『壹』 污水处理活性污泥法如何提高磷的去除效率
生物除磷系统的生产运行经验表明,生物除磷工艺要稳定达到较好的除磷效果是比较困难的。国内外的不少专家针对此作了不少的研究,为了解决污水排放不能达到城镇污水排放标准,经常会向除磷工艺中投加化学药品,采用生物化学相结合的除磷方法,以提高除磷的效率。经过大量的研究表明,要保证生物除磷系统出水含磷量低于0.5mg/L,基本有两种可行方法:其一是与化学除磷相结合,通过化学反应和药剂的催化作用提高除磷效果;其二是通过应用初沉污泥发酵生成足够数量的VFAs,提高生物除磷系统中聚磷菌可利用的碳源来提高除磷效果。
总结生物除磷实验和污水处理厂世纪运行效果,活性污泥的生物除磷工艺主要控制要点包括一下几点:①污泥龄的控制:生物除磷系统的本质是通过排除富磷剩余污泥来达到除磷效果的,因此剩余污泥的多少直接影响整个系统的除磷性能。通常认为污泥龄越长,污泥产率越低,污泥含磷量越低,去除单位重量磷需要消耗较多的BOD5。仅以除磷为目的的污水处理系统宜控制较短的污泥龄,一般为3.5~7d。②有机物浓度和有机基质类型的控制:经大量的研究发现,若要使污水处理厂出水中磷含量低于1.0mg/L,达到排放标准,进水中的BOD5/TP应控制在20~30,且含由丰富的低分子有机酸(VFAs)机制,Gerber等人认为磷的厌氧释放基本上取决于进水的性质而不是厌氧状态本身。③ DO的控制:厌氧段溶解氧(DO)应严格控制在0.2mg/L以下,而好氧段DO控
制在2mg/L左右;④硝酸盐的控制:在生物除磷工艺中硝酸盐的去除是除磷的先决条件。但硝酸盐
控制在什么水平尚存在不同的看法,通常认为应控制在0.2mg/L以下,硝酸盐影响的程度和废水有机物浓度以及有机基质类型有关,Ekema等人认为,当COD/TKN的比值小于7~9时,生物除磷系统很难获得好的效果。⑤出水SS的控制:生物除磷系统污泥含磷量一般大于5%,为达到严格的磷控制标准,在污水处理厂出水口设置过滤设施是必要的。
为了达到理想的活性污泥法处理效果,就必须考虑诸多因素。在生物除磷工艺中,对污染物的去除起主导作用的是微生物,因此在活性污泥中微生物的多少,直接影响污水处理的效果。而在强化生物除磷工艺中聚磷菌是活性污泥除磷的关键,因此提高生物除磷工艺除磷效率方法就是提高聚磷菌在整个生物系统中的生物量,使聚磷菌在该生物系统的比例大幅度的提升,使其成为优势菌种,已达到较好除磷效果。
为此试想通过在好氧池前设置高负荷好氧池提过活性污泥的生物量和生物活性。在高负荷好氧池中,大量的有机物质的进入,使微生物在高负荷条件下处于对数增殖期,大量的繁殖形成一个生物再生区域;同时也产生大量的粘性物质,使活性污泥中的微生物与污水中的悬浮物、颗粒产生吸附,已达到对污染物的更好结合利用,最终达到去除的目的。
另外,为了使聚磷菌在系统中成为优势菌种,可通过控制好厌氧池这个“生物选择器”在聚磷菌释放磷这个环节上各种释放磷因素,已达到使聚磷菌成为优势菌种的可能。
『贰』 高人详细介绍下污水处理中的化学除磷的工艺和方法有哪些
磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。
化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。
FeCl3+K3PO4→FePO4↓+3KCl 式1
污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。
在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。
根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。
Al3++PO43-→AlPO4↓pH=6~7 式2
Fe3++PO43-→FePO4↓pH=5~5.5 式3
与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。
Al3++3OH-→Al(OH)3↓ 式4
Fe3++3OH-→Fe(OH)3 式5
金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。
沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH值范围为5.0~5.5,对于铝盐为6.0~7.0,因为在以上PH值范围内FePO4或AIPO4的溶解性最小。另外使用金属盐药剂会给污水和污泥处理还会带来益处,比如会降低污泥的污泥指数,有利于沼气脱硫等。
由于金属盐药剂的投加会使污水处理厂出水中的Cl-或SO2-4离子含量增加。如果沉析药剂溶液中另外含有酸的话,则需特别加以注意。
投加金属盐药剂后相应会降低污水的碱度,这也许会对净化产生不利影响。当在同步沉析工艺中使用硫酸铁时,必须考虑对硝化反应的影响。
另外,如果污水处理厂污泥用于农业,使用金属盐药剂除磷时必须考虑铝或者铁负荷对农业的影响。
除了金属盐药剂外,氢氧化钙也用作沉析药剂。在沉折过程中,对于不溶解性的磷酸钙的形成起主要作用的不是Ca2+,而是OH-离子,因为随着pH值的提高,磷酸钙的溶解性降低,采用Ca(OH)2除磷要求的pH值为8.5以上。磷酸钙的形成是按反应式6进行的:
5Ca2++3po43-+OH-→Ca5(PO4)3OH↓ pH ≥8.5 式6
但在pH值为8.5到10.5的范围内除了会产生磷酸钙沉析外,还会产生碳酸钙,这也许会导致在池壁或渠、管壁上结垢,反应式如式7。
Ca2++CO32-→CaCO3 式7
与钙进行磷酸盐沉析的反应除了受到PH值的影响,另外还受到碳酸氢根浓度(碱度)的影响。在一定的PH值惰况下,钙的投加量是与碱度成正比的。
对于软或中硬的污水,采用钙沉析时,为了达到所要求的PH值所需要的钙量是很少的,具有强缓冲能力的污水相反则要求较大的钙投加量。
化学沉析工艺是按沉析药剂的投加地点来区分的,实际中常采用的有:前沉析、同步沉析和后沉析或在生物处理之后加絮凝过滤。
(1)前沉析
前沉析工艺的特点是沉析药剂投加在沉砂池中,或者初次沉淀池的进水渠(管)中,或者文丘里渠(利用涡流)中。其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。相应产生的沉析产物(大块状的絮凝体)则在一次沉淀池中通过沉淀而被分离。如果生物段采用的是生物滤池,则不允许使Fe2+药剂,以防止对填料产生危害(产生黄锈)。
前沉析工艺(如图2所示)特别适合于现有污水处理厂的改建(增加化学除磷措施),因为通过这一工艺步骤不仅可以去除磷,而且可以减少生物处理设施的负荷。常用的沉析药剂主要是生灰和金属盐药剂。经前沉析后剩余磷酸盐的含量为1.5-2.5mg/1,完全能满足后续生物处理对磷的需要。
(2)同步沉析
同步沉析是使用最广泛的化学除磷工艺,在国外约占所有化学除磷工艺的50%。其工艺是将沉析药剂投加在曝气池出水或二次沉淀池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠(管)中。目前很多污水厂都采用,如广州大坦沙污水处理厂三期就是采用的同步沉析,加药对活性污泥的影响比较小。
(3)后沉析
后沉析是将沉析、絮凝以及被絮凝物质的分离在一个与生物设施相分离的设施中进行,因而也就有二段法工艺的说法。一般将沉析药剂投加到二次沉淀池后的一个混合池(M池)中,并在其后设置絮凝池(F池)和沉淀池(或气浮池)。
对于要求不严的受纳水体,在后沉析工艺中可采用石灰乳液药剂,但必须对出水PH值加以控制,比如采用沼气中的CO2进行中和。
采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需恒定供应空气而运转费用较高。