导航:首页 > 废水知识 > 哪家氯化铵废水处理好

哪家氯化铵废水处理好

发布时间:2024-10-07 14:28:41

1. 您好,废水的COD为4500,氯化钠 硫酸钠占4.2%,氯化铵占5.2%

COD并不高,高的是氨氮,达到了15000mg/l以上。
总盐度也高,生物估计不成,建议你做蒸发处理吧。虽然贵点,直接有效。

2. 高盐废水处理,废水中含有盐分怎么处理

高盐废水,其主要来源于化工、制药、石油等企业。该类共同特点是:化学成分复杂、内含大量有机物,包括容有机溶剂、有机酸类、酯类、酮类、酚类等等,而且含盐量高,比如含氯化钠、氯化铵、硫酸铵、硫酸钠或者是多种混合盐等,很难直接用生化方法处理,且物化处理过程较复杂,处理费用较高,是废水处理行业公认的高难度处理废水,高盐废水排放对环境影响巨大,所以得先去除废水中的污染物,才能排放。
为了最大限度的减少此类高有机、杂盐废水排放对环境要求的影响,青岛康景辉在处理该类高有机、杂盐废水的时候,采用多效蒸发(或MVR蒸发)+结晶系统。产生的蒸馏水直接循环回用或达标排放;除盐废物可进一步转换为干燥晶体回收利用或进行进一步处理,从而彻底实现零排放。

3. 大量氯化铵如何销毁

向氯化铵中添加石灰与氯化铵,对氯化铵进行苛化反应,得到苛化液,保证苛化液的PH值为11.5-12.0

4. 高浓度氨氮废水处理

高浓复度氨氮废水的一般的形制成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。
高浓度氨氮废水处理方法通常有物化法、生物脱氮法、生化联合法等,其中物化法主要分为吹脱法、沸石脱氨法、膜分离技术、MAP沉淀法、化学氧化法;
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等;
物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100mg/L以下)。而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。

5. 目前稀土氯铵废水的处理还有哪些不足

氨氮废水是稀土分离厂最难解决的特征污染物,处理氨氮废水的方法主要有蒸发浓缩法、折点氯化法、膜法、氨吹脱法等。

蒸发浓缩法适用于铵浓度达80克/升以上的高浓度氯化铵废水,但要消耗大量的能量,生产出来的氯化铵产品也存在市场销售困难的问题,因此该方法仅适用于煤炭资源丰富且氯化铵销路较好的地区。

折点氯化法适用于处理低浓度氨氮废水,虽然其处理效果稳定,不受水温影响,投资较少,但是加氯量较大、费用高,副产物氯胺和氯代有机物会造成二次污染,要注意密封和再处理。

反渗透膜法是将低浓度含氨废水(0.3%)浓缩至6%~7%,然后再通过氨碱法生产氨水,其淡化水NH4+小于10毫克/升,淡水回用率达90%。日本科学家发明了一种隔膜电渗析—电透析法是处理含铵废水新技术,氯化铵、硝酸铵废水经预处理以及隔膜电渗析处理后,浓度得到富集,再经电解透析处理,可回收HCl、HNO3、氨水。目前已投入工业运行。

氨吹脱法通过调节pH值,使NH4+转化为NH3,然后大量曝气,促使NH3向空气中转移, 因此达到去除水体中NH4+含量的目的。氨吹脱法运行过程中最大的费用是调整pH值消耗的碱,用石灰虽然成本低但沉渣多难清理,采用纯碱或固碱成本较高,氨氮含量难以达到排放标准,而且NH3排放到大气中对环境造成二次污染。

尽管氨氮可以采用不同方法进行处理,但靠一种方法很难达到排放标准,而且造成大量能源消耗,处理成本高,最好的办法还是从源头消除氨氮的污染问题,业内研究机构开发了系列无氨氮排放的清洁生产技术,部分已推广应用。稀土非皂化萃取分离技术是采用氧化镁或氧化钙对有机相进行预处理,以此替代氨水或氢氧化钠,可节约生产成本30%~50%,分离过程不产生氨氮废水,极大地节约了治理成本,具有很好的经济效益和社会效益;碳酸钠沉淀稀土工艺是用碳酸钠代替碳铵沉淀稀土,也从源头上消除了氨氮废水的污染。

6. 工业废水如何有效去除氨氮超标

1 高浓度氨氮废水处理技术

高浓度氨氮废水是指氨氮质量浓度大于500mg/L
的废水。伴随石油、化工、冶金、食品和制药等工业的发展,以及人民生活水平的不断提高,工业废水和城市生活污水中氨氮的含量急剧上升,呈现氨氮污染源多、排放量大,并且排放的浓度增大的特点〔2〕。目前针对高氨氮废水的处理技术主要使用吹脱法、化学沉淀法等。

1.1 吹脱法

将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图 1。


图 2 生物脱氮的途径

用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素,维持最佳碳氮比也是生物法成功的关键之一。

生物法具有操作简单、效果稳定、不产生二次污染且经济的优点,其缺点为占地面积大,处理效率易受温度和有毒物质等的影响且对运行管理要求较高。同时,在工业运用中应考虑某些物质对微生物活动和繁殖的抑制作用。此外,高浓度的氨氮对生物法硝化过程具有抑制作用,因此当处理氨氮废水的初始质量浓度<300
mg/L 时,采用生物法效果较好。

J. Kim 等〔24〕采用小球藻处理美国俄亥俄州辛辛那提磨溪污水处理厂废水中的氨氮,实验结果表明,小球藻在经历24 h 的迟缓期后,在48 h 内氨氮去除率可达50%。

2.3.1 传统生物硝化反硝化技术

传统生物硝化反硝化脱氮处理过程包括硝化和反硝化两个阶段。硝化过程是指在好氧条件下,在硝酸盐和亚硝酸盐菌的作用下,氨氮可被氧化成硝酸盐氮和亚硝酸盐氮;再通过缺氧条件,反硝化菌将硝酸盐氮和亚硝酸盐氮还原成氮气,从而达到脱氮的目的。

传统生物硝化反硝化法中,较成熟的方法有A/O 法、A2/O 法、SBR
序批式处理法、接触氧化法等。它们具有效果稳定、操作简单、不产生二次污染、成本较低等优点。但该法也存在一些弊端,如必须补充相应的碳源来配合实现氨氮的脱除,使运行费用增加;碳氮比较小时,需要进行消化液回流,增加了反应池容积和动力消耗;硝化细菌浓度低,系统投碱量大等。

杨小俊等〔25〕通过A/O 膜生物反应器处理某炼油厂气浮池出水中的氨氮,实验结果表明,当氨氮和COD 容积负荷分别在0.04~0.08、0.30~0.84 kg/(m3·d)时,处理后水中氨氮质量浓度小于5 mg/L。

2.3.2 新型生物脱氮技术

(1)短程硝化反硝化技术。短程硝化反硝化是在同一个反应器中,先在有氧的条件下,利用氨氧化细菌将氨氧化成亚硝酸盐,阻止亚硝酸盐进一步氧化,然后直接在缺氧的条件下,以有机物或外加碳源作为电子供体,将亚硝酸盐进行反硝化生成氮气。

短程硝化反硝化与传统生物脱氮相比具有以下优点:对于活性污泥法,可节省25%的供氧量,降低能耗;节省碳源,一定情况下可提高总氮的去除率;提高了反应速率,缩短了反应时间,减少反应器容积。但由于亚硝化细菌和硝化细菌之间关系紧密,每个影响因素的变化都同时影响到两类细菌,而且各个因素之间也存在着相互影响的关系,这使得短程硝化反硝化的条件难以控制。目前短程硝化反硝化技术仍处在人工配水实验阶段,对此现象的理论解释还不充分。

(2)同时硝化反硝化技术。当硝化与反硝化在同一个反应器中同时进行时,即为同时硝化反硝化(SND)。废水中溶解氧受扩散速度限制,在微生物絮体或者生物膜的表面,溶解氧浓度较高,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,形成缺氧区,反硝化细菌占优势,从而形成同时硝化反硝化过程。

邹联沛等〔26〕对膜生物反应器系统中的同时硝化反硝化现象进行了研究,实验结果表明,当DO 为1mg/L,C/N=30,pH=7.2
时,COD、NH4+-N、TN 去除率分别为96%、95%、92%,并发现在一定的范围内,升高或降低反应器内DO 浓度后,TN 去除率都会下降。

同时硝化反硝化法节省反应器,缩短了反应时间,且能耗低、投资省。但目前对于同步硝化反硝化的研究尚处于实验室阶段,其作用机理及动力学模型需做进一步的研究,其工业化运用尚难实现。

(3)厌氧氨氧化技术。厌氧氨氧化是指在缺氧或厌氧条件下,微生物以NH4+ 为电子受体,以NO2- 或NO3- 为电子供体进行的NH4+、NO2- 或NO3- 转化成N2的过程〔27〕。

何岩等〔28〕研究了SHARON
工艺与厌氧氨氧化工艺联用技术处理“中老龄”垃圾渗滤液的效果,实验结果表明,厌氧氨氧化反应器可在具有硝化活性的污泥中实现启动;
在进水氨氮和亚硝酸氮质量浓度不超过250 mg/L 的条件下,氨氮和亚硝酸氮的去除率分别可达到80%和90%。目前,SHARON
与厌氧氨氧化联合工艺的研究仍处于实验室阶段,还需要进一步调整和优化工艺条件,以提高联合工艺去除实际高氨氮废水中的总氮的效能。

厌氧氨氧化技术可以大幅度地降低硝化反应的充氧能耗,免去反硝化反应的外源电子供体,可节省传统硝化反硝化过程中所需的中和试剂,产生的污泥量少。但目前为止,其反应机理、参与菌种和各项操作参数均不明确。

2.4 膜技术

2.4.1 反渗透技术

反渗透技术是在高于溶液渗透压的压力作用下,借助于半透膜对溶质的选择截留作用,将溶质与溶剂分离的技术,具有能耗低、无污染、工艺先进、操作维护简便等优点。

利用反渗透技术处理氨氮废水的过程中,设备给予足够的压力,水通过选择性膜析出,可用作工业纯水,而膜另一侧氨氮溶液的浓度则相应增高,成为可以被再次处理和利用的浓缩液。在实际操作中,施加的反渗透压力与溶液的浓度成正比,随着氨氮浓度的升高,反渗透装置所需的能耗就越高,而效率却是在下降〔29〕。

徐永平等〔30〕以兖矿鲁南化肥厂碳酸钾生产车间含NH4Cl 的废水为研究对象,利用反渗透法对NH4Cl
废水的处理过程进行了研究,实验装置采用反渗透膜(NTR-70SWCS4)过滤机。结果表明,在用反渗透膜技术处理氨氮废水的过程中,氯化铵质量浓度适宜在60
g/L 以下,在该浓度条件下,设备脱氨氮效率较高,一般大于97%,各项技术指标合格,可以用于实际生产操作。

2.4.2 电渗析法

电渗析是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从电解质溶液中分离出来的过程。电渗析法可高效地分离废水中的氨氮,并且该方法前期投入小,能量和药剂消耗低,操作简单,水的利用率高,无二次污染副产物。

唐艳等〔31〕采用自制电渗析设备对进水电导率为2 920 μS/cm,氨氮质量浓度为534.59 mg/L
的氨氮废水进行处理,通过实验得到在电渗析电压为55 V,进水流量为24 L/h
这一最佳工艺参数条件下,可对实验用水有效脱氮的结论,出水氨氮质量浓度为13 mg/L。

3 不同浓度工业含氨氮废水的处理方法比较

不同氨氮废水处理方法优缺点比较见表 4。

通过对以上几种不同方法的论述,可以看出目前针对工业废水中高浓度氨氮的处理方法主要使用物理化学方法做预处理,再选择其他方法进行后续处理,虽能取得较好的处理效果,但仍存在结垢、二次污染的问题。对低浓度的氨氮废水较常用的方法为化学法和传统生物法,其中化学法的一些处理技术还不成熟,未在实际生产中应用,因此还无法满足工业对低浓度氨氮废水深度处理的要求;
生物法能较好地解决二次污染问题,且能达到工业对低浓度氨氮废水深度处理的要求,但目前对微生物的选种和驯化还不完全成熟。

7. 工业氯化铵是怎么处理废水的

工业氯化铵为无色晶体或者是白色结晶的粉末;无味、咸且凉;吸湿性的。它是一种强电解质,能溶于电、水、分离铵离子和氯离子。一些生活污水需要经过一系列的处理才能转化成污染较少的物质。那工业氯化铵是怎样处理废水的呢?

1、日益增长的工业带来了不可低估的环境问题,将会影响企业的发展。氨氮是造成污染的重要原因之一,特别是高浓度氨氮废水造成的污染。

2、废水中氨氮主要有两种成分,一种是氨水形成的氨氮,另一种由无机氨形成的氨氮,主要是硫酸铵、工业氯化铵等。去除氨氮方法有很多,包括物化法、生化法。

3、工业氯化铵的物理化学方法包括吹脱、添加吸附剂和氨氮去除剂、断点加氯等。考虑到二次污染,它将不可避免地变得复杂。市场上有很多吸附剂、氨氮去除剂和加氯剂。根据浓度、水量再确定投加量,必然会增加高浓度和水量的成本,不同水质处理效果也是不同的。物化法在处理高浓度氨氮废水时不受高氨氮浓度的限制,但不能将氨氮浓度降到足够低的水平,所以需在多方面比较,同时考虑到经济效益进行选择。

4、生化脱氮技术已经发展了很多年。以活性污泥为基础的许多技术已经发展成熟并在实践中得到应用。例如AO、AAO、SBR、MBR等。氮作为生命的营养物质,可被微生物利用,并转化为硝酸盐,这是一个生物硝化过程。

工业氯化铵主要用于干电池、蓄电池、制革、电镀、铸造、摄影和粘合剂。储存在阴凉、干燥的仓库中。避免和酸、碱一起储存混合运输。运输过程中防止雨淋和日晒。

http://www.sdlhacj.com/news/infor/show212.html

阅读全文

与哪家氯化铵废水处理好相关的资料

热点内容
关于小区污水的媒体报道 浏览:742
反渗透化学清洗药剂 浏览:240
厨房装修怎么样安装净水器 浏览:777
屈臣氏的蒸馏水可以直接饮用吗 浏览:520
汽车电子滤芯是什么意思 浏览:349
便宜的小型饮水机多少钱 浏览:83
家用净水机水龙头怎么换 浏览:531
3mcc350净水效果怎么样 浏览:676
污水处理设施未正常运行的处罚 浏览:166
st反渗透膜 浏览:483
树脂蜜蜡香珠 浏览:921
反渗透滤芯与ro膜 浏览:851
小米净水器怎么清洗过滤阀 浏览:895
edta除水垢 浏览:401
除垢剂代理加盟 浏览:239
污水厂化验室评级的稿子怎么写 浏览:907
沁园净水器机箱蓝色是什么型号 浏览:995
pvdf超滤膜的缺点 浏览:189
废水厂运营方案 浏览:795
污水处理ras是什么的缩写 浏览:295