『壹』 排泥水处理技术应用
排泥水处理技术应用具体包括哪些内容呢,下面中达咨询为大家带来相关内容介绍以供参考。
上海市自来水闵行有限公司(以下简称闵行公司)原水取自黄浦江闵行江段,属黄浦江上游水源,取水口断面水质基本符合GB3838-88国家地面水环境质量Ⅲ类~Ⅳ类水体标准,属受轻度有机污染水体。因此保护闵行段水源水质对闵行公司显得尤为重要,它是闵行公司唯一的供水水源。
原上海市自来水公司,充分注意到在同一江段取原水净化成自来水后又将沉淀池排泥水回排到同一江段的不合理现象,早在1990年就曾组织科研人员对水厂排泥水的处理工艺进行了研究,通过调研初步掌握了水厂排泥水的特性、处理工艺旅运及各类脱水机械性能等有关资料。
1995年10月30日,上海市自来水公司联合同济大学、上海市环境科学研究院等单位在闵行一水厂实施排泥水处理工程生产性研究,为今后水厂排泥水处理推广应用提供经验和依据。
在国外,为了防止污染,都制定了相关法律,以保障人类社会的健康发展,促进水资源的可持续利用,保护生态环境的平衡。因此,世界发达国家都十分重视污泥处理与处置技术的研究和应用。日本近年来经脱水处理的排泥水占了80%以上。在日本,1976年就颁布法律,供水能力在1万m3/d以上的水厂必须对水厂排泥水进行处理,禁止直接排放河流,且必须对污泥泥饼进行无公害化处置。日本水厂的排泥水处理通常是将排泥水收集在污水池,然后用泵送入排泥水浓缩池,经自然沉降和浓缩使底部污泥含水率达98%~96%,然后用压力水泵将浓缩污泥送到加压脱水机(或不加压长时间脱水),从脱水机分离的泥饼含水率达65%。
国内由于经济和脱水设备等原因,水厂排泥水处理污泥处置研究和应用的起步较晚,投入也较少。随着人们对环保意识的增强和国家环保法律的颁布,全国主要城市自来水厂也开始重视对水厂排泥水进行处理和研究。
1排泥水沉降特性试验
由于排泥水含固率的不均匀性,排泥水瞬时含固率在0.1%~2%之间波动,因此排泥水必须经过浓缩池沉降浓缩。在浓缩池底部形成平衡、均匀的浓缩污泥,再送入污泥脱水机械进行深度处理。所以,我们研究了不培卜同含固率排泥水的污泥自然沉降特性和加注PAM高分子絮凝剂沉降特性,掌握其沉降速度(沉降时间)、压密点污泥浓度和固通量等规律。通过对排泥水沉降特性的试验,为排泥水污泥浓缩池的平面积和高度的设计提供依据,为脱水机械的选型提供参考。同时,我们还对排泥水的污泥和上清液进行成份分析,为上清液的外排和污泥处置提供依据。 从我们进行大量的沉淀池排泥水沉降试验结果分析:
(1)闵行一水厂沉淀池排泥水污泥沉降速率视排泥水含固率大小而定。随着排泥水含固率的逐渐增高,前3 h及8 h污泥沉降效率越来越低,同样,前3 h,8 h,24 h排泥水沉降污泥含固率浓缩倍数也越来越小。随排泥水污泥浓度的增高,排泥水的沉降污泥界面下降速率也逐步降低。
(2)闵行一水厂沉淀池排泥水外排频率受智能化污泥检测仪控制,污泥停留在沉淀池底时间较长,污泥中有机物明显发酵,使污泥颜色变黑。因此排泥水经自然沉降后,上清液浊度很高,3 h后上清液最高浊度达200 NTU,最低也达30 NTU。闵行一水厂排泥水处理工程实施以后,排泥水经浓缩后的上清液不回收利用,在排放时达到废水排放标准。
2排泥水处理污泥药剂选择
2.1污泥处理药剂选择原则
(1)聚合物必须为可溶性,并且能吸附在悬浮颗粒上。
(2)吸附是不可逆的,并在短时间内完成。
(3)要产生最配镇穗大絮粒,最大沉降容量,最好过滤性,最小残留浊度。
(4)选择高分子量的聚合物,分子量越高,架桥能力越强,污泥颗粒形成的絮粒越大。
(5)选择溶解时间短、丙烯酰胺单体含量少的絮凝剂。
(6)货源稳定、价格低廉、安全无毒。
2.2PAM样品性能测试
由于絮凝剂机理研究还不很清楚,加上絮凝体的复杂性和各地污泥的特性不一样,因此对高分子絮凝剂的使用缺乏理论指导,只能用试验方法逐个筛选,以求得到最佳品种和最佳加注量。我们首先进行实验室选择,然后在现场进行生产性试验。在进行实验室筛选过程中,首先掌握PAM絮凝剂产品性能数据。
2.3污泥脱水药剂选择结果
从试验结果分析:
(1)闵行一水厂排泥水浓缩污泥脱水药剂聚丙烯酰胺阳离子和阴离子都可用,固液分离效果好。
(2)阳离子PAM,阴离子PAM加注率基本上在0.56%~1.39%絮凝效果都很好,形成上清液浊度基本相同,固液分离效果好。考虑价格因素,选用阴离子PAM。
(3)非离子PAM,随着加注量的增大到1.39%以后,矾花程度和上清液浊度都很好,但加注量不很经济。
3水厂排泥水污泥总量估算
在水厂排泥水处理工程中,污泥总量的估算是十分关键的工作。因为它涉及到排泥水处理工程的土建结构规模大小,脱水机械和泵等设备的配置。因此,掌握原水浊度(SS悬浮物)、色度、混凝剂以及聚丙烯酰胺投加量来估算排泥水污泥总量,对确定排泥水处理工程有着直接而重大的意义。
3.1原水浊度设计取值
排泥水悬浮物总量的确定需要一年四季对进水厂原水悬浮固体跟踪测试。由于水厂化验室未进行这项测试,但对原水中浊度一年四季进行了测定,因此在设计中以三年的原水浊度进行统计,取出现90%以上的浊度概率作为原水浊度设计取值,另外10%的浊度概率可以通过排泥水处理工程中污泥平衡池对污泥总量平衡,利用脱水机,泵机调配等措施来达到削峰填谷的目的。这样能最大限度节约投资,降低设备装备容量。
3.2排泥水污泥总量估算
闵行一水厂排泥水污泥总量估算采用英国水处理研究中心《污泥处理指南》一书中提供的排泥水中污泥含量计算公式:
DS=SS+0.2B+1.53C=XA+0.2B+1.53C
① 斜板浓缩池2组 ② 浓缩池污泥切割机 2台(1用1备) ③ 浓缩池污泥泵 2台(1用1备) ④ 污泥平衡池1座 ⑤ 离心机进泥泵2台(1用1备) ⑥ 离心机2台(1用l备) ⑦ PAM配制装置2台(1用1备) ⑧ PAM计量加注泵 2台(1用1备) ⑨ 螺旋式输送器 两条系统 ⑩ 刮泥机 2套 ⑾ 潜水搅拌机 1-2台 ⑿ 污泥潜水泵 2台(1用1备) 图1闵行一水厂排泥水处理工艺流程
关于浊度与SS值相关关系,不同水源、不同季节(潮汐河流)、不同浊度范围,都可能与SS值有不同的相关关系。我们在实验室对NTU值与SS值进行了大量的相关比对,根据浊度值与SS值统计:1个NTU值相当于1.398 39 mg/L SS值,因此在估算污泥总量时采用浊度值比SS值为1∶1.97。闵行一水厂设计污泥量为12 t/d。
4排泥水处理工艺流程
根据闵行一水厂排泥水实际情况,闵行一水厂生产能力为67 000 m3/d,其排泥水处理选用了高效率的脱水机械以及PLC自动化控制系统(见图1)。
从图1可以看到,水厂排泥水处理工艺流程主要由五部分组成:①排泥水收集池;② 排泥水浓缩池;③污泥平衡池;④聚合物投加系统;⑤离心机脱水机房和污泥泵房。本流程系统有两个物料进口,即收集池的排泥水进口和高分子絮凝剂PAM一个加注口;有两个物料出口,即排泥水浓缩池上清液排放进稳压井回用口和螺旋输送器的泥饼(含固率≥30%)出口。
排泥水收集池。收集沉淀池排泥水。
污泥浓缩池。污泥浓缩的目的是使水厂排泥水的含水率得到一定程度的降低,从而降低排泥水后续处理设施的基本建设费用和运行费用。
浓缩污泥平衡池。它是水厂排泥水处理工艺单元不可缺少的构筑物,也是实施排泥水处理工程自动化的关键所在。
浓缩污泥脱水。本工程方案采用卧螺离心机。离心机型号DSNX-4550,处理能力Q=12 m3/h,2台( 1用1备)。
脱水后的污泥由螺旋输送器送至污泥堆场,待装车外运。脱水机分离出的分离水回流到排泥水收集池。
本工艺流程的最大特点在于整个生产流程能实现自动化运行管理,其次是整个生产过程安全卫生。工艺流程中的排泥水收集池和污泥平衡池的容量能充分满足物料进出量的平衡,经处理后的排泥水上清液能最大限度地将水资源得到再利用或符合水源保护区排放标准。
5水厂排泥水处理经济成本核算
对于给水厂排泥水处理,首先经处理后的浓缩池排放水要符合国家环保部门颁布的排放标准,外运填埋符合环境要求。其次排泥水处理工艺合理,设备先进,运行管理方便,自动化控制程度高,力求投资及运行成本低,使有限的经济投入产生最大的经济效益。运行成本由人工费、水电费、药剂费、设备检修费、泥饼运输费、管理费、折旧费等7项指标构成,闵行一水厂排泥水处理成本折算见表1。
6结论与讨论
(1)通过闵行一水厂排泥水沉降特性试验和污泥粒径分布测试,对排泥水处理工艺选择进行反复论证,确定采用排泥水自动收集、高效斜板浓缩、投加PAM药剂调制、离心机脱水的自动化控制的工艺运行方法。研究结果认为工艺流程合理,设计先进,占地面积小,运行管理方便,固液分离效果好,泥饼含固率高,分离水清,污泥回收率高。该研究成果可作为示范工程,具有推广价值,为今后黄浦江水系水厂排泥水处理工艺设计、设备选型、仪表配制及运行模式提供了科学依据。
表1闵行一水厂排泥水处理成本核算 运算说明A.工资福利费E1=40 000×10=400 000元/a(1)排泥水处理工程设5班3运转共5人,并设班长、替班、电工、机工、清洁工各1人,合计10人。 (2)年工资福利费40 000元/(a·人)。B.电费、水费 E2 =0.75×50×24×365+15×1.80×365 =338 355元/a (1)考虑设备24 h运行,平均电耗50 kW (2)考虑基本电费和工业动力费不等因数故总电费按0.75元/(kW·h)计 (3)自来水用量为15 m3/d,工业水价1.10元/m3,排水费0.70元/m3, 合计1.80元/m3C.药剂费 E3= 0.04×1.5×6000×365=131400元/a (1)设平均干泥6 t/d,SS 80 mg/L (71370 m3/d×80×10-6t/m3=6 t/d) (2) 根据试验推荐阴离子,投加量按1.5%计算。 (3)阴离子PAM价格40元/kg。 D.检修费 E4=17540000元×1%=175400元/a (1)本项目概算投资1 754万元。 (2)检修费按工程投资费1%提取。 E.污泥外运费 E5=40×6×2.5×365=219000元/a (1)目前污泥委托闵行渣土所外运。 (2)外运污泥含固率约60%。 (3)污泥外运价格为80元/m3,40元/t。 V =年制水总量×85%=20 693 675 m3 S/V=202万元/20693675 m3≈0.097元/m3 (1)闵行一水厂制水能力为66700 m3/d。 (2)年制水总量按制水能力的85%计算。 注:①平均制水成本未将土地征用费计算在内; ②建设水厂排泥水工程投资贷款费用未将利率偿还计算在内。
(2)离心脱水机可作为上海黄浦江水系水厂排泥水固液分离首选脱水机械:密封运行,操作方便,自如调节差速,出泥含固率高,环境卫生,药耗量低,对进泥含固率要求幅度宽,分离水质好。
(3)斜板浓缩池在水厂排泥水处理中是必不可少的构筑物。合理的设计,能缓解进浓缩池排泥水浓度的波动,能确保上清液外排水质量达到环保排放标准。
(4)本工程主要运行参数。浓缩池上清液SS小于70 mg/L;浓缩池浓缩污泥可自动控制在含固率3%~13%;每台离心机产干泥量400~1 200 kg/h;离心机进行固液分离,药剂PAM投加量0.8~1.5kg/t干泥,聚丙烯酰胺阴离子型和阳离子型都能适合离心机固液分离;离心机处理浓缩污泥,污泥回收率在99%以上,分离水SS≤400 mg/L。
(5)闵行一水厂排泥水处理系统采用PLC中央控制,配有污泥浓度计、流量仪、液位仪、液位开关等在线自动跟踪监测仪表,用变频方式实施对泵流量控制,用小型荧屏作为终端显示屏,方便管理人员查看整套系统运行状况和随时设置运行参数,达到排泥水处理整套系统在高度自动化情况下正常运行。
(6)水厂排泥水处理的实施,虽然增加了自来水的运行成本,但是环境工程的实施有利于水资源的综合利用,有利于走可持续发展的道路,有利于水环境质量的提高。该工程的实施,可以减少排泥水直接排入黄浦江所造成对水环境的负面影响。从长远观点来看,有利于自来水公司水质进一步提高,并能带来潜在的社会效益和环境放益。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
『贰』 污泥浓缩池 体积和停留时间怎么确定啊
你打算多久污泥外运一次,用天数乘以12.12不就可以了吗?
(1)、进泥含水率:当为初次污泥时,其含水率一般为95%-97%;当为剩余活性污泥时,其含水率一般为99.2%-99.6%。
(2)、污泥固体负荷:当为初次污泥时,污泥固体负荷宜采用80-120Kg/(m2.d);当为剩余法泥时,污泥固体负荷宜采用30-60Kg/(m2.d)。
(3)、浓缩后污泥含水率:由曝气池后二次沉淀池进入污泥浓缩池的污泥含水率,当采用99.2%-99.6%时,浓缩后污泥含水率宜为97%-98%。
(4)、浓缩时间不宜小于12h;但也不要超过24h。
(5)、有效水深一般宜为4m,最低不小于3m。
(6)、污泥室容积和排泥时间,应根据排泥方法和两次排泥间时间而定,当采用定期排泥时,两次排泥间一般可采用8h。
(7)、集泥设施:辐流式污泥浓缩池的集泥装置,当采用吸泥机时,池底坡度可采用0.003;当采用刮泥机时,不宜小于0.01。不设刮泥设备时,池底一般设有泥斗。其泥斗与水平面的倾角,应不小于50度。刮泥机的回转速度为0.75-4r/h,吸泥机的回转速度为1r/h,其外缘线速度一般宜为1-2m/min。同时在刮泥机上可安设栅条,以便提高浓缩效果,在水面设除浮渣装置。
(8)、构造及附属设施
一般采用水密性钢肋混凝土建造。设污泥投入管、排泥管、排上清液管,排泥管最小管径采用150mm,一般采用铸铁管。
(9)、竖流式浓缩池:当浓缩池较小时,可采用竖流式浓缩池,一般不设刮泥机,污泥室的截锥体斜壁与水平面所形成的角度,应不小于50°,中心管按污泥流量计算。沉淀区按浓缩分离出来的污水流量进行设计。
(10)、上清液:浓缩池的上清液,应重新回到初沉池前进行处理。其数量和有机物含量参与全厂的物料平衡计算。
(11)、二次污染:污泥浓缩池一般均散发臭气,必须时应考虑防臭或脱臭措施。臭气控制可以从以下三方面着手,即封闭、吸收和掩撇。所谓封闭,是指用盖子或其它设备封住臭气发生源;所谓吸收,是指用化学药剂来氧化或净化臭气;所谓掩蔽,是指采用掩蔽剂使臭气暂时不向外扩散。
重力浓缩池设计参数
污泥种类
进泥浓度(%)
出泥浓度(%)
水力负荷
[m3/(m2.d)]
固体负荷[kg/(m2.d)]
固体捕捉率(%)
溢流TSS(mg/l)
初次污泥
1.0-7.0
5.0-10.0
24-33
90-144
85-98
300-1000
滴滤池生物膜
1.0-4.0
2.0-6.0
2.0-6.0
35-50
80-92
200-1000
剩余活性污泥
0.2-1.5
2.0-4.0
2.0-4.0
10-35
60-85
200-1000
初次污泥与剩余活性污泥的混合污泥
0.5-2.0
4.0-6.0
4.0-10.0
25-80
85-92
300-800
重力污泥浓缩池的计算公式
名 称
公 式
符 号 说 明
1、浓缩池总面积
A=QC/M
Q--污泥量(m3/d)
C--污泥固体浓度(g/l)
M--浓缩池污泥固体量(kg/m2.d)
2、单池面积
A1=A/n
N--浓缩池数量
3、浓缩池直径
D=(4A1/π)0.5
4、浓缩池工作部分高度
H1=TQ/24A
T--设计浓缩时间
5、浓缩池总高度
H=h1+h2+h3
H2--超高
H3--缓冲层高度
6、浓缩后污泥体积
V2=Q(1--P1)/(1--P)
P1--进泥浓度
P2--出泥浓度
加压过滤
加压过滤(压滤)一般是间歇操作,初投资高,脱水效率较低。但脱水效果好,一般泥饼含水率在65%以下。整个压滤机是密封的,过滤压力一般为0.392-0.49Mpa以上。目前常用的加压过滤设备有板框压滤机和厢式压滤机。
(1)、用压滤机为城市污泥脱水时,过滤能力一般为2-10kg干泥/m2.h;当为城市消化污泥时,投加三氯化铁量为4%-7%,氧化钙为11%-22.5%,过滤能力一般为24kg干泥/m2.h,过滤周期一般为1.5-4h。
(2)、压滤机设置台数应不小于2台。
(3)、污泥压入过滤机一般有两种方式:一种是高压污泥泵直接压入;另一种是压缩空气,通过污泥罐将污泥压入过滤机,常用的高压污泥泵有离心式或柱塞式。当采用柱塞式污泥泵时,应设减压阀及旁通回流管。每台过滤机应单独配备一台污泥泵。
(4)、污泥压滤后需用压缩空气来剥离泥饼,所需的空气量按滤室容积每平方米需气2m3/m3.min计算,压力为0.1-0.3Mpa。
(5)、当用转送带运送污泥时,应考虑卸落时的冲力,并应附有破碎泥饼的钢丝格网,以防泥饼塑化。
斜板沉淀池
斜板沉淀池是根据“浅层沉淀”理论,在沉淀池中加设斜板或蜂窝斜管,以提高沉淀效率的一种新型沉淀池。它具有沉淀效果高、停留时间短、占地少等优点。斜板(管)沉淀池应用于城市污水的初次沉淀中,其处理效果稳定,维护工作量也不大;斜板耐冲击负荷的能力较差。斜板(管)设备在一定条件下,有孳长藻类等问题,给维护管理工作带来一定困难。
按水流与污泥的相对运动方向,斜板(管)沉淀池可分为异向流、同向流和侧向流3种形式。在城市污水处理中主要采用升流式异向斜板(管)沉淀池。
设计数据
(1)、在需要挖掘原有沉淀池潜力,或需要压缩沉淀池占地等技术经济要求下,可采用斜板沉淀池。
(2)、升流式异向流斜板(管)沉淀池的表面负荷,一般可比普通沉淀池的设计表面负荷提高一倍左右。对于二次沉淀池,应以固体负荷核算。
(3)、斜板垂直净距一般采用80-120m,斜管孔径一般采用50-80mm。
(4)、斜板(管)斜长一般采用1-1.2m。
(5)、斜板(管)倾角一般采用60°。
(6)、斜板(管)区底部缓冲层高度,一般采用0.5-1.0m。
(7)、斜板(管)区上部水深,一般采用0.5-1.0m。
(8)、在池壁与斜板的间隙处应装设阻流板,以防止水流短路。斜板上缘宜向池子进水端倾斜安装。
(9)、进水方式一般采用穿孔墙整流布水,出水方式一般采用多槽出水,在池面上增设几条平行的出水堰和集水槽,以改善出水水质,加大出水量。
(10)、斜板(管)沉淀池一般采用重力排泥。每日排泥次数至少1-2次,或连续排泥。
(11)、池内停留时间:初次沉淀池不超过30min,二次沉淀池不超过60min。
(12)、斜板(管)沉淀池应设斜板(管)沉淀池应设斜板(管)冲洗设施。
计算公式
名称
公式
称号说明
1、池子水面面积
F=Qmax/mq×0.91(m2)
Qmax---最大设计流量
n---池数(个)
q---设计表面负荷[m3/(m2.h)]
0.91---斜板区面积利用系数
2、池子平面尺寸
圆型池直径:
D=√4F/π(m)
方形池边长:
a=F(m)
3、池内停留时间
T=(h2+h3)60/q(min)
H2---斜板区上部水深
H3---斜板高度
4、污泥部分所需的容积
(1)V=Qmax(C1-(2)24T100/K2y(100-p0)n
S---每人每天污泥量[L/(人.d)],一般采用0.3-0.8
N---设计人口数(人)
t---污泥室储泥周期(d)
C1---进水悬浮物浓度
C2---出水悬浮物浓度
Kz---生活污水量总变化系数
y---污泥容重(t/m3)
po---污泥含水率(%)
5、污泥斗容积
(1)圆锥体:
V1=πh5/3(R2+Rr1+r12)(m3)
(2)方锥体:
V1=h5/3(a2+aa1+a12)(m3)
H5---污泥斗高度
R---污泥斗上部半径(m)
R1---污泥斗下部半径(m)
A1---污泥斗下部边长
6、沉淀池总高度
H=h1+h2+h3+h4+h5(m)
H1---超高(m)
H4---斜板(管)区底部缓冲层高度(m)
注:当斜板(管)沉淀池为矩形池时,其计算方法与方形池类同。
污水管道一般规定
项目
一般规定
1、充满度
2、最小管径
3、流速
4、最小管径
(1)、厂区内的工业废水管、生活污水管、街坊内的生活污水管200mm
(2)、城市街道下的生活污水管300mm
5、覆土
(1)、荷载要求:最小覆土在车道下一般不小于0.7m
(2)、冰冻要求;
1)、无保温措施时,管内底可埋设在冰冻线以上0.15m
2)、有保温措施或水温较高的管道,可根据当地经验埋得浅些,以上两种情况均不宜小于0.7m
(3)、最大覆土:不宜大于6m
(4)、理想覆土:在满足各方面要求的前提下,争取维持在1-2m
6、连接
(1)、管道在检查井内连接,一般采用管顶平接
(2)、不同直径也可采用设计水面平接
(3)、在任何情况下进水管底不得低于出水管底
7、坡度骤变的处理
(1)、管道坡度骤然变陡,可由大管径变小管径
当D=200-300mm时,只能按生产规格减小一级
当D=400mm时,应根据水力计算确定,但减小不得超过二级
(2)、管道坡度骤然变缓,应逐渐过渡
8、小管核算
(1)、当有公共建筑物位于管线始端时,应加入该集中流量进行满复核
(2)、流量很小而地形又较平坦的上游支线,可采用非计算管段,采用最小管径,按最小坡度控制
9、冲洗
(1)、在流速小于0.4m/s的上游管段,可考虑设冲洗井
(2)、每座井冲洗的长度一般为250m
10、溢流
污水管道在进入泵站或处理厂前,当条件允许时,可设事故溢流口,但必须取得当地有关部门的同意
11、通风
在充满过高的管段、跌水井、大浓度污水接入的井位以及污水管线以上每隔500m左右的井位宜设通风管
12、计算
在适当管段中,宜设置观测和计量构筑物
『叁』 自来水厂生产废水回收利用探讨
自来水厂的生产废水主要来自沉淀池或澄清池的排泥水和滤池的反冲洗废水,可占整个水厂日产水量的3%~7%。对这部分水进行回用,不仅可以节约水资源,提高水厂的运营能力,还可减少废水的排放量,特别是对废水排放条件较差的水厂。目前国内外的大型水厂很多在设计时都考虑了生产废水的回用措施,但由于水质的问题,有相当部分的水厂没有或不常回用。这是因为这部分废水中不仅富集了原水中几乎所有的杂质,还包括了在生产工艺中投加的各种药剂。这些物质重新回到生产系统中,再加上由此产生的生物因素(如贾弟鞭毛虫和隐孢子虫),的确具有一定的风险。因此在考虑回用时,必须要仔细研究。一、生产废水回用的卫生安全性研究卫生安全的饮用水,需满足三个方面的水质要求:感官性状良好;防止介水传染病的发生,确保微生物学的安全性,特别是人和动物粪便的污染可引起介水传染病的爆发流行;预防化学物质的急、慢性中毒以及其他健康危害(如致畸、致突变、致癌作用)。卫生安全性研究主要根据生产废水的特点,从微生消册橡物安全性、微量有机污染物以及致突变方面进行系统研究。不少学者对净水厂生产废水回用的微生物安全性进行了一系列的研究,有人认为回用会造成滤后水中的“两虫”数量增加的风险,生产废水必须经过预处理方能回用;也有人认为滤池反冲洗排水直接回用不会对水处理工艺系统的处理效果造成影响,而且由于滤池反冲排水回用,拿旁增加了原水中颗粒的碰撞和吸附的机会,使得隐孢子虫卵囊或贾第鞭毛虫孢囊被吸附和包卷的机会增多,反而有利于“两虫”和颗粒的去除。混凝沉淀和过滤是常规水处理工艺去除贾第虫和隐孢子虫的重要阶段。目前国内大多数水厂也逐渐重视生产废水回用的安全性,但目前的研究多基于常规水质参数的检验,由于检测方法的复杂和费用的昂贵,即使针对水域中的贾第鞭毛虫和隐孢子虫,也只有深圳和澳门地区进行了初步检测,对生产废水直接回用是否造成水处理系统中贾第鞭毛虫和隐孢子虫的累积和泄漏问题尚未见报道。二、姿拆生产废水的回用方式生产废水回用的方式主要分为直接回用和处理回用。(一)直接回用直接回用是目前国内采用较多的方式,主要有滤池反冲洗废水直接回收和生产废水上清液回收。前者设置回收池,将滤池反冲洗废水加以收集,提升至原水絮凝前加以回收。后者设置污泥浓缩池,沉淀池排泥水和滤池反冲洗水经过浓缩,上清液提升至原水絮凝前加以回收,底部污泥进入污泥处理系统或直接排入河道或下水道。这种回用方式本身费用较低,可以结合厂区的污泥处理系统一起实施,但需加强水质监测措施,一旦回用水水质不能满足回用标准,必须降低回用负荷或不回用。(二)处理回用处理回用是对生产废水进行处理,使其水质满足原水的常规化学指标和生物指标后再回用。处理方式与生产废水的水质有较大关系,如果处理费用高于原水费用且原水水量充沛,则无法体现此方式的必要性三、生产废水回用的水质问题及处理方式生产废水在回用的过程中需注意铁、锰等常规指标及微生物指标(贾弟鞭毛虫和隐孢子虫)。铁、锰过量摄入对人体是有慢性毒害的。锰的生理毒性比铁严重。自来水厂关注于铁、锰的去除,并非是考虑毒理学上的要求,而是因铁、锰的异味很大,而且污染生活器具,令人难以忍受,在远未达到慢性毒害的程度前早已不能饮用了。目前我国的地表水环境质量标准和生活饮用水标准中对铁和锰的标准分别为0.3mg/l和0.1mg/l。一般地下水含铁锰较高,但有些地表水中铁、锰离子的含量也超出了水质标准,虽然尚在常规处理的能力内,但如果对生产废水不加处理就进行回用,其富集作用将会影响到出厂水的水质。如上海某以黄浦江上游原水为水源的水厂,在设计中考虑了滤池反冲洗水的回用,2001年原水中铁、锰离子最高达10.0mg/l和0.32mg/l,平均值达3.2mg/l和0.12mg/l,这是其对生产废水不回用的主要原因。在水处理方面,膜分离技术脱离了传统的化学处理范畴,转入到物理固液处理领域。与常规饮用水处理工艺相比,膜技术具有少投甚至不投加化学药剂、占地面积小、便于实现自动化等优点,并已应用于城镇自来水的深度处理上。常用的以压力为推动力的膜分离技术有微滤(MF)、超滤(UF)、纳滤(NF)以及反渗透(RO)等。其特点是能够提供稳定可靠的水质,这是由于膜分离水中杂质的主要机理是机械筛滤作用,因而出水水质在很大程度上取决于膜孔径的大小。三、回用水系统的设计及运行在设计回收池时,应结合实际的废水排放规律,尽量做到均匀回收。减小进水的冲击负荷,但这必然造成回收池的体积放大,对厂平面布置造成一定的困难,因此必须统一考虑。例如在进行某40万m3/d水厂的设计方案时,由于其污泥脱水系统将沉淀池排泥水和滤池反冲洗水均纳入其处理范围中,因此只需考虑其上清液的收集与回用。针对其工艺流程进行分析,排泥水浓缩池为24小时连续工作,上清液流量为165m3/h;反冲洗废水浓缩池每日工作9.5小时,上清液流量为391m3/h。因此其最大排出流量为391+165=556m3/h(9.5hr),其余为165m3/h(14.5hr)。如果考虑均匀回收,则其平均流量为(556×9.5+165×14.5)/24=320m3/h。若按平均流量回收,需增设1只上清液回收调蓄池,其容积为(556-320)×9.5=2242m3。由于场地限制,该厂无法满足如此大容积回收池,只能利用浓缩池附近的区域设置调节容量为150m3的回收池,其回收流量基本与浓缩池上清液的排放量相同。回用水系统的处理方式根据生产废水的水质和回用要求确定,应充分考虑其经济性和可靠性,应针对具体情况选择合适的处理流程,并以试验加以验证。在运行时首先要制定一个回用水标准,并根据此标准配置在线的水质监测自控仪表,纳入水厂的PLC控制,以便根据其反馈值对回用水系统的运行进行控制。在水质仪表的选择时,考虑到低浊度并不能代表隐虫安全,建议用颗粒计数器检测水中颗粒数来代替浊度。四、结论在判断生产废水是否回用时,应根据原水和生产废水的水质、水量等因素进行分析:当原水水量足以满足供水要求且费用较低,而生产废水必须先处理再回用,回用费用远高于原水费用时,可以不考虑回用;当原水费用较高,而生产废水的水质较好可不处理,回用费用低于原水费用时,可以考虑直接回用;当原水水量较紧张且费用较高,而生产废水的水质经过简单处理可以满足回用要求,回用费用与原水费用接近时,可以考虑处理回用。在考虑回用水处理时,处理效果和经济性是一种工艺是否被采用的关键。特别是后者,决定了这种工艺是否得以推广。回用水系统工艺的选择和设计,最好结合水厂的臭氧预处理、深度处理和污泥处理等一并考虑。
以上由中达咨询搜集整理
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
『肆』 垃圾渗滤液处理工艺
城市垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。渗滤液是液体在填埋场重力流动的产物,主要来源于降水和垃圾本身的内含水。由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在一个相当大的范围内变动。一般来说,其pH值在4~9之间,COD在2000~62000mg/L的范围内,BOD5从60~45000mg/L,重金属浓度和市政污水中重金属的浓度基本一致。城市垃圾填埋场渗滤液是一种成分复杂的高浓度有机废水,若不加处理而直接排入环境,会造成严重的环境污染。以保护环境为目的,对渗滤液进行处理是必不可少的。�
1 渗滤液处理工艺的现状
��垃圾渗滤液的处理方法包括物理化学法和生物法。物理化学法主要有活性炭吸附、化学沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提及湿式氧化法等多种方法,在COD为2000~4000�mg/L时,物化方法的COD去除率可达50%~87%。和生物处理相比,物化处理不受水质水量变动的影响,出水水质比较稳定,尤其是对BOD5/COD比值较低(0.07~0.20)难以生物处理的垃圾渗滤液,有较好的处理效果。但物化方法处理成本较高,不适于大水量垃圾渗滤液的处理,因此目前垃圾渗滤液主要是采用生物法。
��生物法分为好氧生物处理、厌氧生物处理以及二者的结合。好氧处理包括活性污泥法、曝气氧化池、好氧稳定塘、生物转盘和滴滤池等。厌氧处理包括上向流污泥床、厌氧固定化生物反应器、混合反应器及厌氧稳定塘。�
2 渗滤液处理介绍
��垃圾渗滤液具有不同于一般城市污水的特点:BOD5和COD浓度高、金属含量较高、水质水量变化大、氨氮的含量较高,微生物营养元素比例失调等。在渗滤液的处理方法中,将渗滤液与城市污水合并处理是最简便的方法。但是填埋场通常远离城镇,因此其渗滤液与城市污水合并处理有一定的具体困难,往往不得不自己单独处理。常用的处理方法如下。�
2.1 好氧处理
��用活性污泥法、氧化沟、好氧稳定塘、生物转盘等好氧法处理渗滤液都有成功的经验,好氧处理可有效地降低BOD5、COD和氨氮,还可以去除另一些污染物质如铁、锰等金属。在好氧法中又以延时曝气法用得最多,还有曝气稳定塘和生物转盘(主要用以去除氮)。下面将分别予以介绍。�
2.1.1 活性污泥法�
2.1.1.1 传统活性污泥法
�渗滤液可用生物法、化学絮凝、炭吸附、膜过滤、脂吸附、气提等方法单独或联合处理,其中活性污泥法因其费用低、效率高而得到最广泛的应用。美国和德国的几个活性污泥法污水处理厂的运行结果表明,通过提高污泥浓度来降低污泥有机负荷,活性污泥法可以获得令人满意的垃圾渗滤液处理效果。例如美国宾州Fall Township污水处理厂,其垃圾渗滤液进水的CODCr为�6000~21000�mg/L,BOD5为�3000~13000�mg/L,氨氮为200~2000�mg/L。曝气池的污泥浓度(MLVSS)为�6000~12000mg/L,是一般污泥浓度的3~6倍。在体积有机负荷为1.87kgBOD5/(m3·d)时,F/M为0.15~0.31kgBOD5/(kgMLSS·d),BOD5 的去除率为97%;在体积有机负荷为0.3kgBOD5/(m3·d)时,F/M为0.03~0.05kg BOD5/(kgMLSS·d),BOD5的去除率为92%。该厂的数据说明,只要适当提高活性污泥法浓度,使�F/M在0.03~0.31kgBOD5/(kgMLSS·d)之间(不宜再高),采用活性污泥法能够有效地处理垃圾渗滤液。
�许多学者也发现活性污泥能去除渗滤液中99%的BOD5,80%以上的有机碳能被活性污泥去除,即使进水中有机碳高达1000mg/L,污泥生物相也能很快适应并起降解作用。在低负荷下运行的活性污泥系统,能去除渗滤液中80%~90%的COD,出水BOD5<20mg/L。对于COD� 4000~13000�mg/L、BOD51600~11000mg/L、NH3-N 87~590mg/L的渗滤液,混合式好氧活性污泥法对COD的去除率可稳定在90%以上。众多实际运行的垃圾渗滤液处理系统表明,活性污泥法比化学氧化法等其它方法的处理效果更佳。�
2.1.1.2 低氧�好氧活性污泥法
�低氧�好氧活性污泥法及SBR法等改进型活性污泥流程,因其具有能维持较高运转负荷,耗时短等特点,比常规活性污泥法更有效。同济大学徐迪民等用低氧�好氧活性污泥法处理垃圾填埋场渗滤液,试验证明:在控制运行条件下,垃圾填埋场渗滤液通过低氧�好氧活性污泥法处理,效果卓越。最终出水的平均CODCr、BOD5、SS分别从原来的�6466� mg/L、3502�mg/L以及239.6mg/L相应降低到CODCr<300mg/L、BOD5<50mg/L(平均为13.3mg/L)以及SS<100mg/L(平均为27.8mg/L)。总去除率分别为CODCr 96.4%、BOD5 99.6%、SS 83.4%。
�处理后的出水若进一步用碱式氯化铝进行化学混凝处理,可使出水的CODCr下降到1 00mg/L以下。
�两段法处理渗滤液的氮、磷也均较一般生物法为佳。磷的平均去除率为90.5%;氮的平均去除率为67.5%。此外该法运行弥补厌氧�好氧两段生物处理法第一段形成NH3-N较多,导致第二段难以进行和两次好氧处理历时太长的不足。�
2.1.1.3 物化活性污泥复合处理系统
�由于渗滤水中难以降解的高分子化合物所占的比例高,存在的重金属产生的抑制作用,所以常用生物法和物理�化学法相结合的复合系统来处理垃圾渗滤液。对于BOD5�1500m g/L、Cl-800mg/L、硬度(以CaCO3计)800mg/L、总铁600mg/L、有机氮100mg/L、TSS 300mg/L、 SO2-4300mg/L的渗滤液,有学者采用该方法进行处理,发现效果很好,其BOD5 、COD、NH3-N、Fe的去除率分别达99%、95%、90%、99.2%。该系统中的进水通过调节池后,可以避免毒性物质出现瞬时的高浓度而对活性污泥生物产生抑制作用;在澄清池中加入石灰,可去除重金属和部分有机质;气提池(进行曝气,温度低时加入NaOH)能去除进水NH3-N的50%,从而使NH3的浓度处于抑制水平之下;由于废水中磷被加入的石灰所沉淀,且 pH值过高,因而需添加磷和酸性物质;活性污泥系统可以串联或并联使用,运行时可通过调节回流污泥比来选用常规法或延时曝气法处理,具有较大的操作灵活性。�
2.1.2 曝气稳定塘
�与活性污泥法相比,曝气稳定塘体积大,有机负荷低,尽管降解进度较慢,但由于其工程简单,在土地不贵的地区,是最省钱的垃圾渗滤液好氧生物处理方法。美国、加拿大、英国、澳大利亚和德国的小试、中试及生产规模的研究都表明,采用曝气稳定塘能获得较好的垃圾渗滤液处理效果。
�例如英国在Bryn Posteg Landfill投资60000英镑建立一座1000m3的曝气氧化塘,设2台表面曝气装置,最小水力停留时间为10d,氧化塘出水经沉淀后流经3km长的管道入城市下水道。此系统1983年开始运行,渗滤液最大CODCr为24000mg/L,最大BOD5为�10000�mg/L,F/M=0.05~0.3kgCOD/(kgMLSS·d),水量变化范围0~150m3/d,出水BOD5平均为 24mg/L,但偶然有超过50mg/L的时候,COD去除率达97%,但在运行过程中需投加P,考虑到日常运行费用,投资偿还及其利息,与渗滤液直接排至市政管网相比,每年可节约750英镑。
�英国水研究中心(Water Research Center)对东南部New Park Landfill的CODCr> 15000mg/L的渗滤液也做了曝气稳定塘的中试,当负荷为0.28~0.32kgCOD/(kgMLSS·d)或者说为0.04~0.64kgCOD/(kgMLSS·d),泥龄为10d时,COD和BOD5去除率分别为98%和91%以上。在运行过程中也需要投加磷酸。�
2.1.3 生物膜法
�与活性污泥法相比,生物膜法具有抗水量、水质冲击负荷的优点,而且生物膜上能生长世代时间较长的微生物,如硝化菌之类。加拿大British Columbia大学的C.Peddie和J.Atwater用直径0.9m的生物转盘处理CODCr<�1 000�mg/L,NH3-N<50m g/L的弱性渗滤液,其出水BOD5<25mg/L,当温度回升,微生物的硝化能力随即恢复。但是应当指出,这种渗滤液的性质与城市污水相近,对于较强的渗滤液此方法是否适用还待研究。�
2.2 厌氧生物处理
�厌氧生物处理的有目的运用已有近百年的历史。但直到近20年来,随着微生物学、生物化学等学科发展和工程实践的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长,有机负荷低等特点,使它在理论和实践上有了很大进步,在处理高浓度(BOD5 ≥2000�mg/L)有机废水方面取得了良好效果。
�厌氧生物处理有许多优点,最主要的是能耗少,操作简单,因此投资及运行费用低廉,而且由于产生的剩余污泥量少,所需的营养物质也少,如其BOD5/P只需为4000∶1,虽然渗滤液中P的含量通常少于1mg/L,但仍能满足微生物对P的要求。用普通的厌氧硝化,35℃ 、负荷为1kgCOD/(m3·d),停留时间10d,渗滤液中COD去除率可达90%。
�近年来,开发的厌氧生物处理方法有:厌氧生物滤池、厌氧接触池、上流式厌氧污泥床反应器及分段厌氧硝化等。�
2.2.1 厌氧生物滤池
�厌氧滤池适于处理溶解性有机物,加拿大Halifax Highway101填埋场渗滤液平均COD为12850mg/L、BOD5/COD为0.7,pH为5.6。将此渗滤液先经石灰水调节至pH=7.8,沉淀1h后进厌氧滤池(此工序还起到去除Zn等重金属的作用),当负荷为4kgCOD/(m3·d)时,COD去除率可达92%以上;当负荷再增加时,其去除率急剧下降。
�加拿大Toronto大学的J.G.Henry等也在室温条件下成功地用厌氧滤池分别处理年龄为1.5 年和8年的填埋场渗滤液,它们的COD各为14000mg/L和4000�mg/L,BOD5/COD各为0.7和0.5,当负荷为1.26~1.45kgCOD/(m3·d),水力停留时间为24~96h时,COD去除率均可达90%以上。当负荷再增加,其去除率也急剧下降。由此可见,虽然厌氧滤池处理高浓度有机污水时负荷可达5~20kgCOD/(m3·d),但对于渗滤液其负荷必须保持较低水平才能得到理想的处理效果。�
2.2.2 上向流式厌氧污泥床
�英国的水研究中心报道用上向流式厌氧污泥床(UASB)处理COD>10000mg/L的渗滤液,当负荷为3.6~19.7kgCOD/(m3·d),平均泥龄为1.0~4.3d,温度为30℃时COD和BOD5的去除率各为82%和85%,它们的负荷比厌氧滤池要大得多。
�在厌氧分解时,有机氮转为氨氮,且存在NH4+�NH3+H�+反应。若pH>7时,平衡中的NH3占优势,可用吹脱法去除。但厌氧分解时pH近似等于7,因此出水中可能含有较多的NH4+,将会消耗接纳水体的溶解氧。�
2.3 厌氧与好氧的结合方式
�虽然实践已经证明厌氧生物法对高浓度有机废水处理的有效性,但单独采用厌氧法处理渗滤液也很少见。对高浓度的垃圾渗滤液采用厌氧�好氧处理工艺既经济合理,处理效率又高。COD和BOD的去除率分别达86.8%和97.2%。�
2.3.1 厌氧�好氧生物氧化工艺(厌氧硝化和生物氧化塘)
�西南师大生物系对pH为8.0~8.6,COD为16124mg/L,BOD5为214~406mg/L、NH3- N为475mg/L的渗滤液采用厌氧�好氧生物化学法处理,取得出水pH为7.1~7.9,COD为170.33~314.8mg/L,BOD5为91.4mg/L、NH3-N为29.1mg/L的良好效果。�
2.3.2 厌氧�氧化沟�兼性塘工艺
�下面结合广州市李坑垃圾填埋场作以下说明及分析。李坑垃圾填埋场污水处理厂按流量300m3/d设计,进水BOD5为2500�mg/L、CODCr为4000mg/L、NH3-N 为�1000mg/L、SS为600mg/L、色度为�1000倍;出水BOD5为30mg/L、CODCr为80mg/L 、NH3-N为10mg/L、SS为70mg/L、色度为40倍。选用工艺流程为:厌氧�氧化沟�兼性塘�絮凝沉淀。当进水水质较好,兼性塘出水达标时,即可直接将兼性塘水向外排放;而当进水水质较差,兼性塘出水达不到排放标准时,则启用混凝沉淀系统,再排放沉淀池上清液。
�从目前该套工艺的运行情况来看,当进水的COD较高时,出水水质良好;一旦COD 降低,特别是冬季低温少雨,COD降低到不利于生化处理时,出水各水质成分均偏高难以达标,出水呈棕褐色,尽管启用絮凝沉淀系统,效果仍不理想。由此可见,对于渗滤液的色度和NH3-N的有效去除,对生化处理将产生有利影响。�
2.3.3 厌氧�气浮�好氧工艺
�大田山垃圾卫生填埋场渗滤液处理采用的是此工艺。根据广州市环境卫生研究所对类似垃圾填埋场渗滤液检测资料及模拟试验,结合本场实际情况定出渗滤液污水处理设计参数。进水水质CODCr为8000mg/L、BOD5为5000mg/L、SS为700mg/L、pH值为7.5 ;出水水质CODCr为100mg/L、BOD5为60mg/L、SS为500mg/L、pH值为6.5~7.5。�针对该场远离市区的特点,为便于管理和节省能耗,经比较后选用厌氧和好氧联合处理工艺。厌氧段为上向流式厌氧污泥床反应器,好氧段为生物接触氧化法,加化学混凝沉淀和生物氧化塘,净化处理达标后排放。剩余污泥经浓缩后送回填埋场处理。
�考虑到渗滤液水质变幅较大的特点,在厌氧段后加入气浮工艺,提高处理能力以应付进水水质偏高的情况。目前深圳下坪垃圾填埋场设计采用厌氧�气浮�好氧工艺处理渗滤液。�
2.3.4 UASB�氧化沟�稳定塘
�福州市于1995年建成全国最大的现代化的城市垃圾综合处理场--福州市红庙岭垃圾卫生填埋场。处理垃圾渗滤液水量为1000m3/d;垃圾渗滤液水质(入口)为CODCr为 8000mg/L、BOD5为5500mg/L;处理水质要求(出口)为CODCr去除率95%、 BOD5去除率97%。
�设计采用上向流式厌氧污泥床�奥贝尔氧化沟�稳定塘工艺流程。垃圾填埋场的垃圾渗滤液集中到贮存库,依靠库址的较高地形,自流到集水池、格栅,经巴式计量槽计量后,靠势能流至配水池,再依靠静水头压至上向流式厌氧污泥床。经厌氧处理后的污水流至一沉池进行固液分离,上清液自流到奥贝尔氧化沟,沉淀污泥靠重力排至污泥池,污泥定期用罐车送到垃圾填埋场或堆肥利用。
�污水在奥贝尔氧化沟进行好氧生化处理,奥贝尔氧化沟采用三沟式A/O工艺,具有先进的污水脱氮处理效果。该工艺突出的优点是在第一沟中既能对氨氮进行硝化,又能以BOD为碳源对硝酸盐进行反硝化,总氮去除率可达80%,由于利用了污水中BOD作碳源,导致污水中的 BOD5被去除,减少了污水中的需氧量。为了提高氧化沟脱氮效果,把第三沟的出水用潜水泵再抽至第一沟进行内回流,在第一沟中进行反硝化。
�经氧化沟处理的污水流入二沉池进行固液分离,澄清水自流至稳定塘进行生物处理。二沉池的剩余污泥靠重力排至浓缩池。浓缩池中的上清液回流至氧化沟处理,其浓缩后的污泥用潜水泵抽至罐车输送到垃圾填埋场填埋,或进行堆肥处理。�
2.4 土地处理
�土地处理法亦即土壤灌溉法,是人类最早采用的污水处理法,但是土地处理系统的应用多见于城市污水处理。对于渗滤液的处理方法,将渗滤液收集起来,通过喷灌使之回流到填埋场。循环填埋场的渗滤液由于增加垃圾湿度,从而提高了生物活性,加速甲烷生产和废物分解。其次由于喷灌中的蒸发作用,使渗滤液体积减小,有利于废水处理系统的运转,且可节约能源费用。北英格兰的Seamer Carr垃圾填埋场,有一部分采用渗滤液再循环,20个月后再循环区渗滤液的COD值降低较多,金属浓度有较大幅度下降,而NH3 -N、Cl-浓度变化较小。说明金属浓度的下降不仅是由于稀释作用引起的,也可能是垃圾中无机成分对其吸附造成的。
�由于再循环渗滤液具有诸多优点,所以设计填埋场时顶部不要全部封闭,而应设立规则性排列的沟道以免对周围水源的污染。低浓度渗滤液不能直接排放,因NH3-N、Cl-浓度仍较高,温度较低季节,蒸发少,生物活性弱,再循环渗滤液的效果有待进一步研究。�
2.5 硝化和反硝化
�"老"的填埋场往往处于甲烷发酵阶段,其渗滤液中氨氮含量较高,通常为100~1000mg /L。去除氨氮主要有两种方法:一是硝化和反硝化;另一种是提高pH值至9以上,再用空气吹脱。Robinson和Maris将年龄为20年的填埋场渗滤液在温度为10℃,泥龄为60d的条件下曝气(实际上此与氧化塘运行条件相仿),可完全硝化。其它用生物转盘等好氧方法也都取得了成功,因此普遍认为渗滤液的硝化是不成问题的。�
2.6 英Rochem's反渗透处理厂
�在英国垃圾渗滤液处理厂使用Rochem's专利圆盘管反渗透系统对初级渗滤液进行处理。这种处理技术是由南亨伯赛德郡温特顿填埋场所设计和生产的Rochem's离析膜系统。
�这个系统的心脏是Rochem's专利圆盘管。这个圆柱体的组成包括板片、八角型钢和一个圆管内的耐磨膜垫层,它能处理那些快速堵塞普通的反渗透膜系统的渗滤液。在膜的压力下渗滤液进入Rochem's处理系统进行曝气和pH校正。当含有污染物的渗滤液流经圆柱体内膜表面时,渗滤液中的污染物质由于反渗透作用而分离出来并经膜排出。整个系统清理的操作是自动化的,当需要对该系统进行化学清洗时,控制指示器就会显示出信息来,同时自动清洗系统就会用已经程式化的化学制剂对该系统进行内部清洗,使其恢复到最初的功能。因为渗滤液在封闭情况下,在膜的表面形成湍流,减少氧化,产生恶臭,所以到一定时间要进行内部清洗,但这种清洗的间隔时间较长,Rochem's 离析膜系统能够去除重金属、固体悬浮物、氨氮和有害的难降解的有机物,处理后的水满足严格的排放标准。
�现在德国的Ihlenbery填埋场安装投入使用的Rochem's处理系统,其处理能力的污水量为50m3/h,水的回收率为90%。�
城市垃圾渗滤液处理工艺介绍 来自: 免费论文网
3 处理工艺的分析比较
��与好氧方法相比,厌氧生物处理具有以下优点。
��(1)好氧方法需消耗能量(空气压缩机、转刷等),而厌氧处理却可产生能量(产生甲烷气) 。COD浓度越高,好氧方法耗能越多;厌氧方法产能越多,两者的差异就越明显。
��(2)厌氧处理时有机物转化成污泥的比例(0.1kgMLSS/kgCODCr)远小于好氧处理的比例(0.5kgMLSS/kgCODCr),因此污泥处理和处置的费用大为降低。
��(3)厌氧处理时污泥的生长量小,对无机营养元素的要求远低于好氧处理,因此适于处理磷含量比较低的垃圾渗滤液。
��(4)根据报道,许多在好氧条件下难于处理的卤素有机物在厌氧时可以被生物降解。
��(5)厌氧处理的有机负荷高,占地面积比较小。
��但是,厌氧处理出水中的COD浓度和氨氮浓度仍比较高,溶解氧很低,不宜直接排放到河流或湖泊中,一般需要进行后续的好氧处理。另外,世界上大多数垃圾渗滤液多是偏酸性的 (pH值一般在5.5~7.0)。pH在7以下,产甲烷菌将会受到抑制甚至死亡,不利于厌氧处理,而好氧处理对pH的要求就没有这么严格。再者,厌氧处理的最适温度是35℃,低于这个温度时,处理效率迅速降低。比较而言,好氧处理对温度要求不高,在冬季时即使不控制水温,仍能达到较好的出水水质。
��鉴于以上原因,目前对COD浓度在�50 000�mg/L以上的高浓度垃圾渗滤液建议采用厌氧方法 (后接好氧处理)进行处理,对COD浓度在�5 000�mg/L以下的垃圾渗滤液建议采用好氧生物处理法。对于COD在�5 000�~�50 000�mg/L之间的垃圾渗滤液,好氧或厌氧方法均可,选择工艺时主要考虑其它因素。�
4 结论和建议
��通过对上述几种处理方法及处理工艺的分析比较可得以下结论,并提出水质、水量等方面的建议和意见:
��(1)垃圾渗滤液具有成分复杂,水质水量变化巨大,有机物和氨氮浓度高,微生物营养元素比例失调等特点,因此在选择垃圾渗滤液生物处理工艺时,必须详细测定垃圾渗滤液的各种成分,分析其特点,以便采取相应的对策。还应通过小试和中试,取得可靠优化的工艺参数,以获得理想的处理效果。
��(2)多种方法应用于渗滤液的处理是可行的。在有条件的地方修筑生物塘,同时采用水生植物系统处理渗滤液,不仅投资省,而且运行费用低。土地处理也受到人们的重视,但在渗滤液的处理中选用尚少。生物膜法和活性污泥法有成熟的运行管理经验,近年来结合采用厌氧�好氧工艺生物处理渗滤液较多。但修建专用的渗滤液处理厂投资大,运行管理费用高,而且随着填埋场的关闭,最终使水处理设施报废,故应慎重选用。
��(3)我国目前真正能满足卫生填埋标准的填埋场并不多,许多填埋场因为投资所限无法按设计要求建造能达到环境保护要求的渗滤液收集系统。因此,宜发展投资省,效果好的渗滤液处理技术。垃圾填埋场渗滤液向填埋场回灌,利用土地吸附,土壤生物降解及垃圾填埋层的厌氧滤床作用使渗滤液降解,具有投资省、效果好,无需专门处理设施投资等特点。而且渗滤液的回灌可使垃圾保持湿润,加速填埋场的稳定。回灌法目前采用较少,可作深入研究,以明确回灌法的使用条件,处理效率及回灌处理的工程设计参数。
��(4)对垃圾填埋场渗滤液进行处理是问题的一个方面,另一方面应当考虑减少渗滤液产生量。宜发展可减少渗滤液产生量的填埋技术,如好氧填埋或准好氧填埋。
��(5)对垃圾渗滤液的处理,我国尚处于研究探索阶段,为了建设标准化的城市垃圾卫生填埋场,对其渗滤液的处理应作更深入的研究。
『伍』 污泥浓缩池能将污泥的含水率降至多少
看什么样的污泥,剩余污泥到97-98%,初沉污泥可以更低
『陆』 请问污水处理厂污泥浓缩池中上清液半排放管的作用
排出多余气体!
『柒』 污水再生回用和水资源可持续利用
方先金
(北京市市政工程科学技术研究所,北京市西城区大帽胡同号,100035,中国)
我国是一个水资源贫乏的国家,人均水资源拥有量只有2200m3,仅为世界平均水平的1/4,在世界银行连续统计的153个国家中居第88位。同时,我国水资源在时间和地区分布上很不平衡,南方多北方少,北方大部分地区人均水资源拥有量低于联合国可持续发展委员会确定的1750m3用水紧张线,其中9个地区低于500m3的严重缺水线。水资源短缺已成为制约我国经济和社会发展的重要因素。
1水资源可持续利用面临的问题
1.1水资源总量紧缺
50年来,全国用水总量从1949年的1000多亿m3增加到1997年的5566亿m3,其中农业用水占75.3%,工业用水占20.2%,城镇生活用水占4.5%,人均综合年用水量从不足200m3增加到458m3。目前,全国每年缺水近400亿m3,其中,农业缺水300亿m3,因旱致灾,年均减少粮食200多亿千克;城市和工业缺水60亿m3,影响工业产值2300多亿元,全国668座城市有400多座缺水,有110个城市严重缺水。特别是1999年以来,我国北方地区持续干旱,给工农业生产造成较大的影响,也给城市、农村居民生活用水造成很大的困难。2001年6月上旬旱情最为严重时,全国受旱面积一度达到4.2亿亩(1亩=100m2),由于持续干旱,水源不足,造成城乡人民生活用水紧张,有2198万城镇人口和3300万农村人口及1450万头大牲畜发生饮水困难。天津、长春、大连、青岛、唐山和烟台等大中城市已受到水资源短缺的严重威胁,许多水库、河流出现从来没有过的断流和干枯。今后随着人口的增长、生活水平的提高、城市化的加快,水资源供需矛盾将更加突出,据预测,我国用水高峰将在2030年前后出现,2030年我国人口将达到16亿人,粮食总产量需达到7亿t,年用水总量为7000亿~8000亿m3,全国每年缺水将在700亿m3左右。
气候变化对我国水资源可利用量也产生了负面影响。据1950~1997年的降水和气温资料分析,我国近20年来呈现北旱南涝的局面。20世纪80年代华北地区持续偏旱,京津地区、海滦河流域、山东半岛10年平均降水量偏少10%~15%。进入20世纪90年代,黄河中上游地区、汉江流域、淮河上游、四川盆地的8年平均降水量偏少约5%~10%,黄河花园口的天然来水量初步估计偏少约20%,海滦河和淮河的年径流量也都明显偏少。北方缺水地区持续枯水年份的出现,以及黄河、淮河、海河与汉江同时遭遇枯水年份等不利因素的影响,加剧了北方水资源供需失衡的矛盾。据相关研究,未来50年由于人类活动产生的温室效应,全球年平均气温可能升高,气温升高将使地表蒸发量提高,水资源量将相应减少。
1.2水资源分布不均
我国水资源在时间和空间分布上很不平衡。长江流域及其以南地区国土面积只占全国的36.5%,其水资源量占全国的81%;黄淮海流域人口、粮食产量和国内生产总值都占全国的1/3左右,但其多年平均水资源仅占全国的7.2%。受季风气候的影响,各地的降水量年内分配极不均匀,大部分地区每年汛期4个月的降水量占全年降水总量的70%左右,很容易形成春旱夏涝。水资源在时间和空间分布上不平衡给水资源充分利用带来了一定的难度。
1.3水资源浪费严重
我国一方面水资源严重短缺,另一方面却浪费严重。长期以来,“以需定供”的水资源非可持续利用模式是造成水资源短缺的人为原因。盲目发展第一、第二产业,特别是片面追求粮食增产和重工业的发展,造成产业结构的不合理,水资源利用效率偏低,使本来就紧缺的水资源问题更加严重。
目前,我国农田灌溉面积中渠灌面积占75%左右,而渠系损失约为50%,农田蒸发损失约为17%,实际利用量仅有33%左右。由于大多数地方采用传统的灌溉模式,每亩实际灌水量达到450~500m3,超过了实际需水量的1倍左右,浪费极为严重。我国主要依靠降水的旱作耕地面积约12亿亩,其中70%分布在降水量250~600mm的北方地区,由于蓄水和保水等基础设施不足,农田对自然降水的利用率仅为56%左右。按最新统计估算,我国农田灌溉用水的利用率仅有1.0kg/m3,旱作耕地的水分利用效率为0.60~0.75kg/m3,全国农业用水的平均效率为0.8kg/m3,综合经济效益为0.2美元/m3,而以色列已超过1美元/m3,差距十分明显。现阶段我国农业水资源利用不符合水资源可持续利用的要求。
我国工业用水效率总体水平仍然较低,2001年我国万元工业产值取水量为90m3,约为发达国家的3~7倍;工业用水重复利用率约为52%,远低于发达国家80%的水平。2000年全国城市人均生活用水量达220.2L/d,远高于发达国家的人均生活用水量。社会各界的水忧意识不强,浪费水资源的现象仍很严重,这说明节水措施尚未有效落实,节约用水的技术和管理水平不高。近十年来,我国根据经济可持续发展战略对经济结构调整虽已初见成效,但水资源消耗利用模式尚未发生实质性变化。
1.4水污染形势严峻
目前我国污水处理率还较低,大量的城市和生活污水未经处理直接排入江河湖库水域,使全国大部分水域和近50%的重点城镇的集中饮用水水源受到不同程度的污染,其中水污染比较严重的城镇98个,主要分布在三河三湖流域。由于水污染一些水源被迫停止使用,寻找新的水源,从而加剧了城市缺水。水污染还影响到供水水质,损害居民的身体健康。目前,全国水土流失面积356km2,占国土面积的37%。全国地下水多年平均超采74亿,已形成164个地下水超采区,部分地区出现地面沉降,海水入侵等问题。许多重要河流、湖泊污染严重,由于污染而引发的水事矛盾不断增加。水污染严重影响我国的水资源可持续利用,影响我国经济社会的可持续发展。
2实现我国水资源可持续利用应采取的措施
我国政府十分重视水资源可持续利用,明确指出:水资源可持续利用是我国经济社会发展的战略问题。多年来,针对我国水资源特点和水资源利用中存在的问题,采取了一系列措施来保证水资源的可持续利用。
2.1合理利用水资源
我国水资源可持续利用的根本出路在于坚持可持续发展战略,变“以需定供”的传统开发模式为“量水而行、以水定需”的水资源可持续利用的模式。立足于可利用水资源的保护和合理利用,根据水资源承载能力,确定经济社会发展结构,确保各种水域的可持续利用,对经济结构进行战略调整,在水资源充裕和紧缺地区采用不同的经济结构。大力发展节水、省能、高附加值的高新技术产业和服务业。根据我国水资源的时空分布特点合理发展农业,采取必要的退耕还林,使生态系统得到改善,保证水资源的供需平衡。
2.2合理调配水资源
根据我国降水年内分布不均的特点,应修建大量的蓄水设施,以充分利用水资源。目前,全国共建水库8.5万座,使年供水能力大大提高。蓄水设施一方面能将雨季多余降水贮存起来,供干旱季节使用。另一方面可以减少洪水灾害,保证经济的发展。在地域上,我国的水资源南多北少,南方水资源充裕,北方水资源严重不足。南水北调工程是解决我国北方地区水资源缺水矛盾,实现水资源合理配置的重大战略工程。南水北调东、中、西三条线路将与长江、黄河和海河相互联接,形成水资源合理配置的总体格局,达到南北调配、东西互济的水资源配置目标。三条调水线路年调水总量380亿~480亿m3,可基本改变我国黄淮海地区水资源严重短缺的状况,保证我国水资源总体上可持续利用。
2.3大力开展节水工作
我国历来重视节约用水工作,20多年前,国家就提出了要实行开源与节流并重的方针,认真开展了节约用水工作,并制定了一系列节约用水的法规和标准,建立了节约用水的管理制度,也形成了比较健全的管理体制,城市节约用水工作取得了一定的成绩,到2000年全国设市城市累计节约用水300多亿m3,使近5年来城市用水总量基本无增长,改变了城市用水量随经济发展同步增长的趋势。但是,目前我国农业用水利用率还较低、工业万元产值用水量和城市居民日平均用水量还较高,节水的潜力还较大。在农业方面,应发展和推广农业节水技术,减少农田的深层渗漏和地表流失量,减少单位面积的用水量,减少田间和输水过程中的蒸发和蒸腾量,提高灌溉和降水的水分利用效率,不断提高单位水资源的产量和效益。在工业节水方面,应在调整工业生产结构的同时,改进生产工艺,提高用水重复率,减少万元工业产值的用水量。为了保证节水工作,要制定和完善相关的政策法规,建立一套符合市场经济原则的体制和机制,对现有水价偏低进行改革,建立水资源的宏观控制和微观定额体系,形成总量控制与定额管理相结合的水资源管理体制。
2.4大力发展污水处理和再生回用工作
水污染加剧了我国水资源短缺形势,直接威胁着饮用水的安全和人民的健康,影响到工农业生产和农作物安全,造成的经济损失约为国民生产总值的1.5%~3%。水污染已成为不亚于洪灾、旱灾甚至更为严重的灾害。水污染早在20世纪70年代已经显现出来,但没有引起足够的注意,采取的措施不够恰当有力,因此出现了今天的严重局面。如再不及时采取有效对策,将严重影响我国水资源可持续利用。长期以来采用的以末端治理、达标排放为主的工业污染控制战略,已被国内外经验证明是耗资大、效果差、不符合可持续发展的战略。应大力推行以清洁生产为代表的污染预防战略,淘汰物耗能耗高、用水量大、技术落后的产品和工艺,在工业生产过程中提高水资源利用率,削减污染排放量。对于工业和城市生活排水造成的点源污染,应大力发展污水处理工程,使我国的污水处理率在2000年34.3%的基础上进一步提高。对于面污染源包括各种无组织、大面积排放的污染源,如含化肥、农药的农田径流,畜禽养殖业排放的废水、废物等,其控制应与生态农业、生态农村的建设相结合,通过合理使用化肥、农药以及充分利用农村各种废弃物和畜禽养殖业的废水,将面源污染减少至最小。应积极开展污水资源化再利用工作,提高污水再生回用率。
3污水再生回用是实现水资源可持续利用的有效途径
污水再生回用是经济可靠的开源节流措施,与跨流域调水、海水淡化、雨水蓄用等开源措施相比,污水再生回用具有经济性和可靠性。人类使用过的水,污染杂质只占0.1%左右,比海水3.5%少得多,其余绝大部分是可再用的清水。跨流域调水和雨水蓄用工程投资较大,并需投入大量资金控制水体进一步污染,跨流域调水还会对现有的生态系统产生影响。在我国现有经济条件下,跨流域调水和雨水蓄用只能逐步进行。污水再生回用的本质是实行循环用水和分质用水,将污水经再生后回用到水质要求较低的用户。随着工业化的加速发展,人们生活水平不断提高,水污染范围也在扩大、污染程度加深,社会经济发展和环境污染之间形成一对尖锐的矛盾。发展污水再生回用、减少废水排放量是解决环境问题最有力的措施。另外,为满足用户的需要,再生水必须符合相应的水质标准,为此,需对污水处理厂二级出水进行深度处理,从而减少了污染物总量,减轻了废水对环境的压力。
污水再生回用应严格按回用对象和目的控制回用水水质,以确保回用水的安全性。为此,我国制定了一系列相关回用标准。如生活污水经二级处理后能够达到《污水综合排放标准》,但不能作为生活杂用水或工农业用水;若考虑回用,必须进一步处理。当污水回用于农田灌溉,水质指标应该满足《农田灌溉水水质标准》;当污水回用于城市景观,水质指标应该满足《再生水回用于景观水体的水质标准》;当污水回用于城市生活杂用,水质指标应该达到《生活杂用水水质标准》;工业污水回用水质指标应该满足相应的工业用水标准等。
城市供水量的80%变为污水排入城市下水道,收集起来再生处理后,70%可以安全回用;二者合计,约城市供水量的56%可以转变成再生水,返回到城市水质要求较低的用户,替换出等量的清洁水,相应地增加城市一半以上的供水量。废水是一种非常宝贵的资源,挖潜能力巨大。我国2000年全国污水排放量为620m3,这是很大的再生水资源。污水再生回用立足于自有水资源增加城市供水量,是实现水资源持续利用的有效措施。污水再生回用能有效地缓解城市水资源短缺。
为了保证水资源可持续利用,支持经济可持续发展,针对我国水资源存在的问题,近十多年来,通过国家科技攻关,以及缺水城市为解决水污染和水资源短缺做出的努力,国内已经建成一批不同工艺、不同回用对象的城市污水回用示范工程。表1列出了华北地区部分城市污水回用工程情况统计结果。目前我国污水回用工程主要回用对象为污水处理厂内部用水、市政杂用、河道补水、绿化、工业用水等,尚未回用于地下回灌和饮用水源。北京市2001年完成的高碑店污水处理厂出水回用工程是我国目前最大的污水再生回用工程。大量的污水回用工程实践表明:污水再生回用是解决水资源可持续利用的有效途径。
表1华北地区部分城市污水回用情况单位:万m3/d
4我国污水再生回用最大工程
4.1工程概况
高碑店污水处理厂回用工程是目前我国最大污水再生回用工程,该工程于1999年3月至8月完成该项目的前期研究工作,并完成了可行性研究,1999年10月完成项目立项和审批;2000年1月完成该工程的初步设计和审批工作,2月完成施工图设计,同年4月开始施工,2001年5月完成工程施工,2001年6月完成调试和试运转,2001年7月开始供水。
高碑店污水处理厂是目前我国最大的污水处理厂,处理能力为100万m3/d。该厂污水系统流域面积96km2,服务人口240万人,汇集北京市南部城区的大部分生活污水、东郊工业区、使馆区和化工路的全部污水。该处理厂采用前置缺氧段活性污泥法工艺,即在推流式曝气池前设置缺氧段,其目的是改善污泥性质,防止污泥膨胀。该厂出水水质水量稳定,其二级出水已接近相关的回用水水质标准。但该回用工程运转前,高碑店污水处理厂二级出水直接排入通惠河下游,除每年约5500万m3用于农业灌溉外,剩余的出水每年超过3亿m3没有得到利用,这是很大的水资源浪费。为了缓解北京市面临的21世纪城市发展和可利用水资源的矛盾,实现北京市水资源可持续利用,支持国民经济可持续发展战略,北京市政府决定开发该厂污水资源。高碑店污水处理厂回用工程使用回用水的区域达141km2,回用水用户涉及到工业、公园绿化、道路喷洒和冲刷、河湖补水等。
4.2工程规模和技术方案
本工程近期规模为30万m3/d,远期规模为47万m3/d。在回用工程技术方案确定中尽可能地利用现有设施,以降低工程投资。具体设计方案如下:高碑店污水处理厂二沉池出水经新建泵站(规模47万m3/d)提升后用两条管道分别输送到高碑店湖(规模30万m3/d)和水源六厂(规模17万m3/d)。送至高碑店湖的处理水通过第一热电厂现有深度处理设施进一步处理后供该厂冷却用水;送至水源六厂的处理水在该厂进行深度处理后,一部分通过水源六厂现有供水系统供给东郊工业区和焦化厂;一部分通过新建管道输送到西便门和东便门。在水源六厂现有供水管道和新建管道沿线设取水口,并新建回用水支线,供市政杂用取水。
4.3回用水水质技术保障措施
由于高碑店污水处理厂建设时,国家对城市污水处理厂出水要求中还没有氮和磷的指标控制,因此,目前该厂出水中氮和磷的含量较高,这会直接影响回用水水质,必须对该厂进行技术改造,进一步提高该厂出水水质。改造规模为50万m3/d,即对高碑店污水处理厂一期工程(50万m3/d)进行改造。该改造工程分两步进行。第一步改造后使出水水质优于目前第一热电厂冷却水取水水源高碑店湖的水质,出水中BOD、COD、总磷和氨氮分别达到10mg/L、40mg/L、1mg/L和10mg/L。第二步改造使该厂50万m3/d满足高碑店湖Ⅳ类水体的水质要求。第一步主要改造工作量包括曝气池改造和污泥处理系统的改造。原曝气池为1/12为厌氧区,其余为好氧区,改造后原池2/9为缺氧区及厌氧区(水力停留时间共为2h),其中进水端分出一停留时间为15min的强化吸附区。其余仍为好氧区(水力停留时间7.25h)。原污泥系统中剩余污泥泵入初沉池,其混合污泥再进污泥浓缩池浓缩后消化脱水,因浓缩污泥池停留时间较长,处于厌氧状态,磷又被释放出来,通过上清液回到污水中,因此达不到除磷的目的。改造后,原有浓缩池改为浓缩酸化池,浓缩酸化池上清液做为碳源排入水处理系统;将消化池上清液和脱水机滤液及冲洗水收集后进行化学除磷。
高碑店污水处理厂二级出水水质水量稳定,达到设计要求,但还不能满足市政杂用水标准,而绿化用水和道路喷洒等市政杂用水水质对人类健康和城市环境会产生影响,因此,市政杂用水必须在回用前进行深度处理,以满足相应标准。在设计中将深度处理选择在水源六厂。水源六厂现有日处理能力17万m3/d的深度处理设施,主要采用机械加速澄清、砂滤和消毒等工艺处理过程,其出水可满足相应用户要求。由于北京市工业结构的调整,目前该厂平均实际供水量不足5万m3/d,尚有12万m3/d处理能力没有得到利用。另外,水源六厂离市政杂用水用户较近,市政杂用水深度处理设在水源六厂利用其剩余处理能力,可满足市政杂用水近、远期规模需求,在该厂深度处理后的水质能满足市政杂用水水质要求。
4.4主要回用对象
按规划要求,该工程近期供北京市第一热电厂冷却循环用水20万m3/d,远期供北京市第一热电厂冷却循环用水30万m3/d。近期通过北京市水源六厂供东郊工业区和焦化厂5万m3/d,供城市绿化、道路喷洒和冲刷、市区河道景观用水等市政杂用水共5万m3/d。远期通过水源六厂供工业和市政杂用水水量将扩充到17万m3/d。
4.5主要工程内容和投资
本工程总投资3.6亿元,其中征地拆迁费约1亿元,工程费用为2.18亿元,工程建设内容主要为:
(1)高碑店污水处理厂内47万m3/d的泵站一座。
(2)高碑店污水处理厂改造。
(3)高碑店污水处理厂至高碑店湖输水管:DN1800mm,长1480m。
(4)高碑店污水处理厂至水源六厂管道:DN1400mm,长4766m。
(5)市政杂用水配水管:DN1200mm,长6791m;DN1000mm,长1431m;DN800mm,长4615m;DN600mm,长2845m;D=500mm,长2880m。
(6)水源六厂改造:包括深度处理设施改造、蓄水池清淤和护砌、污泥池扩建、供水泵站改造、进出水口的改造、增加自控和电气设备等。
(7)园林供水支线管道。
4.6工程效益
该工程每年可节约清洁水资源16673万m3,节约自来水3650万m3/a,相当于节约了建设一座10万m3/d的自来水厂的投资4亿元。该工程达到了开源节流的目的,为北京市城市绿化面积扩大和道路喷洒压尘创造条件,对环境综合治理具有较大的作用,环境的改善还会带来了周围地区的土地增值。该工程在一定程度上缓解了北京市水资源短缺的矛盾。该工程的巨大经济和环境效益,推动了北京市节水和污水再生回用工作。目前北京已完成污水再生回用规划,7个污水回用工程正在进行施工或做前期工作。北京市的污水再生回用实践表明:污水再生回用符合环境保护和水资源可持续利用战略,是解决水资源可持续利用的有效途径。
5结论
我国是一个水资源贫乏的国家,随着经济发展和城市化进展的加快,水资源短缺的矛盾已经成为我国水资源可持续利用和管理中亟待解决的问题。我国水资源可持续利用面临水资源总量不足、分布不均、水利用率低和水污染等问题,实现我国水资源可持续利用的出路在于坚持可持续发展战略。应根据我国水资源特点进行水资源合理利用和配置,变“以需定供”的传统开发模式为量水而行、以水定需的水资源可持续利用的模式,根据水资源承载能力,对经济结构进行战略调整;同时,应继续发展节水技术,减少生产过程的水资源浪费,大力发展污水处理和再生回用工作,提高污水处理率和处理效果。污水再生回用可以减少污染物总量,增加供水能力,是经济可靠的开源节流措施。几年来污水再生回用实践表明:污水再生回用能有效地缓解城市水资源短缺,是实现水资源可持续利用的有效途径。