥带出系统,需要在滗水水位和污泥泥面之间保持一最小的安全距离HS。为保持滗水水位和污泥泥面之间的最小安全距离,污泥经沉淀和滗水阶段后,其污泥沉降距离应≥ΔH+HS,期间所经历的实际沉淀时间为(ts+td-10/60)h,故可得下式:
vS×(ts +td -10/60)=ΔH+HS (28)
式中:ΔH——最高水位和最低水位之间的高度差,也称滗水高度(m),ΔH一般不超过池子总高的40%,与滗水装置的构造有关,一般其值最大在2.0~2.2m左右;
ts——沉淀时间;
td——滗水时间。
联立式(6.47)和(6.48)即可得:
(29)
式中:ΔV——周期进水体积(m3);
A——池子面积(m2);
HT——最高水位(m);
式中沉淀时间ts、滗水时间td可预先设定,根据水质条件和设计经验可选择一定的SVI值,安全高度HS一般在0.6~0.9m左右。ΔV由进水量决定,这样式(29)中只有池子高度HT和面积A未定。根据边界条件用试算法即可求得式(29)中的池子高度和面积。
高度HT和面积A的确定方法为:先假定某一池子高度HT,用式(29)求得面积A,从而可求得滗水高度ΔH,如滗水高度超过允许的范围,则重新设定池子高度,重复上述过程。
在求得HT和池子面积A后,即可求得最低水位HB:
HB=HT-△H=HT-ΔV/A(30)
最高水位时的MLSS浓度XT已知,最低水位时的MLSS浓度则可相应求得:
XB=XT×HT /HB(31)
最低水位时的设计MLSS浓度一般应不大于6.0kg/m3。
2.5 剩余污泥计算
每日从系统中排出的VSS重量为L:
L=X? (VAN+VN) / θ (32)
式中:L——每日从系统中排出的VSS重量,kg/d。
2.6 需氧量计算
1、BOD的去除量:
O1=Q (S0-S1)/1000(33)
2、氨氮的氧化量:
O2=QN/1000 (34)
3、生物硝化系统,含碳有机物氧化需氧量与泥龄和水温有关系,每去除1kgBOD需氧1.0~1.3kg,一般取1.1,则碳氧化和硝化需氧量为:
O3=1.1O1+O2(35)
4、每还原1kg NO3-N需2.9kgBOD,由于利用水中的BOD作为碳源反硝化减氧需要量为:
O4=2.9 NDQ/1000(36)
实际需氧量:
O= O3-O4(37)

阅读全文

与10万吨节能型城市污水处理相关的资料

热点内容
直饮水滤芯为什么有泡沫 浏览:386
钻豹汽油滤芯怎么装 浏览:445
废水排放规律冲击性 浏览:794
透明树脂土 浏览:247
小松120提升器拆装图 浏览:275
印刷线路板蚀刻废水价格 浏览:460
带冷凝水提升泵的空调 浏览:270
空气超滤膜 浏览:752
反渗透膜制定标准 浏览:368
天然热水免拆除垢器 浏览:978
超滤膜材料聚偏氟乙烯东岳 浏览:861
玻璃钢雨水收集回用 浏览:809
中低温氨基树脂报价 浏览:158
树脂为什么会膨胀 浏览:653
河源市污水处理厂招标 浏览:366
丽水化工废水处理多少钱 浏览:209
锦鲤池过滤系统管道 浏览:128
汉斯顿净水器是什么原理 浏览:424
净水器配件厂怎么样 浏览:945
邯郸食品纯水设备多少钱 浏览:668